Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Understanding cytokinesis: lessons from fission yeast

Abstract

For decades after the discovery that a contractile ring made of actin filaments and myosin II produces the force to constrict the cleavage furrow of animal cells, the complexity of cytokinesis has slowed progress in understanding the mechanism. Mechanistic insights, however, have been obtained by genetic, biochemical, microscopic and mathematical modelling approaches in the fission yeast Schizosaccharomyces pombe. Many features that have been identified in fission yeast are probably shared with animal cells, as both inherited many cytokinesis genes from their common ancestor about one billion years ago.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for cytokinesis used by plant, fission yeast and animal cells.
Figure 2: Time course of cytokinesis in fission yeast.
Figure 3: Mechanism of contractile ring assembly in fission yeast.

Similar content being viewed by others

References

  1. Otegui, M. S., Verbrugghe, K. J. & Skop, A. R. Midbodies and phragmoplasts: anallogous structures involved in cytokinesis. Trends Cell Biol. 15, 404–413 (2005).

    Article  CAS  Google Scholar 

  2. Gould, K. L. & Simanis, V. The control of septum formation in fission yeast. Genes Dev. 11, 2939–2951 (1997).

    Article  CAS  Google Scholar 

  3. Guertin, D. A., Trautmann, S. & McCollum, D. Cytokinesis in eukaryotes. Microbiol. Mol. Biol. Rev. 66, 155–178 (2002).

    Article  CAS  Google Scholar 

  4. Wu, J.Q., Kuhn, J. R., Kovar, D. R. & Pollard, T. D. Spatial and temporal pathway for assembly and constriction of the contractile ring in fission yeast cytokinesis. Dev. Cell 5, 723–734 (2003).

    Article  CAS  Google Scholar 

  5. Wu, J.Q. & Pollard, T. D. Counting cytokinesis proteins globally and locally in fission yeast. Science 310, 310–314 (2005).

    Article  CAS  Google Scholar 

  6. Padte, N. N., Martin, S. G., Howard, M. & Chang, F. The cell-end factor Pom1p inhibits Mid1p in specification of the cell division plane in fission yeast. Curr. Biol. 16, 2480–2487 (2006).

    Article  CAS  Google Scholar 

  7. Vavylonis, D., Wu, J.Q., Hao, S., O'Shaughnessy, B. & Pollard, T. D. Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science 319, 97–100 (2008).

    Article  CAS  Google Scholar 

  8. Bähler, J. et al. Role of polo kinase and Mid1p in determining the site of cell division in fission yeast. J. Cell Biol. 143, 1603–1616 (1998).

    Article  Google Scholar 

  9. Motegi, F., Nakano, K. & Mabuchi, I. Molecular mechanism of myosin-II assembly at the division site in Schizosaccharomyces pombe. J. Cell Sci. 113, 1813–1825 (2000).

    CAS  PubMed  Google Scholar 

  10. Paoletti, A. & Chang, F. Analysis of Mid1p, a protein required for placement of the cell division site, reveals a link between the nucleus and the cell surface in fission yeast. Mol. Biol. Cell 11, 2757–2773 (2000).

    Article  CAS  Google Scholar 

  11. Motegi, F., Mishra, M., Balasubramanian, M. K. & Mabuchi, I. Myosin-II reorganization during mitosis is controlled temporally by its dephosphorylation and spatially by Mid1 in fission yeast. J. Cell Biol. 165, 685–695 (2004).

    Article  CAS  Google Scholar 

  12. Moseley, J. B., Mayeux, A., Paoletti, A. & Nurse, P. A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature. 459, 857–860 (2009).

    Article  CAS  Google Scholar 

  13. Martin, S. G. & Berthelot-Grosjean, M. Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature 459, 852–856 (2009).

    Article  CAS  Google Scholar 

  14. Almonacid, M. et al. Spatial control of cytokinesis by Cdr2 kinase and Mid1/anillin nuclear export. Curr. Biol. 19, 961–966 (2009).

    Article  CAS  Google Scholar 

  15. Morrell, J. L., Nichols, C. B. & Gould, K. L. The GIN4 family kinase, Cdr2p, acts independently of septins in fission yeast. J. Cell Sci. 117, 5293–5302 (2004).

    Article  CAS  Google Scholar 

  16. Moseley, J. B. & Nurse, P. Cdk1 and cell morphology: connections and directions. Curr. Opin. Cell Biol. 21, 82–88 (2009).

    Article  CAS  Google Scholar 

  17. Celton-Marizur, S., Racine, V., Sibarita, J. B. & Paoletti, A. Pom1 kinase links division plane position to cell polarity by regulating Mid1p cortical distribution. J. Cell Sci. 119, 4710–4718 (2006).

    Article  Google Scholar 

  18. Huang, Y., Chew, T. G., Ge, W. & Balasubramanian, M. K. Polarity determinants Tea1p, Tea4p, and Pom1p inhibit division-septum assembly at cell ends in fission yeast. Dev. Cell 12, 987–996 (2007).

    Article  CAS  Google Scholar 

  19. Bähler, J. & Pringle, J. R. Pom1p, a fission yeast protein kinase that provides positional information for both polarized growth and cytokinesis. Genes Dev. 12, 1356–1370 (1998).

    Article  Google Scholar 

  20. Yonetani, A. et al. Regulation and targeting of the fission yeast formin Cdc12p in cytokinesis. Mol. Biol. Cell 19, 2208–2219 (2008).

    Article  CAS  Google Scholar 

  21. Coffman, V. C., Nile, A. H., Lee, I.J., Liu, H. & Wu, J.Q. Roles of formin nodes and myosin motor activity in Mid1p-dependent contractile ring assembly during fission yeast cytokinesis. Mol. Biol. Cell 20, 5195–5210 (2009).

    Article  CAS  Google Scholar 

  22. Celton-Marizur, S., Bordes, N., Fraisier, V., Tran, P. & Paoletti, A. C-terminal anchoring of mid1p to membranes stabilizes cytokinetic ring position in early mitosis in fission yeast. Mol. Cell. Biol. 24, 10621–10635 (2004).

    Article  Google Scholar 

  23. Chang, F., Drubin, D. & Nurse, P. Cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin. J. Cell Biol. 137, 169–182 (1997).

    Article  CAS  Google Scholar 

  24. Kovar, D. R., Kuhn, J. R., Tichy, A. L. & Pollard, T. D. The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J. Cell Biol. 161, 875–887 (2003).

    Article  CAS  Google Scholar 

  25. Lu, J. & Pollard, T. D. Profilin binding to poly-L-proline and actin monomers along with ability to catalyse actin nucleotide exchange is required for viability of fission yeast. Mol. Biol. Cell 12, 1161–1175 (2001).

    Article  CAS  Google Scholar 

  26. Paul, A. S. & Pollard, T. D. The role of the FH1 domain and profilin in formin-mediated actin-filament elongation and nucleation. Curr. Biol. 18, 9–19 (2008).

    Article  CAS  Google Scholar 

  27. Romero, S. et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419–429 (2004).

    Article  CAS  Google Scholar 

  28. Kovar, D. R., Harris, E. S., Mahaffy, R., Higgs, H. N. & Pollard, T. D. Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124, 423–435 (2006).

    Article  CAS  Google Scholar 

  29. Vavylonis, D., Kovar, D. R., O'Shaughnessy, B. & Pollard, T. D. Model of formin-associated actin filament elongation. Mol. Cell 21, 455–466 (2006).

    Article  CAS  Google Scholar 

  30. Marks, J. & Hyams, J. S. Localization of F-actin through the cell division cycle of Schizosaccharomyces pombe. Eur. J. Cell Biol. 39, 27–32 (1985).

    Google Scholar 

  31. Karagiannis, J., Bimbo, A., Rajagopalan, S., Liu, J. & Balasubramanian, M. The nuclear kinase Lsk1p positively regulates the septation initiation network and promotes the successful completion of cytokinesis in response to perturbation of the actomyosin ring in Schizosaccharomyes pombe. Mol. Biol. Cell 16, 358–371 (2005).

    Article  CAS  Google Scholar 

  32. Skau, C. T., Neidt, E. M. & Kovar, D. R. Role of tropomyosin in formin-mediated contractile ring assembly in fission yeast. Mol. Biol. Cell 20, 2160–2173 (2009).

    Article  CAS  Google Scholar 

  33. Arai, R. & Mabuchi, I. F-actin ring formation and the role of F-actin cables in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 115, 887–898 (2002).

    CAS  PubMed  Google Scholar 

  34. Carnahan, R. H. & Gould, K. L. The PCH family protein, Cdc15p, recruits two F-actin nucleation pathways to coordinate cytokinetic actin ring formation in Schizosaccharomyces pombe. J. Cell Biol. 162, 851–862 (2003).

    Article  CAS  Google Scholar 

  35. Kamasaki, T., Osumi, M. & Mabuchi, I. Three-dimensional arrangement of F-actin in the contractile ring of fission yeast. J. Cell Biol. 178, 765–771 (2007).

    Article  CAS  Google Scholar 

  36. Lord, M. & Pollard, T. D. UCS protein Rng3p activates actin filament gliding by fission yeast myosin-II. J. Cell Biol. 167, 315–325 (2004).

    Article  CAS  Google Scholar 

  37. Sladewski, T. E., Previs, M. & Lord, M. Regulation of fission yeast myosin-II function and contractile ring dynamics by regulatory light chain and heavy chain phosphorylation. Mol. Biol. Cell 20, 3941–3952 (2009).

    Article  CAS  Google Scholar 

  38. Loo, T. H. & Balasubramanian, M. Schizosaccharomyces pombe Pak-related protein, Pak1p/Orb2p, phosphorylates myosin regulatory light chain to inhibit cytokinesis. J. Cell Biol. 183, 785–793 (2008).

    Article  CAS  Google Scholar 

  39. Pelham, R. J. Jr & Chang, F. Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature 419, 82–86 (2002).

    Article  CAS  Google Scholar 

  40. Roberts-Galbraith, R. H., Chen, J. S., Wang, J. & Gould, K. L. The SH3 domains of two PCH family members cooperate in assembly of the Schizosaccharomyces pombe contractile ring. J. Cell Biol. 184, 113–127 (2009).

    Article  CAS  Google Scholar 

  41. Krapp, A. & Simanis, V. An overview of the fission yeast septation initiation network (SIN). Biochem. Soc. Trans. 36, 411–415 (2008).

    Article  CAS  Google Scholar 

  42. Hachet, O. & Simanis, V. Mid1p/anillin and the septation initiation network orchestrate contractile ring assembly for cytokinesis. Genes Dev. 22, 3205–3216 (2008).

    Article  CAS  Google Scholar 

  43. Wachtler, V., Huang, Y., Karagiannis, J. & Balasubramanian, M. Cell cycle-dependent roles for the FCH-domain protein Cdc15p in formation of the actomyosin ring in Schizosaccharomyces pombe. Mol. Biol. Cell 17, 3254–3266 (2006).

    Article  CAS  Google Scholar 

  44. Ge, W. & Balasubramanian, M. Pxl1p, a paxillin-related protein, stabilizes the actomyosin ring during cytokinesis in fission yeast. Mol. Biol. Cell 19, 1680–1692 (2008).

    Article  CAS  Google Scholar 

  45. Berlin, A., Paoletti, A. & Chang, F. Mid2p stabilizes septin rings during cytokinesis in fission yeast. J. Cell Biol. 160, 1083–1092 (2003).

    Article  CAS  Google Scholar 

  46. Tasto, J. J., Morrell, J. L. & Gould, K. L. An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation. J. Cell Biol. 160, 1093–1103 (2003).

    Article  CAS  Google Scholar 

  47. An, H., Morrell, J. L., Jennings, J. L., Link, A. J. & Gould, K. L. Requirements of fission yeast septins for complex formation, localization and function. Mol. Biol. Cell 15, 5551–5564 (2004).

    Article  CAS  Google Scholar 

  48. Nakano, K. & Mabuchi, I. Actin-depolymerizing protein Adf1 is required for formation and maintenance of the contractile ring during cytokinesis in fission yeast. Mol. Biol. Cell 17, 1933–1945 (2006).

    Article  CAS  Google Scholar 

  49. Bement, W. M., Benink, H. A. & von Dassow, G. A microtubule-dependent zone of active RhoA during cleavage plane specification. J. Cell Biol. 170, 91–101 (2005).

    Article  CAS  Google Scholar 

  50. Carvalho, A., Desai, A. & Oegema, K. Structural memory in the contractile ring makes the duration of cyotkinesis independent of cell size. Cell 137, 926–937 (2009).

    Article  CAS  Google Scholar 

  51. Schroeder, T. E. The contractile ring. II. Determining its brief existence, volumetric changes, and vital role in cleaving Arbacia eggs. J. Cell Biol. 53, 419–434 (1972).

    Article  CAS  Google Scholar 

  52. Roberts-Galbraith, R. H. & Gould, K. L. Stepping into the ring: the SIN takes on contractile ring assembly. Genes Dev. 22, 3082–3088 (2008).

    Article  CAS  Google Scholar 

  53. Chen, C. T. et al. The SIN kinase Sid2 regulates cytoplasmic retention of the S. pombe Cdc14-like phosphatase Clp1. Curr. Biol. 18, 1509–1594 (2008).

    Google Scholar 

  54. Clifford, D. M. et al. The Clp1/Cdc14 phosphatase contributes to the robustness of cytokinesis by association with anillin-related Mid1. J. Cell Biol. 181, 79–88 (2008).

    Article  CAS  Google Scholar 

  55. Sohrmann, M., Fankhauser, C., Brodbeck, C. & Simanis, V. The dmf1/mid1 gene is essential for correct positioning of the division septum in fission yeast. Genes Dev. 10, 2707–2719 (1996).

    Article  CAS  Google Scholar 

  56. Chang, F., Wollard, A. & Nurse, P. Isolation and characterization of fission yeast mutants defective in the assembly and placement of the contractile actin ring. J. Cell Sci. 109, 131–142 (1996).

    CAS  PubMed  Google Scholar 

  57. Huang, Y., Yan, H. & Balasubramanian, M. K. Assembly of normal actomyosin rings in the absence of Mid1p and cortical nodes in fission yeast. J. Cell Biol. 183, 979–988 (2008).

    Article  CAS  Google Scholar 

  58. Schmidt, S., Sohrmann, M., Hofmann, K., Woollard, A. & Simanis, V. The Spg1p GTPase is an essential, dosage-dependent inducer of septum formation in Schizosaccharomyces pombe. Genes Dev. 11, 1519–1534 (1997).

    Article  CAS  Google Scholar 

  59. Pardo, M. & Nurse, P. Equatorial retention of the contractile actin ring by microtubules during cytokinesis. Science 300, 1569–1574 (2003).

    Article  CAS  Google Scholar 

  60. Werner, M., Munro, E. & Glotzer, M. Astral signals spatially bias cortical myosin recruitment to break symmetry and promote cytokinesis. Curr. Biol. 15, 1286–1297 (2007).

    Article  Google Scholar 

  61. Glotzer, M. The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nature Rev. Mol. Cell Biol. 10, 9–20 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work in the T.D.P. laboratory is supported by the National Institutes of Health (NIH) research grant GM-026338 and the work in the J.-Q.W. laboratory is supported by an American Cancer Society Ohio Pilot research grant, American Heart Association Great Rivers Affiliate, Ohio Cancer Research Associates, Basil O'Connor Starter Scholar research award from the March of Dimes Foundation and the NIH research grant GM-086546. The authors thank Z. Cande, F. Chang, Q. Chen, J. Moseley and S. Saha for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Pollard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table) | Identified cytokinesis proteins in fission yeast (PDF 391 kb)

41580_2010_BFnrm2834_MOESM249_ESM.mov

Supplementary information S2 (movie) | The contractile ring forms from a broad band of nodes around the equator of the cell. (MOV 607 kb)

41580_2010_BFnrm2834_MOESM250_ESM.pdf

Related links

Related links

FURTHER INFORMATION

Thomas D. Pollard's homepage

Jian-Qiu Wu's homepage

Bioneer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollard, T., Wu, JQ. Understanding cytokinesis: lessons from fission yeast. Nat Rev Mol Cell Biol 11, 149–155 (2010). https://doi.org/10.1038/nrm2834

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing