Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Bringing up the rear: defining the roles of the uropod

Abstract

Renewed interest in cell shape has been prompted by a recent flood of evidence that indicates that cell polarity is essential for the biology of motile cells. The uropod, a protrusion at the rear of amoeboid motile cells such as leukocytes, exemplifies the importance of morphology in cell motility. Remodelling of cell shape by uropod-interfering agents disturbs cell migration. But even though the mechanisms by which uropods regulate cell migration are beginning to emerge, their functional significance remains enigmatic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of uropod formation.
Figure 2: Biological functions of uropods.

Similar content being viewed by others

References

  1. Van Haastert, P. J. & Devreotes, P. N. Chemotaxis: signalling the way forward. Nature Rev. Mol. Cell Biol. 5, 626–634 (2004).

    CAS  Google Scholar 

  2. Kriebel, P. W., Barr, V. A. & Parent, C. A. Adenylyl cyclase localization regulates streaming during chemotaxis. Cell 112, 549–560 (2003).

    CAS  PubMed  Google Scholar 

  3. Mathias, J. R. et al. Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. J. Cell Sci. 120, 3372–3383 (2007).

    CAS  PubMed  Google Scholar 

  4. Gudima, G. O., Vorobjev, I. A. & Chentsov, Yu. S. Centriolar location during blood cell spreading and motion in vitro: an ultrastructural analysis. J. Cell Sci. 89, 225–241 (1988).

    PubMed  Google Scholar 

  5. Sánchez-Madrid, F. & del Pozo, M. A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).

    PubMed  PubMed Central  Google Scholar 

  6. McFarland, W. & Heilman, D. H. Lymphocyte foot appendage: its role in lymphocyte function and in immunological reactions. Nature 205, 887–888 (1965).

    CAS  PubMed  Google Scholar 

  7. Vicente-Manzanares, M. & Sánchez-Madrid, F. Role of the cytoskeleton during leukocyte responses. Nature Rev. Immunol. 4, 110–122 (2004).

    CAS  Google Scholar 

  8. Ratner, S., Sherrod, W. S. & Lichlyter, D. Microtubule retraction into the uropod and its role in T cell polarization and motility. J. Immunol. 159, 1063–1067 (1997).

    CAS  PubMed  Google Scholar 

  9. Cabrero, J. R. et al. Lymphocyte chemotaxis is regulated by histone deacetylase 6, independently of its deacetylase activity. Mol. Biol. Cell 17, 3435–3445 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilkinson, P. C. The locomotor capacity of human lymphocytes and its enhancement by cell growth. Immunology 57, 281–289 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown, M. J., Hallam, J. A., Colucci-Guyon, E. & Shaw, S. Rigidity of circulating lymphocytes is primarily conferred by vimentin intermediate filaments. J. Immunol. 166, 6640–6646 (2001).

    CAS  PubMed  Google Scholar 

  12. Kolodney, M. S. & Elson, E. L. Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proc. Natl Acad. Sci. USA 92, 10252–10256 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Coates, T. D., Watts, R. G., Hartman, R. & Howard, T. H. Relationship of F-actin distribution to development of polar shape in human polymorphonuclear neutrophils. J. Cell Biol. 117, 765–774 (1992).

    CAS  PubMed  Google Scholar 

  14. Wang, X. Y., Ostberg, J. R. & Repasky, E. A. Effect of fever-like whole-body hyperthermia on lymphocyte spectrin distribution, protein kinase C activity, and uropod formation. J. Immunol. 162, 3378–3387 (1999).

    CAS  PubMed  Google Scholar 

  15. Serrador, J. M. et al. Moesin interacts with the cytoplasmic region of intercellular adhesion molecule-3 and is redistributed to the uropod of T lymphocytes during cell polarization. J. Cell Biol. 138, 1409–1423 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Eddy, R. J., Pierini, L. M., Matsumura, F. & Maxfield, F. R. Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration. J. Cell Sci. 113, 1287–1298 (2000).

    CAS  PubMed  Google Scholar 

  17. McFarland, W. Microspikes on the lymphocyte uropod. Science 163, 818–820 (1969).

    CAS  PubMed  Google Scholar 

  18. Bhalla, D. K., Braun, J. & Karnovsky, M. J. Lymphocyte surface and cytoplasmic changes associated with translational motility and spontaneous capping of Ig. J. Cell Sci. 39, 137–147 (1979).

    CAS  PubMed  Google Scholar 

  19. Yonemura, S., Tsukita, S. & Tsukita, S. Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the organization of microvilli in collaboration with activated ERM proteins. J. Cell Biol. 145, 1497–1509 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Takeuchi, K. et al. Perturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members. J. Cell Biol. 125, 1371–1384 (1994).

    CAS  PubMed  Google Scholar 

  21. Nijhara, R. et al. Rac1 mediates collapse of microvilli on chemokine-activated T lymphocytes. J. Immunol. 173, 4985–4993 (2004).

    CAS  PubMed  Google Scholar 

  22. Rios, R. M. & Bornens, M. The Golgi apparatus at the cell centre. Curr. Opin. Cell Biol. 15, 60–66 (2003).

    CAS  PubMed  Google Scholar 

  23. Campello, S. et al. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J. Exp. Med. 203, 2879–2886 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Borset, M., Hjertner, O., Yaccoby, S., Epstein, J. & Sanderson, R. D. Syndecan-1 is targeted to the uropods of polarized myeloma cells where it promotes adhesion and sequesters heparin-binding proteins. Blood 96, 2528–2536 (2000).

    CAS  PubMed  Google Scholar 

  25. Sala-Valdes, M. et al. EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin–radixin–moesin proteins. J. Biol. Chem. 281, 19665–19675 (2006).

    CAS  PubMed  Google Scholar 

  26. Zhang, H. et al. Impaired integrin-dependent function in Wiskott–Aldrich syndrome protein-deficient murine and human neutrophils. Immunity 25, 285–295 (2006).

    PubMed  PubMed Central  Google Scholar 

  27. Schaff, U., Mattila, P. E., Simon, S. I. & Walcheck, B. Neutrophil adhesion to E-selectin under shear promotes the redistribution and co-clustering of ADAM17 and its proteolytic substrate L-selectin. J. Leukoc. Biol. 83, 99–105 (2008).

    CAS  PubMed  Google Scholar 

  28. Jevnikar, Z., Obermajer, N., Bogyo, M. & Kos, J. The role of cathepsin X in the migration and invasiveness of T lymphocytes. J. Cell Sci. 121, 2652–2661 (2008).

    CAS  PubMed  Google Scholar 

  29. Carrasco, Y. R. & Batista, F. D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27, 160–171 (2007).

    CAS  PubMed  Google Scholar 

  30. Tibaldi, E. V., Salgia, R. & Reinherz, E. L. CD2 molecules redistribute to the uropod during T cell scanning: implications for cellular activation and immune surveillance. Proc. Natl Acad. Sci. USA 99, 7582–7587 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yonemura, S. et al. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J. Cell Biol. 140, 885–895 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Serrador, J. M. et al. A novel serine-rich motif in the intercellular adhesion molecule 3 is critical for its ezrin/radixin/moesin-directed subcellular targeting. J. Biol. Chem. 277, 10400–10409 (2002).

    CAS  PubMed  Google Scholar 

  33. Legg, J. W., Lewis, C. A., Parsons, M., Ng, T. & Isacke, C. M. A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nature Cell Biol. 4, 399–407 (2002).

    CAS  PubMed  Google Scholar 

  34. Millan, J., Montoya, M. C., Sancho, D., Sánchez-Madrid, F. & Alonso, M. A. Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood 99, 978–984 (2002).

    CAS  PubMed  Google Scholar 

  35. Gomez-Mouton, C. et al. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl Acad. Sci. USA 98, 9642–9647 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Seveau, S., Eddy, R. J., Maxfield, F. R. & Pierini, L. M. Cytoskeleton-dependent membrane domain segregation during neutrophil polarization. Mol. Biol. Cell 12, 3550–3562 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pryzwansky, K. B., Wyatt, T. A. & Lincoln, T. M. Cyclic guanosine monophosphate-dependent protein kinase is targeted to intermediate filaments and phosphorylates vimentin in A23187-stimulated human neutrophils. Blood 85, 222–230 (1995).

    CAS  PubMed  Google Scholar 

  38. Rios, R. M., Celati, C., Lohmann, S. M., Bornens, M. & Keryer, G. Identification of a high affinity binding protein for the regulatory subunit RII beta of cAMP-dependent protein kinase in Golgi enriched membranes of human lymphoblasts. EMBO J. 11, 1723–1731 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lang, P. et al. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J. 15, 510–519 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. del Pozo, M. A., Sanchez-Mateos, P., Nieto, M. & Sánchez-Madrid, F. Chemokines regulate cellular polarization and adhesion receptor redistribution during lymphocyte interaction with endothelium and extracellular matrix. Involvement of cAMP signaling pathway. J. Cell Biol. 131, 495–508 (1995).

    CAS  PubMed  Google Scholar 

  41. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature Rev. Mol. Cell Biol. 9, 690–701 (2008).

    CAS  Google Scholar 

  42. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).

    CAS  PubMed  Google Scholar 

  43. Pestonjamasp, K. N. et al. Rac1 links leading edge and uropod events through Rho and myosin activation during chemotaxis. Blood 108, 2814–2820 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ratner, S., Piechocki, M. P. & Galy, A. Role of Rho-family GTPase Cdc42 in polarized expression of lymphocyte appendages. J. Leukoc. Biol. 73, 830–840 (2003).

    CAS  PubMed  Google Scholar 

  45. Iijima, M., Huang, Y. E. & Devreotes, P. Temporal and spatial regulation of chemotaxis. Dev. Cell 3, 469–478 (2002).

    CAS  PubMed  Google Scholar 

  46. Nishio, M. et al. Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nature Cell Biol. 9, 36–44 (2007).

    CAS  PubMed  Google Scholar 

  47. Lacalle, R. A. et al. PTEN regulates motility but not directionality during leukocyte chemotaxis. J. Cell Sci. 117, 6207–6215 (2004).

    CAS  PubMed  Google Scholar 

  48. Kamimura, Y. et al. PIP3-independent activation of TorC2 and PKB at the cell's leading edge mediates chemotaxis. Curr. Biol. 18, 1034–1043 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Heit, B. et al. PTEN functions to 'prioritize' chemotactic cues and prevent 'distraction' in migrating neutrophils. Nature Immunol. 9, 743–752 (2008).

    CAS  Google Scholar 

  50. Lokuta, M. A. et al. Type Iγ PIP kinase is a novel uropod component that regulates rear retraction during neutrophil chemotaxis. Mol. Biol. Cell 18, 5069–5080 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lacalle, R. A. et al. Type I phosphatidylinositol 4-phosphate 5-kinase controls neutrophil polarity and directional movement. J. Cell Biol. 179, 1539–1553 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Samaniego, R., Sanchez-Martin, L., Estecha, A. & Sanchez-Mateos, P. Rho/ROCK and myosin II control the polarized distribution of endocytic clathrin structures at the uropod of moving T lymphocytes. J. Cell Sci. 120, 3534–3543 (2007).

    CAS  PubMed  Google Scholar 

  53. Cooper, K. M., Bennin, D. A. & Huttenlocher, A. The PCH family member proline-serine-threonine phosphatase-interacting protein 1 targets to the leukocyte uropod and regulates directed cell migration. Mol. Biol. Cell 19, 3180–3191 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Real, E., Faure, S., Donnadieu, E. & Delon, J. Cutting edge: atypical PKCs regulate T lymphocyte polarity and scanning behavior. J. Immunol. 179, 5649–5652 (2007).

    CAS  PubMed  Google Scholar 

  55. Campanero, M. R., Sanchez-Mateos, P., del Pozo, M. A. & Sánchez-Madrid, F. ICAM-3 regulates lymphocyte morphology and integrin-mediated T cell interaction with endothelial cell and extracellular matrix ligands. J. Cell Biol. 127, 867–878 (1994).

    CAS  PubMed  Google Scholar 

  56. Yoshinaga-Ohara, N., Takahashi, A., Uchiyama, T. & Sasada, M. Spatiotemporal regulation of moesin phosphorylation and rear release by Rho and serine/threonine phosphatase during neutrophil migration. Exp. Cell Res. 278, 112–122 (2002).

    CAS  PubMed  Google Scholar 

  57. Lee, J. H. et al. Roles of p-ERM and Rho–ROCK signaling in lymphocyte polarity and uropod formation. J. Cell Biol. 167, 327–337 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jacobelli, J., Chmura, S. A., Buxton, D. B., Davis, M. M. & Krummel, M. F. A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nature Immunol. 5, 531–538 (2004).

    CAS  Google Scholar 

  59. Smith, A., Bracke, M., Leitinger, B., Porter, J. C. & Hogg, N. LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment. J. Cell Sci. 116, 3123–3133 (2003).

    CAS  PubMed  Google Scholar 

  60. Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161, 417–427 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Barreiro, O. et al. Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J. Cell Biol. 183, 527–542 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fais, S. et al. Multinucleated giant cells generation induced by interferon-γ. Changes in the expression and distribution of the intercellular adhesion molecule-1 during macrophages fusion and multinucleated giant cell formation. Lab. Invest. 71, 737–744 (1994).

    CAS  PubMed  Google Scholar 

  63. Helander, T. S. et al. ICAM-2 redistributed by ezrin as a target for killer cells. Nature 382, 265–268 (1996).

    CAS  PubMed  Google Scholar 

  64. Dore, M., Burns, A. R., Hughes, B. J., Entman, M. L. & Smith, C. W. Chemoattractant-induced changes in surface expression and redistribution of a functional ligand for P-selectin on neutrophils. Blood 87, 2029–2037 (1996).

    CAS  PubMed  Google Scholar 

  65. del Pozo, M. A. et al. ICAMs redistributed by chemokines to cellular uropods as a mechanism for recruitment of T lymphocytes. J. Cell Biol. 137, 493–508 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nieto, M. et al. Roles of chemokines and receptor polarization in NK–target cell interactions. J. Immunol. 161, 3330–3339 (1998).

    CAS  PubMed  Google Scholar 

  67. Ludford-Menting, M. J. et al. A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation. Immunity 22, 737–748 (2005).

    CAS  PubMed  Google Scholar 

  68. Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154, 147–160 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Morin, N. A. et al. Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. J. Exp. Med. 205, 195–205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith, L. A., Aranda-Espinoza, H., Haun, J. B., Dembo, M. & Hammer, D. A. Neutrophil traction stresses are concentrated in the uropod during migration. Biophys. J. 92, L58–L60 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    PubMed  Google Scholar 

  72. Chen, P., Hubner, W., Spinelli, M. A. & Chen, B. K. Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J. Virol. 81, 12582–12595 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nguyen, D. H. & Hildreth, J. E. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol. 74, 3264–3272 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fais, S. et al. Human immunodeficiency virus type 1 induces cellular polarization, intercellular adhesion molecule-1 redistribution, and multinucleated giant cell generation in human primary monocytes but not in monocyte-derived macrophages. Lab. Invest. 75, 783–790 (1996).

    CAS  PubMed  Google Scholar 

  75. Parlato, S. et al. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. EMBO J. 19, 5123–5134 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Frasch, S. C. et al. Phospholipid flip-flop and phospholipid scramblase 1 (PLSCR1) co-localize to uropod rafts in formylated Met-Leu-Phe-stimulated neutrophils. J. Biol. Chem. 279, 17625–17633 (2004).

    CAS  PubMed  Google Scholar 

  77. Perez, O. D. et al. Activation of the PKB/AKT pathway by ICAM-2. Immunity 16, 51–65 (2002).

    CAS  PubMed  Google Scholar 

  78. Filippi, M. D., Szczur, K., Harris, C. E. & Berclaz, P. Y. Rho GTPase Rac1 is critical for neutrophil migration into the lung. Blood 109, 1257–1264 (2007).

    CAS  PubMed  Google Scholar 

  79. Badolato, R. et al. Monocytes from Wiskott–Aldrich patients display reduced chemotaxis and lack of cell polarization in response to monocyte chemoattractant protein-1 and formyl-methionyl-leucyl-phenylalanine. J. Immunol. 161, 1026–1033 (1998).

    CAS  PubMed  Google Scholar 

  80. Vincent, P. et al. A role for the neuronal protein collapsin response mediator protein 2 in T lymphocyte polarization and migration. J. Immunol. 175, 7650–7660 (2005).

    CAS  PubMed  Google Scholar 

  81. Tooley, A. J. et al. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nature Cell Biol. 11, 17–26 (2009).

    CAS  PubMed  Google Scholar 

  82. Barral, Y. & Mansuy, I. M. Septins: cellular and functional barriers of neuronal activity. Curr. Biol. 17, R961–R963 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.S.-M. is supported by grants SAF2008-02635, INSINET-0159/2006 from Comunidad de Madrid, RD06/0014-0030 from Red Temática de Investigación Cooperativa en Enfermedades Cardiovasculares and FIPSE (Fundación para la Investigación y Prevención del SIDA en España) 36289/02. J.M.S is supported by grants PI070356, SAF2008-01339-E and Contrato-Investigador FIS (Ministerio de Ciencia e Innovación, Spain). Editorial support was provided by S. Bartlett. The authors thank A. Shaw, R. Gonzalez Amaro and M. Vicente Manzanares for critical reading of the manuscript. The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the Spanish Ministry of Science and Innovation and the Pro-CNIC Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Sánchez-Madrid.

Related links

Related links

DATABASES

OMIM

Wiskott–Aldrich syndrome

FURTHER INFORMATION

Francisco Sánchez-Madrid's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Madrid, F., Serrador, J. Bringing up the rear: defining the roles of the uropod. Nat Rev Mol Cell Biol 10, 353–359 (2009). https://doi.org/10.1038/nrm2680

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2680

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing