Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New targets for inhibitors of HIV-1 replication

Abstract

Despite the success of protease and reverse transcriptase inhibitors, new drugs to suppress HIV-1 replication are still needed. Several other early events in the viral life cycle (stages before the viral genome is inserted into host cell DNA) are susceptible to drugs, including virus attachment to target cells, membrane fusion and post-entry events such as integration, accessory-gene function and assembly of viral particles. Among these, inhibitors of virus?cell fusion and integration are the most promising candidates.

Key Points

  • So far, inhibitors against HIV-1 have been designed to antagonize the viral reverse transcriptase and protease enzymes. However, there are concerns about both the long-term effects of the protease inhibitors and the ability of HIV-1 to evolve resistance to these drugs.

  • New attempts to block HIV-1 infection have diversifed to consider many steps in the viral life cycle of HIV-1 that are crucial to infection. These include virus?cell attachment, virus entry and virus uncoating. The reverse transcription of viral cDNA, nuclear import and integration into the host cell's genome are also potential sites of inhibition.

  • Antagonists of viral entry are now in, or approaching, human clinical trials; these inhibitors are directed against both the viral glycoproteins that interact with receptors and co-receptors on the host cell membrane. The design of post-entry inhibitors remains problematic; the more advanced inhibitors include agonists of the integrase enzyme, which mediates viral cDNA integration into the host cell's genome.

  • Design of new viral-entry inhibitors also considers the escape pathways adopted by the evolving HIV-1 virus in response to inhibition of its normal entry route. It is predicted that the most successful therapeutic approach will be a ?cocktail? of inhibitors, which block infection at several points, including the potential escape pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Entry steps in the HIV-1 replication cycle.
Figure 2: HIV-1 entry and inhibition by gp41 peptides.
Figure 3: HIV-1 co-receptors and inhibitors.
Figure 4: Escape pathways for a CCR5-targeted inhibitor of HIV-1 entry.
Figure 5: Post-fusion targets.

Similar content being viewed by others

References

  1. Palella, F. J. Jr et al. Declining morbidity and mortality, among patients with advanced human immunodeficiency virus infection. N. Engl. J. Med. 338, 853?860 (1998).

    Article  PubMed  Google Scholar 

  2. Lucas, G. M., Chaisson, R. E. & Moore, R. D. Highly active antiretroviral therapy in a large urban clinic: Risk factors for virologic failure and adverse drug reactions. Ann. Intern. Med. 131, 81?87 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Yerly, S. et al. Transmission of antiretroviral-drug-resistant HIV-1 variants . Lancet 354, 729?733 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Furtado, M. R. et al. Persistence of HIV-1 transcription in peripheral blood mononuclear cells in patients receiving potent antiretroviral therapy. N. Engl. J. Med. 340, 1614?1622 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  5. Van Damme, L. & Rosenberg, Z. F. Microbicides and barrier methods in HIV prevention. AIDS 13, S85? S92 (1999).

    PubMed  Google Scholar 

  6. Mondor, I., Ugolini, S. & Sattentau, Q. J. Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4-independent and gp120 dependent and requires cell surface heparans. J. Virol. 72, 3623? 3634 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Moulard, M. et al. Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. J. Virol. 74, 1948?1960 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Geijtenbeek, T. B. H. et al. DC SIGN, a dendritic cell specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 575?585 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Liao, Z., Roos, J. W. & Hildreth, J. E. K. Increased infectivity of HIV type 1 particles bound to cell surface and solid-phase ICAM-1 and VCAM-1 through acquired adhesion molecules LFA-1 and VLA-4. AIDS Res. Hum. Retroviruses 16, 355?366 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Esser, M. T. et al. Cyanovirin-N binds to gp120 to interfere with CD4 dependent human immunodeficiency virus type 1 virion binding, fusion, and infectivity but does not affect the CD4 binding site on gp120 or soluble CD4-induced conformational changes in gp120. J. Virol. 73, 4360? 4371 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Delezay, O., Hammache, D., Fantini, J. & Yahi, N. SPC3, a V3 loop-derived synthetic peptide inhibitor of HIV-1 infection, binds to cell surface glycosphingolipids. Biochemistry 35, 15663?15671 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Kwong, P. D. et al. Structure of an HIV gp120 envelope glycoprotein complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648?659 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, J. L. et al. The bis-azo compound FP 21399 inhibits HIV-1 replication by preventing viral entry. Virology 244, 530 ?541 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Bugelski, P. J., Ellens, H., Hart, T. K. & Kirsh, R. L. Soluble CD4 and dextran sulphate mediate release of gp120 from HIV-1: Implications for clinical trials. J. Acq. Immun. Def. Synd. 4, 923 ?924 (1991).

    CAS  Google Scholar 

  15. Cabrera, C. et al. Resistance of the human immunodeficiency virus to the inhibitory action of negatively charged albumins on virus binding to CD4. AIDS Res. Hum. Retroviruses 15, 1535? 1543 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Jacobson, J. M. et al. Single-dose safety, pharmacology and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. J. Infect. Dis. 182, 326? 329 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, W. et al. Conformational changes of gp120 in epitopes near the CCR5 binding site are induced by CD4 and a CD4 miniprotein mimetic. Biochemistry 38, 9405?9416 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  18. Vita, C. et al. Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. Proc. Natl Acad. Sci. USA 96, 13091? 13096 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reimann, K. A. et al. A humanized form of a CD4-specific monoclonal antibody exhibits decreased antigenicity and prolonged plasma half-life in rhesus monkeys while retaining its unique biological and antiviral properties. AIDS Res. Hum. Retroviruses 13, 933?943 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Berger, E. A. HIV entry and tropism: the chemokine receptor connection. AIDS 11, S3?S16 ( 1997).

    PubMed  Google Scholar 

  21. Michael, N. L. et al. Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5Δ 32. J. Virol. 72, 6040? 6047 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Y.-J. & Moore, J. P. Will multiple coreceptors need to be targeted by inhibitors of human immunodeficiency virus type 1? J. Virol. 73, 3443?3448 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Glushakova, S. et al. Preferential coreceptor utilization and cytopathicity by dual-tropic HIV-1 in human lymphoid tissue ex vivo. J. Clin. Invest. 104, R7?R11 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berger, E. A. et al. A new classification for HIV?1. Nature 391, 240 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Veazey, R. S. et al. Identifying the target cell in primary simian immunodeficiency virus (SIV) infection: highly activated memory CD4(+) T cells are rapidly eliminated in early SIV infection in vivo. J. Virol. 74, 57?64 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blaak, H. et al. In vivo HIV-1 infection of CD45RA+CD4+ T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4+ T cell decline. Proc. Natl Acad. Sci. USA 97, 1269? 1274 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion of the CKR5 structural allele. Science 273, 1856?1862 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, L. et al. CCR5 levels and expression pattern correlate with infectability by macrophage tropic HIV-1, in vitro. J. Exp. Med. 185, 1681?1691 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595?599 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Datema, R. et al. Antiviral efficacy in vivo of the anti-human immunodeficiency virus bicyclam SDZ SID 791 (JM 3100), an inhibitor of infectious cell entry . Antimicrob. Agents Chemother. 40, 750? 754 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cocchi, F. et al. Identification of RANTES, MIP-1 alpha and MIP-1 beta as the major HIV suppressive factors produced by CD8+ T cells. Science 270, 1811?1815 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  32. Bleul, C. C. et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829? 833 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Oberlin, E. et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line adapted HIV-1. Nature 382, 833?835 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Simmons, G. et al. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276 , 276?279 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Heveker, N. et al. Dissociation of the signalling and antiviral properties of SDF-1-derived small peptides. Curr. Biol. 8, 369?376 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Amara, A. et al. HIV coreceptor downregulation as antiviral principle: SDF-1α-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J. Exp. Med. 186, 139 ?146 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mack, M. et al. Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: A novel inhibitory mechanism of HIV infectivity. J. Exp. Med. 187, 1215?1224 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Trkola, A. et al. Genetic subtype independent inhibition of human immunodeficiency virus type 1 replication by CC and CXC chemokines. J. Virol. 72, 396?404 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kinter, A. et al. CC-chemokines enhance the replication of T tropic strains of HIV-1 in CD4+ T cells: Role of signal transduction. Proc. Natl Acad. Sci. USA 95, 11880? 11885 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marechal, V., Arenzana-Seisdedos, F., Heard, J.-M. & Schwartz, O. Opposite effects of SDF-1 on human immunodeficiency virus type 1 replication? J. Virol. 73, 3608?3615 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Trkola, A. et al. The CC chemokine RANTES increases the attachment of human immunodeficiency virus type 1 to target cells via glycosoaminoglycans, and also activates a signal transduction pathway that enhances viral infectivity . J. Virol. 73, 6370?6379 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mosier, D. E. et al. Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. J. Virol. 73, 3544 ?3550 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Endres, M. J. et al. CD4-independent infection by HIV-2 is mediated by fusin/CXCR4 . Cell 87, 745?756 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Olson, W. C. et al. Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC chemokine activity by monoclonal antibodies to CCR5. J. Virol. 73, 4145? 4155 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schols, D. et al. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J. Exp. Med. 186, 1383?1388 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Murakami, T. et al. A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J. Exp. Med. 186, 1389? 1393 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Doranz, B. J. et al. A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J. Exp. Med. 186, 1395?1400 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Donzella, G. A. et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nature Med. 4, 72? 77 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Arakaki, R. et al. T134, a small-molecule CXCR4 inhibitor, has no cross drug resistance with AMD3100, a CXCR4 antagonist with a different structure. J. Virol. 73, 1719?1723 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sakaida, H. et al. T-tropic human immunodeficiency virus type 1 (HIV-1) derived V3 loop peptides directly bind to CXCR-4 and inhibit T-tropic HIV-1 infection . J. Virol. 72, 9763?9770 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Baba, M. et al. A small molecule nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc. Natl Acad. Sci. USA 96, 5698?5703 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Howard, O. M. Z. et al. Inhibition of in vitro and in vivo HIV replication by a distamycin analogue that interferes with chemokine receptor function: A candidate for chemotherapeutic and microbicidal application. J. Med. Chem. 41, 2184?2193 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Wild, C., Oas, T., McDanal, C., Bolognesi, D. & Matthews, T. A synthetic peptide inhibitor of human immunodeficiency virus replication: Correlation between solution structure and viral inhibition . Proc. Natl Acad. Sci. USA 89, 10537? 10541 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang, S., Lin, K., Strick, N. & Neurath, A. R. HIV?1 inhibition by a peptide. Nature 365, 113 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Jones, P. L., Korte, T. & Blumenthal, R. Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors . J. Biol. Chem. 273, 404? 409 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Kilby, J. M. et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nature Med. 4, 1302?1307 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Ferrer, M. et al. Selection of gp41-mediated HIV-1 cell entry inhibition from biased combinational libraries of non-natural binding elements. Nature Struct. Biol. 6, 953?959 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A. & Kim, P. S. Inhibiting HIV-1 entry: Discovery of d-peptide inhibitors that target the gp41 coiled coil pocket. Cell 99, 103?115 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  59. Labrosse, B., Treboute, C. & Alizon, M. Sensitivity to a nonpeptidic compound (RPR103611) blocking human immunodeficiency virus type 1 env-mediated fusion depends on the sequence and accessibility of the gp41 loop region. J. Virol. 74, 2142?2150 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wilson, C. et al. The site of an immune-selected point mutation in the transmembrane protein of human immunodeficiency virus type 1 does not constitute the neutralization epitope. J. Virol. 64, 3240? 3248 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pritsker, M., Jones, P., Blumenthal, R. & Shai, Y. A synthetic all d-amino acid peptide corresponding to the N-terminal sequence of HIV-1 gp41 recognizes the wild-type fusion peptide in the membrane and inhibits HIV 1 envelope glycoprotein-mediated cell fusion. Proc. Natl Acad. Sci. USA 95, 7287?7292 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rimsky, L. T., Shugars, D. C. & Matthews, T. J. Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J. Virol. 72, 986?993 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. De Vreese, K. et al. The molecular target of bicyclams, potent inhibitors of human immunodeficiency virus replication. J. Virol. 70, 689?696 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schols, D., Esté, J. A., Cabrera, C. & De Clercq, E. T-cell-line tropic human immunodeficiency virus type 1 that is made resistant to stromal cell-derived factor 1α contains mutations in the envelope gp120 but does not show a switch in coreceptor use. J. Virol. 72, 4032?4037 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Esté, J. A. et al. Shift of clinical human immunodeficiency virus type 1 isolates from X4 to X5 and prevention of emergence of the syncytium-inducing phenotype by blockade of CXCR4. J. Virol. 73, 5577 ?5585 (1999).

    PubMed  PubMed Central  Google Scholar 

  66. Maeda, Y., Foda, M., Matsushita, S. & Harada, S. Involvement of both the V2 and V3 regions of the CCR5-tropic human immunodeficiency virus type 1 envelope in reduced sensitivity to macrophage inflammatory protein 1alpha. J. Virol. 74, 1787? 1793 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Franke, E. K., Yuan, H. E. H. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions . Nature 372, 359?362 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Thali, M. et al. Functional association of cyclophilin A with HIV-1 virions. Nature 372, 363?365 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  69. Braaten, D. et al. Cyclosporine A-resistant human immunodeficiency virus type 1 mutants demonstrate that gag encodes functional target of cyclophilin A . J. Virol. 70, 5170?5176 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Montaner, J. S., Montessori, V., Harrigan, R., O'Shaughnessy, M. & Hogg, R. Antiretroviral therapy: ?the state of the art?. Biomed. Pharmacother. 53, 63?72 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Gerondelis, P. et al. The P236L delavirdine-resistant human immunodeficiency virus type 1 mutant is replication defective and demonstrates alterations in both RNA 5′-end- and DNA 3′-end-directed RNase H activities. J. Virol. 73, 5803?5813 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Darlix, J. L., Lapadat-Tapolsky, M., de Rocquigny, H. & Roques, B. P. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J. Mol. Biol. 254, 523? 537 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Tummino, P. J. et al. The in vitro ejection of zinc from human immunodeficiency virus (HIV) type 1 nucleocapsid protein by disulfide benzamides with cellular anti- HIV activity. Proc. Natl Acad. Sci. USA 93, 969?973 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rice, W. G. et al. Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. Science 270, 1194?1197 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Turpin, J. A. et al. Synthesis and biological properties of novel pyridinioalkanoyl thiolesters (PATE) as anti-HIV-1 agents that target the viral nucleocapsid protein zinc fingers. J. Med. Chem. 42, 67?86 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Tanchou, V. et al. Role of the N-terminal zinc finger of human immunodeficiency virus type 1 nucleocapsid protein in virus structure and replication. J. Virol. 72, 4442?4447 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Carteau, S., Gorelick, R. J. & Bushman, F. D. Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: stimulation by the viral nucleocapsid protein. J. Virol. 73, 6670?6679 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Berthoux, L., Pechoux, C. & Darlix, J. L. Multiple effects of an anti-human immunodeficiency virus nucleocapsid inhibitor on virus morphology and replication. J. Virol. 73, 10000?10009 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zack, J. A. et al. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61, 213?222 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Stevenson, M., Stanwick, T. L., Dempsey, M. P. & Lamonica, C. A. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 9, 1551? 1560 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kinoshita, S., Chen, B. K., Kaneshima, H. & Nolan, G. P. Host control of HIV-1 parasitism in T cells by the nuclear factor of activated T cells. Cell 95, 595?604 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Flanagan, W. M., Corthesy, B., Bram, R. J. & Crabtree, G. R. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporine A. Nature 352, 803? 807 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Zennou, V. et al. HIV-1 genome nuclear import is mediated by a central DNA flap . Cell 101, 173?185 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Charneau, P. et al. HIV-1 reverse transcription. A termination step at the center of the genome. J. Mol. Biol. 241, 651? 662 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Bukrinsky, M. I. et al. Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc. Natl Acad. Sci. USA 90, 6125?6129 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hansen, M. S., Carteau, S., Hoffmann, C., Li, L. & Bushman, F. Retroviral cDNA integration: mechanism, applications and inhibition. Genet. Eng. 20, 41?61 (1998).

    Article  CAS  Google Scholar 

  87. Wiskerchen, M. & Muesing, M. A. Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. J. Virol. 69, 376?386 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hazuda, D. et al. Equivalent inhibition of half-site and full-site retroviral strand transfer reactions by structurally diverse compounds. J. Virol. 71, 807?811 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Neamati, N. et al. Salicylhydrazine-containing inhibitors of HIV-1 integrase: implication for a selective chelation in the integrase active site. J. Med. Chem. 41, 3202?3209 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Hazuda, D. J. et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287, 646?650 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Gallay, P., Hope, T., Chin, D. & Trono, D. HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc. Natl Acad. Sci. USA 94, 9825 ?9830 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pluymers, W., Cherepanov, P., Schols, D., De Clercq, E. & Debyser, Z. Nuclear localization of human immunodeficiency virus type 1 integrase expressed as a fusion protein with green fluorescent protein. Virology 258, 327? 332 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Stevenson, M. HIV nuclear import: What's all the flap? Nature Med. 6, 9?10 (2000).

    Article  CAS  Google Scholar 

  94. Rausch, J. W., Sathyanaryana, B. K., Bona, M. K. & Le Grice, S. F. Probing contacts between the ribonuclease H domain of HIV-1 reverse transcriptase and nucleic acid by site specific photocrosslinking. J. Biol. Chem. 3, 16015?16022 ( 2000).

    Article  Google Scholar 

  95. Simon, J. H., Gaddis, N. C., Fouchier, R. A. & Malim, M. H. Evidence for a newly discovered cellular anti-HIV phenotype. Nature Med. 4, 1397?1400 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  96. Madani, N. & Kabat, D. An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J. Virol. 72, 10251?10255 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Labrosse, B. et al. Determinants for sensitivity of human immunodeficiency virus coreceptor CXCR4 to the bicyclam AMD3100. J. Virol. 72, 6381?6388 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Murakami, T. et al. Inhibitory mechanism of the CXCR4 antagonist T22 against human immunodeficiency virus type 1 infection. J. Virol. 73, 7489?7496 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Dragic, T. et al. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc. Natl Acad. Sci. USA 97, 5639?5644 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tarasova, N. I., Rice, W. G. & Michejda, C. J. Inhibition of G?protein coupled receptor functions by disruption of transmembrane domain interactions. J. Biol. Chem. 274, 34911?34915 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  101. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. Atomic structure of the ectodomain from gp41. Nature 387, 426? 430 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Chan, D. C., Fass, D., Berger, J. M. & Kim, P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89 , 263?273 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Caffrey, M. et al. Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J. 17, 4572? 4584 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Farzan, M. et al. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667? 676 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Moulard, M. et al. Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. J. Virol. 74, 1948?1960 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank B. Mellor for preparing the illustrations, and T. P. Sakmar, R. W. Doms, M. S. Dimitrov, S. Durell and M. Lu for making scientific contributions to the figures. The authors' work in this area is funded by NIH grants and by the Pediatric AIDS Foundation (J.P.M.).

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

DC-SIGN

ICAM-1

CD4

NF-ATc

Cyclophilin A

CCR5

CXCR4

SDF-1α

MIPα/β

RANTES

BACKGROUND INFORMATION

Glossary of HIV-1 related terms

AIDS

Protease inhibitors and new classes of drugs

ENCYCLOPEDIA OF LIFE SCIENCES

HIV life cycle and inherited co-receptors

Chemokines

Glossary

BIOAVAILABILITY

The rate/extent to which a drug is absorbed and becomes available at its site of action.

VIRION

A complete viral particle, comprising the nucleic-acid core and protein capsid, enclosed by a glycoprotein-containing membrane envelope in some species.

CHEMOKINES

Cytokines involved in specific inflammatory responses. They are differentiated into CC or CXC chemokines on the basis of their primary sequence.

D-PEPTIDES

Peptides comprising d-amino acids, rather than the naturally occurring L isomer.

CAPSID PROTEIN

The main constituent of the viral core.

PLUS- AND MINUS-STRAND RNA

The polarity of each RNA molecule contained in the virion.

LONG TERMINAL REPEAT

A repeated sequence, several hundred base pairs long, found at the two ends of the retroviral genome.

PRIMARY CELLS

Cells taken directly from an organism, rather than from a cell culture.

DC-SIGN

(?DC-specific ICAM-3 grabbing nonintegrin?. Host cell-surface lectin, with which glycan moieties on the viral envelope glycoprotein can interact during initial attachment.

ICAM-1

?Intercellular adhesion molecule-1?. Cell-associated adhesion factor that can facilitate initial binding of HIV-1 to target cells.

LFA-1

?Leukocyte cell-surface antigen-1?. Virion-associated adhesion factor that can facilitate initial binding of HIV-1 to target cells.

CD4

A cell-surface antigen found on T helper cells. Interacts with viral gp120, allowing entry of the virus into host cells.

gp120

Surface glycoprotein found in membrane of HIV-1. Interacts with host-cell CD4.

V3 loop

A region of viral gp120 that can influences tropism and coreceptor interactions.

CCR5

Chemokine receptor. Facilitates the entry of macrophage-tropic, non syncytium-inducing (R5) isolates of HIV-1 into host cells.

CXCR4

Chemokine receptor. Facilitates the entry of T-cell-line-tropic, syncytium-inducing (X4) isolates of HIV-1 into host cells.

R5

Abbreviation for viral strains that use CCR5 to enter host cells.

X4

Abbreviation for viral strains that use CXCR4 to enter host cells.

SDF-α

?Stromal-derived factor-1α?. A CXC chemokine that binds to CXCR4, so can block replication of HIV-1 strains that use this co-receptor.

MIP-1α/MIP-1β

?Macrophage-inflammatory protein-1?/-1b?. Endogenous CC chemokines that bind to CCR5, so can block replication of HIV-1 strains that use this co-receptor.

RANTES

?Regulated upon activation, normal T-cell expressed and secreted chemokine?. Endogenous CC chemokine that binds to CCR5, so can block replication of HIV-1 in strains that use this co-receptor.

T22

A highly cationic, peptidic inhibitor of CXCR4.

ALX40-4C

A highly cationic, peptidic inhibitor of CXCR4.

AMD3100

A highly cationic, small molecule inhibitor of CXCR4.

TAK-779

A small-molecule inhibitor of CCR5.

gp41

HIV-1 transmembrane glycoprotein, which undergoes conformational changes to drive the final stages of fusion.

T20

Peptide that inhibits gp41-mediated fusion by substituting for one or more components of the gp41 trimeric complex.

RPR103611

Inhibits gp41-mediated fusion by an unknown mechanism.

Cyclophilin A

A cellular protein thought to be involved in viral uncoating.

Cyclosporine A

An immunosuppressive drug that binds to cyclophilin A.

Ribonuclease H

An intrinsic component of reverse transcriptase, RNAse H degrades the RNA component of the RNA/DNA hybrid.

Delavirdine

A non-nucleoside reverse transcriptase inhibitor.

Nucleocapsid protein

The product of the viral gag gene, it promotes the packaging of genomic viral RNA during virion assembly.

NF-ATc

A transcription factor that is thought to promote reverse transcription of HIV.

Viral integrase

Catalyses integration of viral complementary DNA into a host chromosome.

Vif

Virion infectivity factor; essential for HIV replication, probably by blocking a cellular factor.

Sch-C

A small molecule inhibitor of CCR5.

T1249

Peptide that inhibits gp41-mediated fusion by substituting for one or more components of the gp41 trimeric complex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, J., Stevenson, M. New targets for inhibitors of HIV-1 replication. Nat Rev Mol Cell Biol 1, 40–49 (2000). https://doi.org/10.1038/35036060

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing