Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A cell biological view of Toll-like receptor function: regulation through compartmentalization

Key Points

  • Recent work examining the cell biology of Toll-like receptors (TLRs) illustrates how basic aspects of the cellular machinery contribute to receptor function and regulation.

  • Despite residing on several organelles, all TLRs are first transported to the Golgi complex before being routed to the appropriate location. Bacterium-sensing TLRs probably follow the default secretory pathway from the Golgi to the cell surface, whereas TLRs that detect viral nucleic acids are delivered to endolysosomes by the chaperone Unc93B1.

  • Compartment-specific activity of nucleic acid-sensing TLRs (for example, TLR7 and TLR9) is maintained by compartment-specific cleavage events that generate functional receptors. These cleavage events are probably mediated by lysosomal cathepsins, and consequently nucleic acid-sensing TLRs are only active in endolysosomes.

  • Bacterium-sensing TLRs (such as TLR2 and TLR4) use sorting adaptor proteins to determine the subcellular sites of signal transduction. For TLR4, the sorting adaptors TIRAP (TIR domain-containing adaptor protein) and TRAM (TRIF-related adaptor molecule) function to recruit their downstream signalling machinery to the plasma membrane and endosomes, respectively.

  • Sorting adaptor proteins are positioned in specific intracellular subcompartments by interacting with phosphoinositides. Regulators of phosphoinositide metabolism may therefore control the activity of specific TLR signalling pathways.

  • Endolysosomes seem to be the sole subcompartments that allow a TLR-dependent interferon response. Consequently, the plasma membrane-localized TLR4 must first be internalized into endosomes before the interferon-inducing signalling pathway can be activated.

Abstract

An emerging paradigm in innate immune signalling is that cell biological context can influence the outcome of a ligand–receptor interaction. In this Review we discuss how Toll-like receptor (TLR) activation and signal transduction are regulated by subcellular compartmentalization of receptors and downstream signalling components. In particular, we focus on the functional specialization of TLRs in the endosomal system. We discuss recent studies that illustrate how basic aspects of the cellular machinery contribute to TLR function and regulation. This emerging area of research will provide important information on how immune signal transduction networks depend on (and in some cases influence) the generic regulators that organize eukaryotic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Toll-like receptor 7 and Toll-like receptor 9 trafficking and processing regulates receptor activation.
Figure 2: Schematic of the sorting–signalling adaptor paradigm.

Similar content being viewed by others

References

  1. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  Google Scholar 

  2. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  Google Scholar 

  3. Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    Article  CAS  Google Scholar 

  4. Medzhitov, R. & Janeway, C. A. Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    Article  CAS  Google Scholar 

  5. Jin, M. S. et al. Crystal structure of the TLR1–TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082 (2007).

    Article  CAS  Google Scholar 

  6. Kim, H. M. et al. Crystal structure of the TLR4–MD-2 complex with bound endotoxin antagonist eritoran. Cell 130, 906–917 (2007).

    Article  CAS  Google Scholar 

  7. Liu, L. et al. Structural basis of Toll-Like receptor 3 signaling with double-stranded RNA. Science 320, 379–381 (2008).

    Article  CAS  Google Scholar 

  8. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  9. Kawai, T. & Akira, S. TLR signaling. Cell Death Differ. 13, 816–825 (2006).

    Article  CAS  Google Scholar 

  10. Akashi, S. et al. Lipopolysaccharide interaction with cell surface Toll-like receptor 4–MD-2: higher affinity than that with MD-2 or CD14. J. Exp. Med. 198, 1035–1042 (2003).

    Article  CAS  Google Scholar 

  11. Husebye, H. et al. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. Embo J. 25, 683–692 (2006).

    Article  CAS  Google Scholar 

  12. Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999).

    Article  CAS  Google Scholar 

  13. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nature Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  Google Scholar 

  14. Barton, G. M. Viral recognition by Toll-like receptors. Semin. Immunol. 19, 33–40 (2007).

    Article  CAS  Google Scholar 

  15. Boule, M. W. et al. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin–immunoglobulin G complexes. J. Exp. Med. 199, 1631–1640 (2004).

    Article  CAS  Google Scholar 

  16. Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    Article  CAS  Google Scholar 

  17. Leadbetter, E. A. et al. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  Google Scholar 

  18. Berland, R. et al. Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity 25, 429–440 (2006).

    Article  CAS  Google Scholar 

  19. Christensen, S. R. et al. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J. Exp. Med. 202, 321–331 (2005).

    Article  CAS  Google Scholar 

  20. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  Google Scholar 

  21. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    Article  CAS  Google Scholar 

  22. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    Article  CAS  Google Scholar 

  23. Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).

    Article  CAS  Google Scholar 

  24. Hacker, H. et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. Embo J. 17, 6230–6240 (1998). This paper is the first to describe the requirement for internalization of TLR9 ligands.

    Article  CAS  Google Scholar 

  25. Ewaschuk, J. B. et al. Surface expression of Toll-like receptor 9 is upregulated on intestinal epithelial cells in response to pathogenic bacterial DNA. Infect. Immun. 75, 2572–2579 (2007).

    Article  CAS  Google Scholar 

  26. Honda, K. et al. Spatiotemporal regulation of MyD88–IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035–1040 (2005).

    Article  CAS  Google Scholar 

  27. Latz, E. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature Immunol. 5, 190–198 (2004). This paper is the first to suggest that TLR9 is an ER-resident protein with unique trafficking properties.

    Article  CAS  Google Scholar 

  28. Leifer, C. A. et al. TLR9 is localized in the endoplasmic reticulum prior to stimulation. J. Immunol. 173, 1179–1183 (2004).

    Article  CAS  Google Scholar 

  29. Matsumoto, M. et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171, 3154–3162 (2003).

    Article  CAS  Google Scholar 

  30. Barton, G. M., Kagan, J. C. & Medzhitov, R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nature Immunol. 7, 49–56 (2006).

    Article  CAS  Google Scholar 

  31. Kim, Y. M., Brinkmann, M. M., Paquet, M. E. & Ploegh, H. L. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452, 234–238 (2008). This paper implicates UNC93B1 in the trafficking of TLR9 from the ER to endolysosomes.

    Article  CAS  Google Scholar 

  32. Ewald, S. E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658–662 (2008).

    Article  CAS  Google Scholar 

  33. Park, B. et al. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nature Immunol. 9, 1407–1414 (2008). References 32 and 33 report that TLR9 is cleaved in its extracellular domain prior to activation.

    Article  CAS  Google Scholar 

  34. Brinkmann, M. M. et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J. Cell Biol. 177, 265–275 (2007).

    Article  CAS  Google Scholar 

  35. Tabeta, K. et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nature Immunol. 7, 156–164 (2006). This paper shows that UNC93B1 is necessary for function of the intracellular TLRs.

    Article  CAS  Google Scholar 

  36. Asagiri, M. et al. Cathepsin K-dependent Toll-like receptor 9 signaling revealed in experimental arthritis. Science 319, 624–627 (2008). This paper reports a role for cathepsin K in TLR9 signalling.

    Article  CAS  Google Scholar 

  37. Matsumoto, F. et al. Cathepsins are required for Toll-like receptor 9 responses. Biochem. Biophys. Res. Commun. 367, 693–699 (2008). This paper provides the first evidence that cathepsins are involved in TLR9 activation.

    Article  CAS  Google Scholar 

  38. Latz, E. et al. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nature Immunol. 8, 772–779 (2007).

    Article  CAS  Google Scholar 

  39. Bell, J. K., Askins, J., Hall, P. R., Davies, D. R. & Segal, D. M. The dsRNA binding site of human Toll-like receptor 3. Proc. Natl Acad. Sci. USA 103, 8792–8797 (2006).

    Article  CAS  Google Scholar 

  40. Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nature Immunol. 7, 131–137 (2006).

    Article  CAS  Google Scholar 

  41. Fitzgerald, K. A. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78–83 (2001).

    Article  CAS  Google Scholar 

  42. Fitzgerald, K. A. et al. LPS–TLR4 signaling to IRF-3/7 and NF-κB involves the Toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043–1055 (2003).

    Article  CAS  Google Scholar 

  43. Horng, T., Barton, G. M. & Medzhitov, R. TIRAP: an adapter molecule in the Toll signaling pathway. Nature Immunol. 2, 835–841 (2001).

    CAS  Google Scholar 

  44. Medzhitov, R. et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2, 253–258 (1998).

    Article  CAS  Google Scholar 

  45. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction. Nature Immunol. 4, 161–167 (2003).

    Article  CAS  Google Scholar 

  46. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  Google Scholar 

  47. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nature Immunol. 4, 1144–1150 (2003).

    Article  CAS  Google Scholar 

  48. Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    Article  CAS  Google Scholar 

  49. Horng, T., Barton, G. M., Flavell, R. A. & Medzhitov, R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329–333 (2002).

    Article  CAS  Google Scholar 

  50. Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002).

    Article  CAS  Google Scholar 

  51. Hemmi, H., Kaisho, T., Takeda, K. & Akira, S. The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J. Immunol. 170, 3059–3064 (2003).

    Article  CAS  Google Scholar 

  52. Kawai, T. et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunol. 5, 1061–1068 (2004).

    Article  CAS  Google Scholar 

  53. Kagan, J. & Medzhitov, R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943–955 (2006). This paper provides the first evidence that TLR adaptors can interact with phosphoinositides, and the authors put forward the sorting adaptor hypothesis to distinguish the functions of TIRAP and MYD88 in TLR signalling.

    Article  CAS  Google Scholar 

  54. Kagan, J. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nature Immunol. 9, 361–368 (2008). This paper provides the first evidence that TLR4 induces its two signalling pathways sequentially, by a process coordinated around the endocytosis of the receptor.

    Article  CAS  Google Scholar 

  55. Peter, U., Frank, P., Rudi, B. & Jan, T. MAPPIT analysis of TLR adaptor complexes. FEBS Lett. 581, 629–636 (2007).

    Article  Google Scholar 

  56. Oshiumi, H. et al. TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to Toll-like receptor 4 TICAM-1 that induces interferon-β. J. Biol. Chem. 278, 49751–49762 (2003).

    Article  CAS  Google Scholar 

  57. Rowe, D. C. et al. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc. Natl Acad. Sci. USA 103, 6299–6304 (2006).

    Article  CAS  Google Scholar 

  58. Palsson-McDermott, E. M. et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nature Immunol. 10, 579–586 (2009).

    Article  CAS  Google Scholar 

  59. Janssens, S., Burns, K., Vercammen, E., Tschopp, J. & Beyaert, R. MyD88S, a splice variant of MyD88, differentially modulates NF-κB- and AP-1-dependent gene expression. FEBS Lett. 548, 103–107 (2003).

    Article  CAS  Google Scholar 

  60. De Matteis, M. A. & Godi, A. PI-loting membrane traffic. Nature Cell Biol. 6, 487–492 (2004).

    Article  CAS  Google Scholar 

  61. Tanimura, N., Saitoh, S., Matsumoto, F., Akashi-Takamura, S. & Miyake, K. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem. Biophys. Res. Commun. 368, 94–99 (2008). This paper shows that endosomes are the sites where the TRAM and TRAF3 signalling proteins converge to promote type I IFN production.

    Article  CAS  Google Scholar 

  62. Gould, G. W. & Lippincott-Schwartz, J. New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nature Rev. Mol. Cell Biol. 10, 287–292 (2009).

    Article  CAS  Google Scholar 

  63. Matsuzawa, A. et al. Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 321, 663–668 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of their laboratories for helpful discussions and the National Institutes of Health, USA (AI072429 to G.M.B., AI072955 to J.C.K.) and the Lupus Research Institute (G.M.B.) for funding support.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Gregory M. Barton's laboratory homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barton, G., Kagan, J. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 9, 535–542 (2009). https://doi.org/10.1038/nri2587

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2587

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing