Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The molecular basis for public T-cell responses?

Abstract

Public T-cell responses, in which T cells bearing identical T-cell receptors (TCRs) are observed to dominate the response to the same antigenic epitope in multiple individuals, have long been a focus of immune T-cell repertoire studies. However, the mechanism that enables the survival of a specific TCR from the diverse repertoire produced in the thymus through to its involvement in a public immune response remains unclear. In this Opinion article, we propose that the frequency of production of T cells bearing different TCRs during recombination has an important role in the sharing of TCRs in an immune response, with variable levels of 'convergent recombination' driving production frequencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of convergent recombination.
Figure 2: The relationship between the number of individuals in which a T-cell receptor (TCR) sequence is present and the number of copies of that TCR sequence in the individuals.
Figure 3: An illustration of the uneven landscape of T-cell receptor recurrence and how this leads to public and private T-cell responses.

Similar content being viewed by others

References

  1. Cibotti, R. et al. Public and private VβT cell receptor repertoires against hen egg white lysozyme (HEL) in nontransgenic versus HEL transgenic mice. J. Exp. Med. 180, 861–872 (1994).

    Article  CAS  Google Scholar 

  2. Kim, S. K. et al. Private specificities of CD8 T cell responses control patterns of heterologous immunity. J. Exp. Med. 201, 523–533 (2005).

    Article  CAS  Google Scholar 

  3. Miles, J. J. et al. CTL recognition of a bulged viral peptide involves biased TCR selection. J. Immunol. 175, 3826–3834 (2005).

    Article  CAS  Google Scholar 

  4. Tynan, F. E. et al. High resolution structures of highly bulged viral epitopes bound to major histocompatibility complex class, I. Implications for T-cell receptor engagement and T-cell immunodominance. J. Biol. Chem. 280, 23900–23909 (2005).

    Article  CAS  Google Scholar 

  5. Tynan, F. E. et al. T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I-bound peptide. Nature Immunol. 6, 1114–1122 (2005).

    Article  CAS  Google Scholar 

  6. Tynan, F. E. et al. The immunogenicity of a viral cytotoxic T cell epitope is controlled by its MHC-bound conformation. J. Exp. Med. 202, 1249–1260 (2005).

    Article  CAS  Google Scholar 

  7. Miles, J. J. et al. TCRα genes direct MHC restriction in the potent human T cell response to a class I-bound viral epitope. J. Immunol. 177, 6804–6814 (2006).

    Article  CAS  Google Scholar 

  8. Tynan, F. E. et al. A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule. Nature Immunol. 8, 268–276 (2007).

    Article  CAS  Google Scholar 

  9. Kjer-Nielsen, L. et al. The structure of HLA-B8 complexed to an immunodominant viral determinant: peptide-induced conformational changes and a mode of MHC class I dimerization. J. Immunol. 169, 5153–5160 (2002).

    Article  Google Scholar 

  10. Kjer-Nielsen, L. et al. A structural basis for the selection of dominant αβ T cell receptors in antiviral immunity. Immunity 18, 53–64 (2003).

    Article  CAS  Google Scholar 

  11. Argaet, V. P. et al. Dominant selection of an invariant T cell antigen receptor in response to persistent infection by Epstein–Barr virus. J. Exp. Med. 180, 2335–2340 (1994).

    Article  CAS  Google Scholar 

  12. Annels, N. E., Callan, M. F., Tan, L. & Rickinson, A. B. Changing patterns of dominant TCR usage with maturation of an EBV-specific cytotoxic T cell response. J. Immunol. 165, 4831–4841 (2000).

    Article  CAS  Google Scholar 

  13. Lim, A. et al. Frequent contribution of T cell clonotypes with public TCR features to the chronic response against a dominant EBV-derived epitope: application to direct detection of their molecular imprint on the human peripheral T cell repertoire. J. Immunol. 165, 2001–2011 (2000).

    Article  CAS  Google Scholar 

  14. Khan, N., Cobbold, M., Keenan, R. & Moss, P. A. Comparative analysis of CD8+ T cell responses against human cytomegalovirus proteins pp65 and immediate early 1 shows similarities in precursor frequency, oligoclonality, and phenotype. J. Infect. Dis. 185, 1025–1034 (2002).

    Article  CAS  Google Scholar 

  15. Khan, N. et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J. Immunol. 169, 1984–1992 (2002).

    Article  CAS  Google Scholar 

  16. Trautmann, L. et al. Dominant TCR Vα usage by virus and tumor-reactive T cells with wide affinity ranges for their specific antigens. Eur. J. Immunol. 32, 3181–3190 (2002).

    Article  CAS  Google Scholar 

  17. Price, D. A. et al. Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses. J. Exp. Med. 202, 1349–1361 (2005).

    Article  CAS  Google Scholar 

  18. Trautmann, L. et al. Selection of T cell clones expressing high-affinity public TCRs within human cytomegalovirus-specific CD8 T cell responses. J. Immunol. 175, 6123–6132 (2005).

    Article  CAS  Google Scholar 

  19. Brennan, R. M. et al. Predictable αβT-cell receptor selection toward an HLA-B*3501-restricted human cytomegalovirus epitope. J. Virol. 81, 7269–7273 (2007).

    Article  CAS  Google Scholar 

  20. Day, E. K. et al. Rapid CD8+ T cell repertoire focusing and selection of high-affinity clones into memory following primary infection with a persistent human virus: human cytomegalovirus. J. Immunol. 179, 3203–3213 (2007).

    Article  CAS  Google Scholar 

  21. Gillespie, G. M. et al. Strong TCR conservation and altered T cell cross-reactivity characterize a B*57-restricted immune response in HIV-1 infection. J. Immunol. 177, 3893–3902 (2006).

    Article  CAS  Google Scholar 

  22. Yu, X. G. et al. Mutually exclusive T-cell receptor induction and differential susceptibility to human immunodeficiency virus type 1 mutational escape associated with a two-amino-acid difference between HLA class I subtypes. J. Virol. 81, 1619–1631 (2007).

    Article  CAS  Google Scholar 

  23. Price, D. A. et al. T cell receptor recognition motifs govern immune escape patterns in acute SIV infection. Immunity 21, 793–803 (2004).

    Article  CAS  Google Scholar 

  24. Davenport, M. P., Price, D. A. & McMichael, A. J. The T cell repertoire in infection and vaccination: implications for control of persistent viruses. Curr. Opin. Immunol. 19, 294–300 (2007).

    Article  CAS  Google Scholar 

  25. Fazilleau, N. et al. Persistence of autoreactive myelin oligodendrocyte glycoprotein (MOG)-specific T cell repertoires in MOG-expressing mice. Eur. J. Immunol. 36, 533–543 (2006).

    Article  CAS  Google Scholar 

  26. Fazilleau, N. et al. T cell repertoire diversity is required for relapses in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. J. Immunol. 178, 4865–4875 (2007).

    Article  CAS  Google Scholar 

  27. Menezes, J. S. et al. A public T cell clonotype within a heterogeneous autoreactive repertoire is dominant in driving EAE. J. Clin. Invest. 117, 2176–2185 (2007).

    Article  CAS  Google Scholar 

  28. Battaglia, M. & Gorski, J. Overlap of direct and indirect alloreactive T-cell repertoires when MHC polymorphism is limited to the peptide binding groove. Hum. Immunol. 63, 91–100 (2002).

    Article  CAS  Google Scholar 

  29. O'Keefe, C. L. et al. Molecular TCR diagnostics can be used to identify shared clonotypes after allogeneic hematopoietic stem cell transplantation. Exp. Hematol. 32, 1010–1022 (2004).

    Article  CAS  Google Scholar 

  30. Ely, L. K. et al. Antagonism of antiviral and allogeneic activity of a human public CTL clonotype by a single altered peptide ligand: implications for allograft rejection. J. Immunol. 174, 5593–5601 (2005).

    Article  CAS  Google Scholar 

  31. Turner, S. J., Doherty, P. C., McCluskey, J. & Rossjohn, J. Structural determinants of T-cell receptor bias in immunity. Nature Rev. Immunol. 6, 883–894 (2006).

    Article  CAS  Google Scholar 

  32. Miles, J. J., Silins, S. L. & Burrows, S. R. Engineered T cell receptors and their potential in molecular medicine. Curr. Med. Chem. 13, 2725–2736 (2006).

    Article  CAS  Google Scholar 

  33. Davis, M. M. & Bjorkman, P. J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).

    Article  CAS  Google Scholar 

  34. Shortman, K., Egerton, M., Spangrude, G. J. & Scollay, R. The generation and fate of thymocytes. Semin. Immunol. 2, 3–12 (1990).

    CAS  PubMed  Google Scholar 

  35. Doherty, P. C., Riberdy, J. M. & Belz, G. T. Quantitative analysis of the CD8+ T-cell response to readily eliminated and persistent viruses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 1093–1101 (2000).

    Article  CAS  Google Scholar 

  36. Arstila, T. P. et al. A direct estimate of the human αβT cell receptor diversity. Science 286, 958–961 (1999).

    Article  CAS  Google Scholar 

  37. Casrouge, A. et al. Size estimate of the αβTCR repertoire of naive mouse splenocytes. J. Immunol. 164, 5782–5787 (2000).

    Article  CAS  Google Scholar 

  38. Nikolich-Zugich, J., Slifka, M. K. & Messaoudi, I. The many important facets of T-cell repertoire diversity. Nature Rev. Immunol. 4, 123–132 (2004).

    Article  CAS  Google Scholar 

  39. Lehner, P. J. et al. Human HLA-A0201-restricted cytotoxic T lymphocyte recognition of influenza A is dominated by T cells bearing the Vβ17 gene segment. J. Exp. Med. 181, 79–91 (1995).

    Article  CAS  Google Scholar 

  40. Zeng, W., Maciejewski, J. P., Chen, G. & Young, N. S. Limited heterogeneity of T cell receptor BV usage in aplastic anemia. J. Clin. Invest. 108, 765–773 (2001).

    Article  CAS  Google Scholar 

  41. Boudinot, P., Boubekeur, S. & Benmansour, A. Rhabdovirus infection induces public and private T cell responses in teleost fish. J. Immunol. 167, 6202–6209 (2001).

    Article  CAS  Google Scholar 

  42. Yoshida, K. et al. Restricted T-cell receptor β-chain usage by T cells autoreactive to β2-glycoprotein I in patients with antiphospholipid syndrome. Blood 99, 2499–2504 (2002).

    Article  CAS  Google Scholar 

  43. May, E. et al. Conserved TCR β chain usage in reactive arthritis; evidence for selection by a putative HLA-B27-associated autoantigen. Tissue Antigens 60, 299–308 (2002).

    Article  CAS  Google Scholar 

  44. Hamrouni, A., Aublin, A., Guillaume, P. & Maryanski, J. L. T cell receptor gene rearrangement lineage analysis reveals clues for the origin of highly restricted antigen-specific repertoires. J. Exp. Med. 197, 601–614 (2003).

    Article  CAS  Google Scholar 

  45. Kedzierska, K., Turner, S. J. & Doherty, P. C. Conserved T cell receptor usage in primary and recall responses to an immunodominant influenza virus nucleoprotein epitope. Proc. Natl Acad. Sci. USA 101, 4942–4947 (2004).

    Article  CAS  Google Scholar 

  46. Zhong, W. & Reinherz, E. L. In vivo selection of a TCR Vβ repertoire directed against an immunodominant influenza virus CTL epitope. Int. Immunol. 16, 1549–1559 (2004).

    Article  CAS  Google Scholar 

  47. Kasprowicz, V. et al. A highly restricted T-cell receptor dominates the CD8+ T-cell response to parvovirus B19 infection in HLA-A*2402-positive individuals. J. Virol. 80, 6697–6701 (2006).

    Article  CAS  Google Scholar 

  48. Stewart-Jones, G. B., McMichael, A. J., Bell, J. I., Stuart, D. I. & Jones, E. Y. A structural basis for immunodominant human T cell receptor recognition. Nature Immunol. 4, 657–663 (2003).

    Article  CAS  Google Scholar 

  49. Turner, S. J. et al. Lack of prominent peptide-major histocompatibility complex features limits repertoire diversity in virus-specific CD8+ T cell populations. Nature Immunol. 6, 382–389 (2005).

    Article  CAS  Google Scholar 

  50. Davis, M. M. The problem of plain vanilla peptides. Nature Immunol. 4, 649–650 (2003).

    Article  CAS  Google Scholar 

  51. Gavin, M. A. & Bevan, M. J. Increased peptide promiscuity provides a rationale for the lack of N regions in the neonatal T cell repertoire. Immunity 3, 793–800 (1995).

    Article  CAS  Google Scholar 

  52. Huseby, E. S. et al. How the T cell repertoire becomes peptide and MHC specific. Cell 122, 247–260 (2005).

    Article  CAS  Google Scholar 

  53. Venturi, V. et al. Sharing of T cell receptors in antigen-specific responses is driven by convergent recombination. Proc. Natl Acad. Sci. USA 103, 18691–18696 (2006).

    Article  CAS  Google Scholar 

  54. Fazilleau, N. et al. Vα and Vβ public repertoires are highly conserved in terminal deoxynucleotidyl transferase-deficient mice. J. Immunol. 174, 345–355 (2005).

    Article  CAS  Google Scholar 

  55. Candeias, S., Waltzinger, C., Benoist, C. & Mathis, D. The Vβ17+ T cell repertoire: skewed Jβ usage after thymic selection; dissimilar CDR3s in CD4+ versus CD8+ cells. J. Exp. Med. 174, 989–1000 (1991).

    Article  CAS  Google Scholar 

  56. Quiros Roldan, E. et al. Different TCRBV genes generate biased patterns of V-D-J diversity in human T cells. Immunogenetics 41, 91–100 (1995).

    CAS  PubMed  Google Scholar 

  57. Livak, F., Burtrum, D. B., Rowen, L., Schatz, D. G. & Petrie, H. T. Genetic modulation of T cell receptor gene segment usage during somatic recombination. J. Exp. Med. 192, 1191–1196 (2000).

    Article  CAS  Google Scholar 

  58. Wallace, M. E. et al. Junctional biases in the naive TCR repertoire control the CTL response to an immunodominant determinant of HSV-1. Immunity 12, 547–556 (2000).

    Article  CAS  Google Scholar 

  59. Fuschiotti, P. et al. Analysis of the TCR α-chain rearrangement profile in human T lymphocytes. Mol. Immunol. 44, 3380–3388 (2007).

    Article  CAS  Google Scholar 

  60. Gauss, G. H. & Lieber, M. R. Mechanistic constraints on diversity in human V(D)J recombination. Mol. Cell Biol. 16, 258–269 (1996).

    Article  CAS  Google Scholar 

  61. Naumov, Y. N., Hogan, K. T., Naumova, E. N., Pagel, J. T. & Gorski, J. A class I MHC-restricted recall response to a viral peptide is highly polyclonal despite stringent CDR3 selection: implications for establishing memory T cell repertoires in “real-world” conditions. J. Immunol. 160, 2842–2852 (1998).

    CAS  PubMed  Google Scholar 

  62. Kedzierska, K., La Gruta, N. L., Davenport, M. P., Turner, S. J. & Doherty, P. C. Contribution of T cell receptor affinity to overall avidity for virus-specific CD8+ T cell responses. Proc. Natl Acad. Sci. USA 102, 11432–11437 (2005).

    Article  CAS  Google Scholar 

  63. Kedzierska, K. et al. Early establishment of diverse T cell receptor profiles for influenza-specific CD8+CD62Lhi memory T cells. Proc. Natl Acad. Sci. USA 103, 9184–9189 (2006).

    Article  CAS  Google Scholar 

  64. Gray, P. M., Parks, G. D. & Alexander-Miller, M. A. High avidity CD8+ T cells are the initial population elicited following viral infection of the respiratory tract. J. Immunol. 170, 174–181 (2003).

    Article  CAS  Google Scholar 

  65. Kedl, R. M. et al. T cells compete for access to antigen-bearing antigen-presenting cells. J. Exp. Med. 192, 1105–1113 (2000).

    Article  CAS  Google Scholar 

  66. Bousso, P., Levraud, J. P., Kourilsky, P. & Abastado, J. P. The composition of a primary T cell response is largely determined by the timing of recruitment of individual T cell clones. J. Exp. Med. 189, 1591–1600 (1999).

    Article  CAS  Google Scholar 

  67. Malherbe, L., Hausl, C., Teyton, L. & McHeyzer-Williams, M. G. Clonal selection of helper T cells is determined by an affinity threshold with no further skewing of TCR binding properties. Immunity 21, 669–679 (2004).

    Article  CAS  Google Scholar 

  68. Moon, J. J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    Article  CAS  Google Scholar 

  69. Dion, M. L. et al. HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21, 757–768 (2004).

    Article  CAS  Google Scholar 

  70. Bousso, P. et al. Individual variations in the murine T cell response to a specific peptide reflect variability in naive repertoires. Immunity 9, 169–178 (1998).

    Article  CAS  Google Scholar 

  71. Blattman, J. N. et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195, 657–664 (2002).

    Article  CAS  Google Scholar 

  72. Pewe, L., Heard, S. B., Bergmann, C., Dailey, M. O. & Perlman, S. Selection of CTL escape mutants in mice infected with a neurotropic coronavirus: quantitative estimate of TCR diversity in the infected central nervous system. J. Immunol. 163, 6106–6113 (1999).

    CAS  PubMed  Google Scholar 

  73. Pewe, L. L., Netland, J. M., Heard, S. B. & Perlman, S. Very diverse CD8 T cell clonotypic responses after virus infections. J. Immunol. 172, 3151–3156 (2004).

    Article  CAS  Google Scholar 

  74. Kedzierska, K. et al. Quantification of repertoire diversity of influenza-specific epitopes with predominant public or private TCR usage. J. Immunol. 177, 6705–6712 (2006).

    Article  CAS  Google Scholar 

  75. Whitmire, J. K., Benning, N. & Whitton, J. L. Precursor frequency, nonlinear proliferation, and functional maturation of virus-specific CD4+ T cells. J. Immunol. 176, 3028–3036 (2006).

    Article  CAS  Google Scholar 

  76. Lefranc, M. P. et al. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res. 27, 209–212 (1999).

    Article  CAS  Google Scholar 

  77. Weekes, M. P., Wills, M. R., Mynard, K., Carmichael, A. J. & Sissons, J. G. The memory cytotoxic T-lymphocyte (CTL) response to human cytomegalovirus infection contains individual peptide-specific CTL clones that have undergone extensive expansion in vivo. J. Virol. 73, 2099–2108 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Callan, M. F. et al. T cell selection during the evolution of CD8+ T cell memory in vivo. Eur. J. Immunol. 28, 4382–4390 (1998).

    Article  CAS  Google Scholar 

  79. Moss, P. A. et al. Extensive conservation of α and β chains of the human T-cell antigen receptor recognizing HLA-A2 and influenza A matrix peptide. Proc. Natl Acad. Sci. USA 88, 8987–8990 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Collins and R. Ribeiro for reviewing the manuscript and for helpful discussions, and K. Kedzierska, S. Turner and P. Doherty for provision of the mouse TCR data, which initially motivated our interest in TCR sharing, and for helpful discussions. This work was supported by the James S. McDonnell Foundation 21st Century Research Award/Studying Complex Systems, the National Institutes of Health, the Australian National Health and Medical Research Council, and the Australian Research Council. M.P.D. is a Sylvia and Charles Viertel Senior Medical Research Fellow. D.A.P. is a Medical Research Council (UK) Senior Clinical Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel C. Douek or Miles P. Davenport.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Schematic illustration of convergent recombination. (PDF 764 kb)

Related links

Related links

FURTHER INFORMATION

Complex Systems in Biology Laboratory homepage:

Glossary

Clonal dominance

The dominance of a particular clonotype over others involved in an immune response to a specific epitope. This clonotype will be found at a higher copy number in the responding T-cell receptor (TCR) repertoire than other clonotypes.

Convergent recombination

The process whereby multiple recombination events 'converge' to produce the same nucleotide sequence and multiple nucleotide sequences 'converge' to encode the same amino-acid sequence. This process enables some TCR sequences to be produced more frequently than others.

Private T-cell response

An immune response to a specific epitope involving predominantly T cells bearing TCRs that are rarely observed in multiple individuals.

Public TCR

A TCR that is present and dominant in immune responses to a specific epitope in a majority of individuals.

Public T-cell response

An immune response to a specific epitope involving predominantly T cells bearing TCRs that are frequently observed in multiple individuals.

TCR recurrence

A measure of the average production frequency of a TCR. That is, the average number of copies of a TCR sequence per individual produced by V(D)J recombination.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venturi, V., Price, D., Douek, D. et al. The molecular basis for public T-cell responses?. Nat Rev Immunol 8, 231–238 (2008). https://doi.org/10.1038/nri2260

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing