Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Immunotherapy of autoimmunity and cancer: the penalty for success

Abstract

Advances in our understanding of autoimmunity and tumour immunity have led to improvements in immunotherapy for these diseases. Ironically, effective tumour immunity requires the induction of the same responses that underlie autoimmunity, whereas autoimmunity is driven by dysregulation of the same mechanisms that are involved in host defence and immune surveillance. Therefore, as we manipulate the immune system to treat cancer or autoimmunity, we inevitably unbalance the vital mechanisms that regulate self tolerance and antimicrobial resistance. This Science and Society article aims to dissect the conundrum that is inherent to the concept of immunotherapy and highlights the need for new and more specific therapeutic approaches.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simplified model of common immune responses following adoptive immunotherapy.
Figure 2: Severe vitiligo and uveitis induced by adoptive immunotherapy for melanoma.

References

  1. Good, R. A. Relations between immunity and malignancy. Proc. Natl Acad. Sci. USA 69, 1026–1032 (1972).

    Article  CAS  Google Scholar 

  2. Busnach, G. et al. Immunosuppression and cancer: a comparison of risks in recipients of organ transplants and in HIV-positive individuals. Transplant Proc. 38, 3533–3535 (2006).

    Article  CAS  Google Scholar 

  3. Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295, 2275–2285 (2006).

    Article  CAS  Google Scholar 

  4. Chatenoud, L. Immune therapies of autoimmune diseases: are we approaching a real cure? Curr. Opin. Immunol. 18, 710–717 (2006).

    Article  CAS  Google Scholar 

  5. Scott, C. T. The problem with potency. Nature Biotechnol. 23, 1037–1039 (2005).

    Article  CAS  Google Scholar 

  6. Marmont, A. M. Will hematopoietic stem cell transplantation cure human autoimmune diseases? J. Autoimmun. 30, 145–150 (2008).

    Article  CAS  Google Scholar 

  7. Waldmann, T. A. Anti-Tac (daclizumab, Zenapax) in the treatment of leukemia, autoimmune diseases, and in the prevention of allograft rejection: a 25-year personal odyssey. J. Clin. Immunol. 27, 1–18 (2007).

    Article  CAS  Google Scholar 

  8. Miller, S. D., Turley, D. M. & Podojil, J. R. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nature Rev. Immunol. 7, 665–677 (2007).

    Article  CAS  Google Scholar 

  9. Feldmann, M. & Steinman, L. Design of effective immunotherapy for human autoimmunity. Nature 435, 612–619 (2005).

    Article  CAS  Google Scholar 

  10. Passweg, J. & Tyndall, A. Autologous stem cell transplantation in autoimmune diseases. Semin. Hematol. 44, 278–285 (2007).

    Article  Google Scholar 

  11. Leen, A. M., Rooney, C. M. & Foster, A. E. Improving T cell therapy for cancer. Annu. Rev. Immunol. 25, 243–265 (2007).

    Article  CAS  Google Scholar 

  12. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Rev. Cancer 8, 299–308 (2008).

    Article  CAS  Google Scholar 

  13. Gogas, H. et al. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N. Engl. J. Med. 354, 709–718 (2006).

    Article  CAS  Google Scholar 

  14. Parmiani, G., Rivoltini, L., Andreola, G. & Carrabba, M. Cytokines in cancer therapy. Immunol. Lett. 74, 41–44 (2000).

    Article  CAS  Google Scholar 

  15. Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy of cancer. Nature Biotechnol. 23, 1147–1157 (2005).

    Article  CAS  Google Scholar 

  16. Ozcelik, C. et al. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc. Natl Acad. Sci. USA 99, 8880–8885 (2002).

    Article  CAS  Google Scholar 

  17. Silk, A. W. & Finn, O. J. Cancer vaccines: a promising cancer therapy against all odds. Future Oncol. 3, 299–306 (2007).

    Article  CAS  Google Scholar 

  18. Arlen, P. M., Gulley, J. L., Madan, R. A., Hodge, J. W. & Schlom, J. Preclinical and clinical studies of recombinant poxvirus vaccines for carcinoma therapy. Crit. Rev. Immunol. 27, 451–462 (2007).

    Article  CAS  Google Scholar 

  19. Hodi, F. S. et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc. Natl Acad. Sci. USA 105, 3005–3010 (2008).

    Article  CAS  Google Scholar 

  20. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  Google Scholar 

  21. Dudley, M. E. et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23, 2346–2357 (2005).

    Article  CAS  Google Scholar 

  22. Sugita, S. et al. Ocular infiltrating CD4+ T cells from patients with Vogt–Koyanagi–Harada disease recognize human melanocyte antigens. Invest. Ophthalmol. Vis. Sci. 47, 2547–2554 (2006).

    Article  Google Scholar 

  23. Norose, K. & Yano, A. Melanoma specific Th1 cytotoxic T lymphocyte lines in Vogt–Koyanagi–Harada disease. Br. J. Ophthalmol. 80, 1002–1008 (1996).

    Article  CAS  Google Scholar 

  24. Maker, A. V. et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann. Surg. Oncol. 12, 1005–1016 (2005).

    Article  Google Scholar 

  25. Robinson, M. R. et al. Cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma: a new cause of uveitis. J. Immunother. 27, 478–479 (2004).

    Article  Google Scholar 

  26. Beck, K. E. et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J. Clin. Oncol. 24, 2283–2289 (2006).

    Article  CAS  Google Scholar 

  27. Attia, P. et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J. Clin. Oncol. 23, 6043–6053 (2005).

    Article  CAS  Google Scholar 

  28. Small, E. J. et al. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin. Cancer Res. 13, 1810–1815 (2007).

    Article  CAS  Google Scholar 

  29. Towns, K., Bedard, P. L. & Verma, S. Matters of the heart: cardiac toxicity of adjuvant systemic therapy for early-stage breast cancer. Curr. Oncol. 15, S16–S29 (2008).

    Article  CAS  Google Scholar 

  30. Lindstrom, J. M. Acetylcholine receptors and myasthenia. Muscle Nerve 23, 453–477 (2000).

    Article  CAS  Google Scholar 

  31. Nagy, E. V. et al. Thyrotropin receptor T cell epitopes in autoimmune thyroid disease. Clin. Immunol. Immunopathol. 75, 117–124 (1995).

    Article  CAS  Google Scholar 

  32. Amagai, M. Autoimmunity against desmosomal cadherins in pemphigus. J. Dermatol. Sci. 20, 92–102 (1999).

    Article  CAS  Google Scholar 

  33. Roep, B. O. T-cell responses to autoantigens in IDDM. The search for the Holy Grail. Diabetes 45, 1147–1156 (1996).

    Article  CAS  Google Scholar 

  34. Steinman, L. Antigen-specific therapy of multiple sclerosis: the long-sought magic bullet. Neurotherapeutics 4, 661–665 (2007).

    Article  CAS  Google Scholar 

  35. Yamamoto, J. H., Minami, M., Inaba, G., Masuda, K. & Mochizuki, M. Cellular autoimmunity to retinal specific antigens in patients with Behcet's disease. Br. J. Ophthalmol. 77, 584–589 (1993).

    Article  CAS  Google Scholar 

  36. Tripathi, P., Saxena, S., Yadav, V. S., Naik, S. & Singh, V. K. Human S-antigen: peptide determinant recognition in uveitis patients. Exp. Mol. Pathol. 76, 122–128 (2004).

    Article  CAS  Google Scholar 

  37. Kawakami, Y. et al. T cell immune responses against melanoma and melanocytes in cancer and autoimmunity. Pigment Cell Res. 13 (Suppl. 8), 163–169 (2000).

    Article  Google Scholar 

  38. Kappos, L. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nature Med. 6, 1176–1182 (2000).

    Article  CAS  Google Scholar 

  39. Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nature Med. 6, 1167–1175 (2000).

    Article  CAS  Google Scholar 

  40. Weber, M. S., Hohlfeld, R. & Zamvil, S. S. Mechanism of action of glatiramer acetate in treatment of multiple sclerosis. Neurotherapeutics 4, 647–653 (2007).

    Article  CAS  Google Scholar 

  41. Freedman, M. S. et al. Efficacy of disease-modifying therapies in relapsing remitting multiple sclerosis: a systematic comparison. Eur. Neurol. 60, 1–11 (2008).

    Article  CAS  Google Scholar 

  42. Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nature Rev. Immunol. 2, 364–371 (2002).

    Article  CAS  Google Scholar 

  43. [No authors listed]. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. Neurology 53, 457–465 (1999).

  44. Lin, J. et al. TNFα blockade in human diseases: an overview of efficacy and safety. Clin. Immunol. 126, 13–30 (2008).

    Article  CAS  Google Scholar 

  45. De Bandt, M. Lessons for lupus from tumour necrosis factor blockade. Lupus 15, 762–767 (2006).

    Article  CAS  Google Scholar 

  46. Kassiotis, G. & Kollias, G. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. J. Exp. Med. 193, 427–434 (2001).

    Article  CAS  Google Scholar 

  47. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  CAS  Google Scholar 

  48. Herold, K. C. et al. A single course of anti-CD3 monoclonal antibody hOKT3γ1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54, 1763–1769 (2005).

    Article  CAS  Google Scholar 

  49. Chatenoud, L. & Bluestone, J. A. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nature Rev. Immunol. 7, 622–632 (2007).

    Article  CAS  Google Scholar 

  50. Rose, J. W., Foley, J. & Carlson, N. Monoclonal antibody treatments for multiple sclerosis. Curr. Neurol. Neurosci. Rep. 8, 419–426 (2008).

    Article  CAS  Google Scholar 

  51. Nussenblatt, R. B. et al. Treatment of noninfectious intermediate and posterior uveitis with the humanized anti-Tac mAb: a phase I/II clinical trial. Proc. Natl Acad. Sci. USA 96, 7462–7466 (1999).

    Article  CAS  Google Scholar 

  52. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  Google Scholar 

  53. Zerhouni, E. A., Sanders, C. A. & von Eschenbach, A. C. The Biomarkers Consortium: public and private sectors working in partnership to improve the public health. Oncologist 12, 250–252 (2007).

    Article  Google Scholar 

  54. Vincenti, F. Costimulation blockade in autoimmunity and transplantation. J. Allergy Clin. Immunol. 121, 299–306 (2008).

    Article  CAS  Google Scholar 

  55. Breedveld, F. C. et al. Infliximab in active early rheumatoid arthritis. Ann. Rheum. Dis. 63, 149–155 (2004).

    Article  CAS  Google Scholar 

  56. Wei, M. Q., Mengesha, A., Good, D. & Anne, J. Bacterial targeted tumour therapy — dawn of a new era. Cancer Lett. 259, 16–27 (2008).

    Article  CAS  Google Scholar 

  57. Adorini, L. Cytokine-based immunointervention in the treatment of autoimmune diseases. Clin. Exp. Immunol. 132, 185–192 (2003).

    Article  CAS  Google Scholar 

  58. Browning, J. L. B cells move to centre stage: novel opportunities for autoimmune disease treatment. Nature Rev. Drug Discov. 5, 564–576 (2006).

    Article  CAS  Google Scholar 

  59. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author's work is funded by the National Institutes of Health Intramural Program.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

OMIM

Graves' disease

multiple sclerosis

myasthenia gravis

pemphigus vulgaris

type 1 diabetes

FURTHER INFORMATION

Rachel R. Caspi's homepage

Medpage Today

Securities and Exchange Commission file (Biogen Idec Inc)

Glossary

Altered peptide ligand

(APL). A peptide analogue in which the key T-cell receptor contact residues are altered, leading to the induction of only a partial response by the T cells that are specific for the original agonist peptide. Some APLs may stimulate regulatory T cells without activating effector T cells.

Crohn's disease

A form of chronic inflammatory bowel disease that can affect the entire gastrointestinal tract, but is most common in the colon and terminal ileum. It is characterized by transmural inflammation, narrowing of the gut lumen and granuloma formation, and is thought to result from an abnormal T-cell-mediated immune response to commensal bacteria.

Epitope spreading

The de novo activation of autoreactive T cells by self antigens that have been released after B- or T-cell-mediated bystander damage.

Psoriasis

A chronic skin disease that affects 1–2% of the population, in which the skin becomes inflamed, producing red, thickened areas with silvery scales, most often on the scalp, elbows, knees and lower back. Recent evidence points to a T-cell-mediated pathogenesis in genetically susceptible individuals, which results in inflammation and epidermal hyperplasia.

Spondyloarthropathy

A group of inflammatory joint diseases that are associated with the MHC class I molecule HLA-B27. It is often associated with anterior uveitis.

Sympathetic ophthalmia

Destructive uveitis in one eye (sympathizing) following a penetrating wound to the other. It is considered to be an autoimmune response to antigens that are released from the wounded eye.

Vitiligo

A depigmenting disorder of the skin and hair that is caused by the destruction of melanocytes that produce cutaneous pigments.

Vogt–Koyanagi–Harada disease

A serious and potentially blinding condition that also targets the melanin in the anterior and the posterior pole of the eye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caspi, R. Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol 8, 970–976 (2008). https://doi.org/10.1038/nri2438

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing