Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Calcium signalling and cell-fate choice in B cells

Key Points

  • B cells receive information that is crucial to their physiology and function through cytosolic Ca2+ signals, one of the most important of which is produced by the B-cell receptor (BCR).

  • The BCR Ca2+ signal is initiated by inositol-1,4,5-trisphosphate (InsP3) produced by phospholipase Cγ2 (PLCγ2), which is activated through a positive-feedback loop. If InsP3 accumulates to a threshold required to maintain endoplasmic reticulum Ca2+ store depletion, activation of store-operated Ca2+ entry (SOCE) leads to a sustained Ca2+ signal.

  • The sensitivity of positive-feedback-loop-mediated activation of PLCγ2 to either augmenting or inhibitory influences renders the amplitude and duration of the Ca2+ signal subject to regulation over a wide dynamic range.

  • Microenvironmental cues may indirectly influence B-cell cytosolic Ca2+ concentration through contributions to the total pool of activated PLC and InsP3, or through direct effects on Ca2+ fluxes mediated by transporters or channels.

  • One potentially important but often overlooked mechanism for direct regulation of Ca2+ fluxes is membrane potential. Differential K+-channel expression in B-cell subsets and newly discovered monovalent selective ion channels of the transient receptor potential melastatin related (TRPM) family provide new mechanisms for dynamic regulation of membrane potential in B cells.

  • Future work will be challenged to integrate the panoply of potential Ca2+ regulatory mechanisms with present models of how Ca2+-dependent signals regulate cell-fate choice in distinct immunological contexts.

Abstract

Alterations in the cytosolic concentration of calcium ions (Ca2+) transmit information that is crucial for the development and function of B cells. Cytosolic Ca2+ concentration is determined by a balance of active transport and gradient-driven Ca2+ fluxes, both of which are subject to the influence of multiple receptors and environmental sensing pathways. Recent advances in genomics have allowed for the compilation of an increasingly comprehensive list of Ca2+ transporters and channels expressed by B cells. The increasing understanding of the function and regulation of these proteins has begun to shift the frontier of Ca2+ physiology in B cells from molecular analysis to determining how diverse inputs to cytosolic Ca2+ concentration are integrated in specific immunological contexts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ca2+ physiology in B cells in a resting state and during InsP3-mediated Ca2+ signals.
Figure 2: Biochemical events in a B-cell receptor signalling complex leading to amplified PLCγ2 activation.
Figure 3: Cell-surface-receptor mechanisms for modulation of BCR-induced Ca2+ signals.
Figure 4: Mechanisms for the regulation of cytosolic Ca2+ in B cells.
Figure 5: Membrane potential modulation of Ca2+ signals.
Figure 6: Potential mechanisms for Ca2+-dependent modulation of B-cell fate determination.

Similar content being viewed by others

References

  1. Quintana, A., Griesemer, D., Schwarz, E. C. & Hoth, M. Calcium-dependent activation of T-lymphocytes. Pflugers Arch. 450, 1–12 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Lewis, R. S. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19, 497–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Cahalan, M. D., Wulff, H. & Chandy, K. G. Molecular properties and physiological roles of ion channels in the immune system. J. Clin. Immunol. 21, 235–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Brose, N., Betz, A. & Wegmeyer, H. Divergent and convergent signaling by the diacylglycerol second messenger pathway in mammals. Curr. Opin. Neurobiol. 14, 328–340 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Rhee, S. G. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281–312 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parekh, A. B. & Penner, R. Store depletion and calcium influx. Physiol. Rev. 77, 901–930 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Lewis, R. S. The molecular choreography of a store-operated calcium channel. Nature 446, 284–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Cahalan, M. D. et al. Molecular basis of the CRAC channel. Cell. Calcium 42, 133–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005). This study was the first breakthrough into the molecular mechanism of SOCE by demonstrating that STIM1 has a crucial role in initiating SOCE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, S. L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vig, M. et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 16, 2073–2079 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yeromin, A. V. et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226–229 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Luik, R. M., Wu, M. M., Buchanan, J. & Lewis, R. S. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol. 174, 815–825 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bautista, D. M., Hoth, M. & Lewis, R. S. Enhancement of calcium signalling dynamics and stability by delayed modulation of the plasma-membrane calcium-ATPase in human T cells. J. Physiol. 541, 877–894 (2002). This study shows how PMCA-mediated Ca2+ export can shape SOCE signals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bautista, D. M. & Lewis, R. S. Modulation of plasma membrane calcium-ATPase activity by local calcium microdomains near CRAC channels in human T cells. J. Physiol. 556, 805–817 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parekh, A. B., Fleig, A. & Penner, R. The store-operated calcium current I(CRAC): nonlinear activation by InsP3 and dissociation from calcium release. Cell 89, 973–980 (1997). This study provides a clear demonstration of the non-linear 'threshold' phenomenon observed for the activation of SOCE.

    Article  CAS  PubMed  Google Scholar 

  20. Takata, M., Homma, Y. & Kurosaki, T. Requirement of phospholipase C-γ2 activation in surface immunoglobulin M-induced B cell apoptosis. J. Exp. Med. 182, 907–914 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, D. et al. Phospholipase Cγ2 is essential in the functions of B cell and several Fc receptors. Immunity 13, 25–35 (2000).

    Article  PubMed  Google Scholar 

  22. Fu, C., Turck, C. W., Kurosaki, T. & Chan, A. C. BLNK: a central linker protein in B cell activation. Immunity 9, 93–103 (1998). This study shows the crucial role of BLNK in the assembly of the BCR signalling complex.

    Article  CAS  PubMed  Google Scholar 

  23. Taguchi, T. et al. Deficiency of BLNK hampers PLC-γ2 phosphorylation and Ca2+ influx induced by the pre-B-cell receptor in human pre-B cells. Immunology 112, 575–582 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baba, Y. et al. BLNK mediates Syk-dependent Btk activation. Proc. Natl Acad. Sci. USA 98, 2582–2586 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishiai, M. et al. BLNK required for coupling Syk to PLCγ2 and Rac1-JNK in B cells. Immunity 10, 117–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Kurosaki, T. & Tsukada, S. BLNK: connecting Syk and Btk to calcium signals. Immunity 12, 1–5 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Hashimoto, S. et al. Identification of the SH2 domain binding protein of Bruton's tyrosine kinase as BLNK—functional significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium signaling. Blood 94, 2357–2364 (1999).

    CAS  PubMed  Google Scholar 

  28. Pappu, R. et al. Requirement for B cell linker protein (BLNK) in B cell development. Science 286, 1949–1954 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Minegishi, Y. et al. An essential role for BLNK in human B cell development. Science 286, 1954–1957 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Saito, K., Scharenberg, A. M. & Kinet, J. P. Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk. J. Biol. Chem. 276, 16201–16206 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Scharenberg, A. M. et al. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 17, 1961–1972 (1998). This study shows that the SHIP-mediated inhibitory signalling mechanism involves attenuation of PtdIns(3,4,5)P 3 -dependent activation of TEC kinases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, S. K. et al. Point mutations in the split PLC-γ1 PH domain modulate phosphoinositide binding. J. Biochem. Mol. Biol. 37, 720–725 (2004).

    CAS  PubMed  Google Scholar 

  33. Saito, K. et al. BTK regulates PtdIns-4,5-P2 synthesis: importance for calcium signaling and PI3K activity. Immunity 19, 669–678 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Fruman, D. A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  36. Humphries, L. A. et al. Tec kinases mediate sustained calcium influx via site-specific tyrosine phosphorylation of the phospholipase Cγ Src homology 2-Src homology 3 linker. J. Biol. Chem. 279, 37651–37661 (2004). This study shows that TEC kinases are involved in activation of PLC γ 2 through their capacity to phosphorylate PLC γ 2 at two specific sites that are not accessible by SYK- or LYN-family kinases.

    Article  CAS  PubMed  Google Scholar 

  37. Tsukada, S. et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72, 279–290 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Yu, P. W. et al. Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer. Blood 104, 1281–1290 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez, R. et al. Tyrosine residues in phospholipase Cγ2 essential for the enzyme function in B-cell signaling. J. Biol. Chem. 276, 47982–47992 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe, D. et al. Four tyrosine residues in phospholipase C-γ2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling. J. Biol. Chem. 276, 38595–38601 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Kerner, J. D. et al. Impaired expansion of mouse B cell progenitors lacking Btk. Immunity 3, 301–312 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Rawlings, D. J. et al. Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science 261, 358–361 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Haas, K. M. & Tedder, T. F. Role of the CD19 and CD21/35 receptor complex in innate immunity, host defense and autoimmunity. Adv. Exp. Med. Biol. 560, 125–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Rickert, R. C. Regulation of B lymphocyte activation by complement C3 and the B cell coreceptor complex. Curr. Opin. Immunol. 17, 237–243 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Carter, R. H. & Barrington, R. A. Signaling by the CD19/CD21 complex on B cells. Curr. Dir. Autoimmun. 7, 4–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Tuveson, D. A., Carter, R. H., Soltoff, S. P. & Fearon, D. T. CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase. Science 260, 986–989 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Weng, W. K., Jarvis, L. & LeBien, T. W. Signaling through CD19 activates Vav/mitogen-activated protein kinase pathway and induces formation of a CD19/Vav/phosphatidylinositol 3-kinase complex in human B cell precursors. J. Biol. Chem. 269, 32514–32521 (1994).

    CAS  PubMed  Google Scholar 

  48. Carter, R. H. & Fearon, D. T. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256, 105–107 (1992). This study indicates how the CD19–CD21–CD81 complex can markedly augment BCR signalling.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, Y. & Carter, R. H. CD19 regulates B cell maturation, proliferation, and positive selection in the FDC zone of murine splenic germinal centers. Immunity 22, 749–761 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Phillips, N. E. & Parker, D. C. Fc-dependent inhibition of mouse B cell activation by whole anti-mu antibodies. J. Immunol. 130, 602–606 (1983).

    CAS  PubMed  Google Scholar 

  51. Tony, H. P. & Schimpl, A. Stimulation of murine B cells with anti-Ig antibodies: dominance of a negative signal mediated by the Fc receptor. Eur. J. Immunol. 10, 726–729 (1980).

    Article  CAS  PubMed  Google Scholar 

  52. Wilson, H. A. et al. The B lymphocyte calcium response to anti-Ig is diminished by membrane immunoglobulin cross-linkage to the Fcγ receptor. J. Immunol. 138, 1712–1718 (1987).

    CAS  PubMed  Google Scholar 

  53. Ono, M., Bolland, S., Tempst, P. & Ravetch, J. V. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcγRIIB. Nature 383, 263–266 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. D'Ambrosio, D. et al. Recruitment and activation of PTP1C in negative regulation of antigen receptor signaling by FcγRIIB1. Science 268, 293–297 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Bolland, S., Pearse, R. N., Kurosaki, T. & Ravetch, J. V. SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity 8, 509–516 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Hippen, K. L. et al. FcγRIIB1 inhibition of BCR-mediated phosphoinositide hydrolysis and Ca2+ mobilization is integrated by CD19 dephosphorylation. Immunity 7, 49–58 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Fong, D. C. et al. Mutational analysis reveals multiple distinct sites within Fcγ receptor IIB that function in inhibitory signaling. J. Immunol. 165, 4453–4462 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Fong, D. C. et al. Selective in vivo recruitment of the phosphatidylinositol phosphatase SHIP by phosphorylated FcγRIIB during negative regulation of IgE-dependent mouse mast cell activation. Immunol. Lett. 54, 83–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Ono, M. et al. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell 90, 293–301 (1997). This study shows that SHIP and SHP1 mediate two distinct inhibitory signalling pathways, and that the inhibitory signal mediated by FcγRIIB1 is largely dependent on the SHIP-mediated pathway.

    Article  CAS  PubMed  Google Scholar 

  60. Sato, S., Tuscano, J. M., Inaoki, M. & Tedder, T. F. CD22 negatively and positively regulates signal transduction through the B lymphocyte antigen receptor. Semin. Immunol. 10, 287–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Nitschke, L., Carsetti, R., Ocker, B., Kohler, G. & Lamers, M. C. CD22 is a negative regulator of B-cell receptor signalling. Curr. Biol. 7, 133–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Otipoby, K. L. et al. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384, 634–637 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, J. et al. CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nature Immunol. 5, 651–657 (2004). This study indicates that CD22 shapes BCR Ca2+ signals by regulating the Ca2+ export activity of PMCA pumps.

    Article  CAS  Google Scholar 

  64. Nitschke, L. The role of CD22 and other inhibitory co-receptors in B-cell activation. Curr. Opin. Immunol. 17, 290–297 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Poe, J. C. et al. Severely impaired B lymphocyte proliferation, survival, and induction of the c-Myc:Cullin 1 ubiquitin ligase pathway resulting from CD22 deficiency on the C57BL/6 genetic background. J. Immunol. 172, 2100–2110 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Danzer, C. P., Collins, B. E., Blixt, O., Paulson, J. C. & Nitschke, L. Transitional and marginal zone B cells have a high proportion of unmasked CD22: implications for BCR signaling. Int. Immunol. 15, 1137–1147 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Samardzic, T. et al. CD22 regulates early B cell development in BOB.1/OBF.1-deficient mice. Eur. J. Immunol. 32, 2481–2489 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Asano, N. et al. B Lymphocyte signaling established by the CD19/CD22 loop regulates autoimmunity in the tight-skin mouse. Am. J. Pathol. 165, 641–650 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. O'Keefe, T. L., Williams, G. T., Batista, F. D. & Neuberger, M. S. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J. Exp. Med. 189, 1307–1313 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vianna-Jorge, R. & Suarez-Kurtz, G. Potassium channels in T lymphocytes: therapeutic targets for autoimmune disorders? BioDrugs 18, 329–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Chandy, K. G. et al. K+ channels as targets for specific immunomodulation. Trends Pharmacol. Sci. 25, 280–289 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Panyi, G. Biophysical and pharmacological aspects of K+ channels in T lymphocytes. Eur. Biophys. J. 34, 515–529 (2005).

    Article  PubMed  Google Scholar 

  73. Panyi, G., Varga, Z. & Gaspar, R. Ion channels and lymphocyte activation. Immunol. Lett. 92, 55–66 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Wulff, H., Knaus, H. G., Pennington, M. & Chandy, K. G. K+ channel expression during B cell differentiation: implications for immunomodulation and autoimmunity. J. Immunol. 173, 776–786 (2004). This study describes differential expression of voltage-gated and Ca2+-activated K+ channels in different B-cell subsets, providing evidence that modulation of membrane potential can influence B-cell responses.

    Article  CAS  PubMed  Google Scholar 

  75. Owsianik, G., Talavera, K., Voets, T. & Nilius, B. Permeation and Selectivity of TRP Channels. Annu. Rev. Physiol. 68, 685–717 (2005).

    Article  CAS  Google Scholar 

  76. Launay, P. et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109, 397–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Prawitt, D. et al. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i . Proc. Natl Acad. Sci. USA 100, 15166–15171 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Launay, P. et al. TRPM4 regulates calcium oscillations after T cell activation. Science 306, 1374–1377 (2004). This study describes the gating and permeation properties of TRPM4, defining its potential as a new mechanism for dynamic modulation of membrane potential.

    Article  CAS  PubMed  Google Scholar 

  79. Vennekens, R. et al. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nature Immunol. 8, 312–320 (2007).

    Article  CAS  Google Scholar 

  80. Mori, Y. et al. Transient receptor potential 1 regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes. J. Exp. Med. 195, 673–681 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu, M. X. & Tang, J. TRPC channel interactions with calmodulin and IP3 receptors. Novartis Found. Symp. 258, 44–58 (2004).

    CAS  PubMed  Google Scholar 

  82. Tang, J. et al. Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of TRP channels. J. Biol. Chem. 276, 21303–21310 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, Z. et al. Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc. Natl Acad. Sci. USA 98, 3168–31673 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Boulay, G. et al. Modulation of Ca2+ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proc. Natl Acad. Sci. USA 96, 14955–14960 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang, G. N. et al. STIM1 carboxyl-terminus activates native SOC, I crac and TRPC1 channels. Nature Cell Biol. 8, 1003–1010 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Ong, H. L. et al. Dynamic assembly of TRPC1/STIM1/Orai1 ternary complex is involved in store operated calcium influx: evidence for similarities in SOC and CRAC channel components. J. Biol. Chem. 282, 9105–9116 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Rosker, C. et al. Ca2+ signaling by TRPC3 involves Na+ entry and local coupling to the Na+/Ca2+ exchanger. J. Biol. Chem. 279, 13696–13704 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Basu, S. & Srivastava, P. Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells. Proc. Natl Acad. Sci. USA 102, 5120–5125 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Amantini, C. et al. Distinct thymocyte subsets express the vanilloid receptor VR1 that mediates capsaicin-induced apoptotic cell death. Cell Death Differ. 11, 1342–1356 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Nadler, M. J. et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411, 590–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Perraud, A. L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595–599 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Inada, H., Iida, T. & Tominaga, M. Different expression patterns of TRP genes in murine B and T lymphocytes. Biochem. Biophys. Res. Commun. 350, 762–767 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Liu, X., Zhu, P. & Freedman, B. D. Multiple eicosanoid-activated non-selective cation channels regulate B lymphocyte adhesion to integrin ligands. Am. J. Physiol. Cell Physiol. 290, c873–c882 (2005).

    Article  PubMed  CAS  Google Scholar 

  94. Zhu, P., Liu, X., Labelle, E. F. & Freedman, B. D. Mechanisms of hypotonicity-induced calcium signaling and integrin activation by arachidonic acid-derived inflammatory mediators in B cells. J. Immunol. 175, 4981–4989 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, Q. H. et al. Distinct calcium channels regulate responses of primary B lymphocytes to B cell receptor engagement and mechanical stimuli. J. Immunol. 174, 68–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Kotturi, M. F. & Jefferies, W. A. Molecular characterization of L-type calcium channel splice variants expressed in human T lymphocytes. Mol. Immunol. 42, 1461–1474 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Savignac, M. et al. Dihydropyridine receptors are selective markers of Th2 cells and can be targeted to prevent Th2-dependent immunopathological disorders. J. Immunol. 172, 5206–5212 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Stokes, L., Gordon, J. & Grafton, G. Non-voltage-gated L-type Ca2+ channels in human T cells: pharmacology and molecular characterization of the major α pore-forming and auxiliary β-subunits. J. Biol. Chem. 279, 19566–19573 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Healy, J. I. et al. Different nuclear signals are activated by the B cell receptor during positive versus negative signaling. Immunity 6, 419–428 (1997). This study describes how shaping of BCR Ca2+ signals has the capacity to produce marked differences in transcription-factor activation in B cells.

    Article  CAS  PubMed  Google Scholar 

  101. Macian, F. NFAT proteins: key regulators of T-cell development and function. Nature Rev. Immunol. 5, 472–484 (2005).

    Article  CAS  Google Scholar 

  102. Liu, J. O. The yins of T cell activation. Sci. STKE 2005, re1 (2005).

    PubMed  Google Scholar 

  103. Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Guo, B., Su, T. T. & Rawlings, D. J. Protein kinase C family functions in B-cell activation. Curr. Opin. Immunol. 16, 367–373 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Hanson, C. J., Bootman, M. D. & Roderick, H. L. Cell signalling: IP3 receptors channel calcium into cell death. Curr. Biol. 14, R933–R935 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Butow, R. A. & Avadhani, N. G. Mitochondrial signaling: the retrograde response. Mol. Cell 14, 1–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Jaattela, M. & Tschopp, J. Caspase-independent cell death in T lymphocytes. Nature Immunol. 4, 416–423 (2003).

    Article  CAS  Google Scholar 

  108. Perl, A., Gergely, P. Jr, Puskas, F. & Banki, K. Metabolic switches of T-cell activation and apoptosis. Antioxid. Redox Signal. 4, 427–443 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Rathmell, J. C. Apoptosis and B cell tolerance. Curr. Dir. Autoimmun. 6, 38–60 (2003).

    Article  PubMed  Google Scholar 

  110. Bhakta, N. R., Oh, D. Y. & Lewis, R. S. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nature Immunol. 6, 143–151 (2005). This study uses two-photon imaging to show that Ca2+ signals in T cells lead to marked decreases in the rate of T-cell migration.

    Article  CAS  Google Scholar 

  111. Aneiros, E., Philipp, S., Lis, A., Freichel, M. & Cavalie, A. Modulation of Ca2+ signaling by Na+/Ca2+ exchangers in mast cells. J. Immunol. 174, 119–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Eder, P., Poteser, M., Romanin, C. & Groschner, K. Na+ entry and modulation of Na+/Ca2+ exchange as a key mechanism of TRPC signaling. Pflugers Arch. 451, 99–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Guerini, D., Coletto, L. & Carafoli, E. Exporting calcium from cells. Cell Calcium 38, 281–289 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Strehler, E. E. & Treiman, M. Calcium pumps of plasma membrane and cell interior. Curr. Mol. Med. 4, 323–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Wuytack, F., Raeymaekers, L. & Missiaen, L. Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32, 279–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Kirichok, Y., Krapivinsky, G. & Clapham, D. E. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427, 360–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Hoth, M., Button, D. C. & Lewis, R. S. Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc. Natl Acad. Sci. USA 97, 10607–10612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Saris, N. E. & Carafoli, E. A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (Mosc) 70, 187–194 (2005).

    Article  CAS  Google Scholar 

  119. Jacobson, J. & Duchen, M. R. Interplay between mitochondria and cellular calcium signalling. Mol. Cell Biochem 256–257, 209–218 (2004).

    Article  PubMed  Google Scholar 

  120. Gunter, T. E., Yule, D. I., Gunter, K. K., Eliseev, R. A. & Salter, J. D. Calcium and mitochondria. FEBS Lett. 567, 96–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Patterson, R. L., Boehning, D. & Snyder, S. H. Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu. Rev. Biochem. 73, 437–465 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work is supported by the National Institutes of Health (NIH) grants AI45901, GM64316 and GM64091 to A.M.S., and CA81140, HD37091, HL07543, AI044259 and a Leukemia/Lymphoma Society award to D.J.R. We apologize to any colleagues whose work we have overlooked, or whose work we were not able to cite due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew M. Scharenberg or David J. Rawlings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Modulatory inputs to InsP3–dependent Ca2+ release (PDF 248 kb)

Related links

Related links

FURTHER INFORMATION

Andrew M. Scharenberg's homepage

David J. Rawlings' homepage

Glossary

Conformational coupling

The regulation of ion-channel gating by interaction with another protein, as opposed to gating through changes in plasma-membrane potential or interaction with a diffusible second messenger.

Reverse mode Na+/Ca2+ exchange

The major physiological role for Na+/Ca2+ exchange channels is thought to be the removal of Ca2+ from the cytosol in exchange for extracellular Na+. If ionic conditions in the microenvironment of an exchange channel are appropriate, it is possible for the exchange channel to operate in reverse and exchange intracellular Na+ for extracellular Ca2+ — this is referred to as reverse mode exchange.

Germinal centres

Located in peripheral lymphoid tissues (for example, the spleen or lymph nodes), these structures are sites of B-cell proliferation and selection for clones that produce antigen-specific antibodies of higher affinity.

Somatic hypermutation

A unique mutation mechanism that is targeted to the variable regions of rearranged immunoglobulin gene segments. Combined with selection for B cells that produce high-affinity antibody, somatic hypermutation leads to the affinity maturation of B cells in germinal centres.

TEC-kinase family

A third class of protein-tyrosine kinases that is required for the activation of haematopoietic cells — the first and second classes being the SRC- and SYK (spleen tyrosine kinase)-family kinases. The TEC-family kinase prototypes are ITK (interleukin-2-inducible T-cell kinase) in T cells and BTK (Bruton's tyrosine kinase) in B cells. Among other functions, TEC kinases have a crucial role in the activation of phospholipase C enzymes after immunoreceptor ligation.

Marginal-zone B cells

A static, mature B-cell subset that is enriched mainly in the marginal zone of the spleen, which is located at the border of the white pulp.

Membrane potential

The charge difference (measured in mV) between the two surfaces of a biological membrane that arises from the different concentrations of ions such as H+, Na+ or K+ on either side. The Na+/K+-ATPase creates a membrane potential by using the energy stored in ATP to maintain a low concentration of Na+ and a high concentration of K+ in the cell, against a higher concentration of Na+ and a lower concentration of K+ on the outside.

Channel conductance

Conductance is defined as current divided by voltage, and in biological systems this means the current flowing across a biological membrane divided by the electrical potential across that membrane. When used in reference to a single open ion channel (single channel conductance) it provides a measure of the amount of current a single open ion channel can carry. Single channel conductance is usually independent of plasma membrane potential, and thus characteristic of that particular ion channel. Individual ion channels with small single channel conductances carry less current at a given membrane potential than those with large single channel conductances.

Voltage-operated channels

Plasma-membrane ion channels the gating of which is regulated by changes in plasma membrane potential.

Stretch-activated ion channels

Plasma membrane ion channels the gating of which is regulated by changes in plasma membrane 'stretch' — that is, forces that are directed within or in parallel to the plane of the plasma membrane.

Eicosanoids

Eicosanoids are fatty-acid derivatives, mainly derived from arachidonic-acid precursors, that have a wide variety of biological activities. There are four main classes of eicosanoid — the prostaglandins, prostacyclins, thromboxanes and leukotrienes — derived from the activities of cyclooxygenases and lipoxygenases on membrane-associated fatty-acid precursors.

Non-selective cation channels

Ion channels that exhibit significant selectivity towards a single type of cation are generally designated according to that ionic selectivity — for example, K+ channel or Ca2+ channels. Cation channels which exhibit little selectivity between monovalent cations, or between monovalent cations and one or more divalent cations such as Ca2+ or Mg2+, are typically grouped together and referred to as non-selective cation channels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scharenberg, A., Humphries, L. & Rawlings, D. Calcium signalling and cell-fate choice in B cells. Nat Rev Immunol 7, 778–789 (2007). https://doi.org/10.1038/nri2172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing