Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolving functions of endothelial cells in inflammation

Key Points

  • Endothelial cells are major participants in and regulators of inflammatory reactions.

  • Resting endothelial cells prevent coagulation, control blood flow and passage of proteins from blood into tissues, and inhibit inflammation. Production of nitric oxide (NO) has a role in these processes and inadequate production of NO is a major cause of endothelial cell dysfunction.

  • Type I activation of endothelial cells mediated by G-protein coupled receptors (GPCRs) that activate G-protein αq subunits and cause endothelial cells to increase blood flow (enhancing delivery of leukocytes to the tissue), increase leakage of plasma proteins into the tissue (creating a provisional matrix to support leukocytes) and promote the binding and activation of neutrophils, encouraging their extravasation into an inflammatory site. Type I activation responses are rapid, independent of protein synthesis, and transient, spontaneously shutting off within 10–20 minutes.

  • Type II activation of endothelial cells mediated by pro-inflammatory cytokines such as tumour-necrosis factor (TNF) and interleukin-1 (IL-1) also increase local blood flow, leakage of plasma proteins and recruit leukocytes. Type II activation responses depend on new gene transcription and protein translation, and are slower in onset but more sustained than type I activation responses, lasting for hours to days.

  • Type-II-activated endothelial cells spontaneously evolve from a phenotype that recruits neutrophils to one that recruits monocytes and T cells. Polarizing cytokines, such as interferon-γ or IL-4 can further modify the activated endothelial cell phenotype to preferentially support T helper 1 (TH1)-cell- or TH2-cell-type inflammatory reactions, respectively.

  • In chronic inflammation, endothelial cells respond to angiogenic factors, such as vascular endothelial growth factor A (VEGFA), to form new blood vessels that are required to sustain an inflammatory neo-tissue such as a pannus in rheumatoid arthritis. Endothelial cells may also respond to lymphotoxin-β to acquire characteristics of high endothelial venules and support the development of tertiary lymphoid organs.

  • Many inflammatory processes display both acute and chronic changes at the same time. This may result because mediators of acute inflammation (such as TNF) contribute to the phenotypes of endothelial cells associated with chronic inflammatory and, similarly mediators of chronic inflammation (such as VEGFA) may also contribute to endothelial cell behaviours associated with acute inflammation.

  • Many therapeutic agents thought to target inflammatory processes or vascular processes affect the inflammatory function of endothelial cells. Our deeper understanding of the mediators, signals and effector molecules involved in endothelial cell inflammatory functions may allow specific targeting of this cell type as a treatment for inflammatory diseases.

Abstract

Inflammation is usually analysed from the perspective of tissue-infiltrating leukocytes. Microvascular endothelial cells at a site of inflammation are both active participants in and regulators of inflammatory processes. The properties of endothelial cells change during the transition from acute to chronic inflammation and during the transition from innate to adaptive immunity. Mediators that act on endothelial cells also act on leukocytes and vice versa. Consequently, many anti-inflammatory therapies influence the behaviour of endothelial cells and vascular therapeutics influence inflammation. This Review describes the functions performed by endothelial cells at each stage of the inflammatory process, emphasizing the principal mediators and signalling pathways involved and the therapeutic implications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functions of resting endothelial cells.
Figure 2: Type I activation of endothelial cells.
Figure 3: Type II activation of endothelial cells.
Figure 4: Chronic inflammatory responses of endothelial cells.

Similar content being viewed by others

References

  1. Busse, R. & Fleming, I. Vascular endothelium and blood flow. Handb. Exp. Physiol. 176, 43–78 (2006).

    Article  CAS  Google Scholar 

  2. Moncada, S. & Higgs, E. A. Nitric oxide and the vascular endothelium. Handb. Exp. Pharmacol. 176, 213–254 (2006).

    Article  Google Scholar 

  3. Arnout, J., Hoylaerts, M. F. & Lijnen, H. R. Haemostasis. Handb. Exp. Physiol. 176, 1–42 (2006).

    CAS  Google Scholar 

  4. Minshall, R. D. & Malik, A. B. Transport across the endothelium: regulation of endothelial permeability. Handb. Exp. Pharmacol. 176, 107–144 (2006).

    Article  Google Scholar 

  5. Bazzoni, G. & Dejana, E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol. Rev. 84, 869–901 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Ley, K. & Reutershan, J. Leucocyte-endothelial interactions in health and disease. Handb. Exp. Pharmacol. 176, 97–133 (2006).

    Article  CAS  Google Scholar 

  7. Sessa, W. C. eNOS at a glance. J. Cell Sci. 117, 2427–2429 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Aird, W. C. Phenotypic heterogeneity of the endothelium: I. Structure, function and mechanisms. Circ. Res. 100, 158–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Gratton, J. P., Bernatchez, P. & Sessa, W. C. Caveolae and caveolins in the cardiovascular system. Circ. Res. 94, 1408–1417 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Feng, D. et al. Pathways of macromolecular extravasation across microvascular endothelium in resposne to VPF/VEGF and other vasoactive mediators. Microcirculation 6, 23–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Bonfanti, R., Furie, B. C., Furie, B. & Wagner, D. D. PADGEM (GMP140) is a component of Weibel–Palade bodies of human endothelial cells. Blood 73, 1109–1112 (1989).

    CAS  PubMed  Google Scholar 

  12. Middleton, J. et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91, 385–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. De Caterina, R. et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest. 96, 60–68 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuhlencordt, P. J. et al. Role of endothelial nitric oxide synthase in endothelial activation: insights from eNOS knockout endothelial cells. Am. J. Physiol., Cell Physiol. 286, C1195–C1202 (2004).

    Article  CAS  Google Scholar 

  15. Matsushita, K. et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115, 139–150 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hansson, G. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nature Rev. Immunol. 6, 508–519 (2006).

    Article  CAS  Google Scholar 

  17. Pober, J. S. & Cotran, R. S. The role of endothelial cells in inflammation. Transplantation 50, 537–544 (1990). This is an extensive review establishing that responses due to endothelial-cell activation can be separated into type I and type II activation responses.

    Article  CAS  PubMed  Google Scholar 

  18. Birch, K. A., Ewenstein, B. M., Golan, D. E. & Pober, J. S. Prolonged peak elevations in cytoplasmic free calcium ions, derived from intracellular stores, correlate with the extent of thrombin-stimulated exocytosis in single human umbilical vein endothelial cells. J. Cell. Physiol. 160, 545–554 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Luckhoff, A. & Clapham, D. E. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca2+-permeable channel. Nature 355, 356–358 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Niu, J., Profirovic, J., Pan, H., Vaiskunaite, R. & Voyno-Yasenetskaya, T. G protein βγ subunits stimulate p114RhoGEF, a guanine nucleotide exchange factor for RhoA and Rac1: regulation of cell shape and reactive oxygen species production. Circ. Res. 93, 848–856 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Egan, K. & FitzGerald, G. A. Eicosanoids and the vascular endothelium. Handb. Exp. Pharmacol. 176, 189–211 (2006).

    Article  Google Scholar 

  22. Mitchell, J. A., Larkin, S. & Williams, T. J. Cyclooxygenase-2: regulation and relevance in inflammation. Biochem. Pharmacol. 50, 1535–1542 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Stevens, T., Garcia, J. G., Shasby, D. M., Bhattacharya, J. & Malik, A. B. Mechanisms regulating endothelial cell barrier function. Am. J. Physiol., Lung Cell Mol. Physiol. 279, L419–L422 (2000).

    Article  CAS  Google Scholar 

  24. Heltianu, C., Simionescu, M. & Simionescu, N. Histamine receptors of the microvascular endothelium revealed in situ with a histamine-ferritin conjugate: characteristic high-affinity binding sites in venules. J. Cell Biol. 93, 357–364 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. Teixeira, M. M., Williams, T. J. & Hellewell, P. G. Role of prostaglandins and nitric oxide in acute inflammatory reactions in guinea-pig skin. Br. J. Pharmacol. 110, 1515–1521 (1993). This is the first demonstration that appreciates the overlapping roles of the endothelial cell mediators the prostaglandins and NO in regulating inflammation-mediated increases in vascular permeability and local blood flow.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frangogiannis, N. G. Targeting the inflammatory response in healing myocardial infarcts. Curr. Med. Chem. 13, 1877–1893 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Birch, K. A., Pober, J. S., Zavoico, G. B., Means, A. R. & Ewenstein, B. M. Calcium/calmodulin transduces thrombin-stimulated secretion: studies in intact and minimally permeabilized human umbilical vein endothelial cells. J. Cell Biol. 118, 1501–1510 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Prescott, S. M., Zimmerman, G. A. & McIntyre, T. M. Human endothelial cells in culture produce platelet-activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when stimulated with thrombin. Proc. Natl Acad. Sci. USA 81, 3534–3538 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lorant, D. E. et al. Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils. J. Cell Biol. 115, 223–234 (1991). This first study provides the connection between leukocyte adhesion and activation by juxtacrine signalling.

    Article  CAS  PubMed  Google Scholar 

  30. Marchesi, V. T. The site of leucocyte emigration during inflammation. Q. J. Exp. Physiol. Cogn. Med. Sci. 46, 115–118 (1961).

    CAS  Google Scholar 

  31. Schenkel, A. R., Mamdouh, Z. Chen, X, Liebman, R. M. & Muller, W. A. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nature Immunol. 3, 143–150 (2002).

    Article  CAS  Google Scholar 

  32. Feng, D., Nagy, J. A., Pyne, K., Dvorak, H. F. & Dvorak, A. M. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J. Exp. Med. 187, 903–915 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carman, C. V. et al. Transcellular diapedesis is initiated by invasive podosomes. Immunity 26, 784–794 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gainetdinov, R. R., Premont, R. T., Bohn, L. M., Lefkowitz, R. J. & Caron, M. G. Desensitization of G protein-coupled receptors and neuronal functions. Annu. Rev. Neurosci. 27, 107–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Pober, J. S. in The Endothelium: A Comprehensive Reference (ed. Aird, W. C.) (Cambrigde Univ. Press, Cambridge, in the press).

  36. Martin, M. U. & Wesche, H. Summary and comparison of the signalling mechanisms of the Toll/interleukin-1 receptor family. Biochim. Biophys. Acta 1592, 265–280 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Zavoico, G. B., Ewenstein, B. M., Schafer, A. I. & Pober, J. S. IL-1 and related cytokines enhance thrombin-stimulated PGI2 production in cultured endothelial cells without affecting thrombin-stimulated von Willebrand factor secretion or platelet-activating factor biosynthesis. J. Immunol. 142, 3993–3999 (1989).

    CAS  PubMed  Google Scholar 

  38. Pober, J. S. et al. Activation of cultured human endothelial cells by recombinant lymphotoxin: comparison with tumor necrosis factor and interleukin 1 species. J. Immunol. 138, 3319–3324 (1987).

    CAS  PubMed  Google Scholar 

  39. Petrache, I., Birukova, A., Ramierz, S. I., Garcia, J. G. N. & Verin, A. D. The role of microtubules in tumor necrosis factor-α-induced endothelial cell permeability. Am J. Respir. Cell Mol. Biol. 28, 574–581 (2002).

    Article  CAS  Google Scholar 

  40. Clark, P. R., Manes, T. D., Pober, J. S. & Kluger, M. S. Increased ICAM-1 expression causes endothelial cell leakiness, cytoskeletal reorganization and junctional alterations. J. Invest. Derm. 127, 762–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Pan, J., Xia, L. & McEver, R. P. Comparison of promoters for the murine and human P-selectin genes suggests species-specific and conserved mechanisms for transcriptional regulation in endothelial cells. J. Biol. Chem. 273, 10058–10067 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, J. et al. Histamine antagonizes TNF signaling by stimulating TNF receptor shedding from the cell surface and Golgi storage pool. J. Biol. Chem. 278, 21751–21760 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Karmann, K., Min, W., Fanslow, W. C. & Pober, J. S. Activation and homologous desensitization of human endothelial cells by CD40 ligand, tumor necrosis factor, and interleukin 1. J. Exp. Med. 184, 173–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Munro, J. M., Pober, J. S. & Cotran, R. S. Tumor necrosis factor and interferon-γ induce distinct patterns of endothelial activation and associated leukocyte accumulation in skin of Papio anubis. Am. J. Pathol. 135, 121–133 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Joris, I., Cuenoud, H. F., Doern, G. V., Underwood, J. M. & Majno, G. Capillary leakage in inflammation. A study by vascular labeling. Am. J. Pathol. 137, 1353–1363 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Doukas, J. & Pober, J. S. IFN-γ enhances endothelial activation induced by tumor necrosis factor but not IL-1. J. Immunol. 145, 1727–1733 (1990).

    CAS  PubMed  Google Scholar 

  47. Li, J. H. & Pober, J. S. The cathepsin B pathway contributes to TNF plus IFN-γ-mediated human endothelial injury. J. Immunol. 175, 1858–1866 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Li, J. H. et al. Interferon-γ augments CD95(APO-1/Fas) and pro-caspase-8 expression and sensitizes human vascular endothelial cells to CD95-mediated apoptosis. Am. J. Pathol. 161, 1485–1495 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Michaeu, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signalling complexes. Cell 114, 181–190 (2003).

    Article  Google Scholar 

  50. Kreuz, S., Siegmund, D., Scheurich, P. & Wajant, H. NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol. Cell Biol. 21, 3964–3973 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bombeli, T., Karsan, A., Tait, J. F. & Harlan, J. M. Apoptotic vascular endothelial cells become procoagulant. Blood 89, 2429–2442 (1997). This study clearly demonstrates that apoptotic endothelial cells become pro-coagulant by increased expression of phosphotidylserine and the loss of anti-coagulant membrane components.

    CAS  PubMed  Google Scholar 

  52. Yoshizumi, M., Perrella, M. A., Burnett, J. C. Jr & Lee, M. E. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ. Res. 73, 205–209 (1993). This study provides the first evidence that pro-inflammatory cytokines, such as TNF, can destabilize endothelial cell NOS as a means to promote inflammation.

    Article  CAS  PubMed  Google Scholar 

  53. Sohn, R. H. et al. Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-κB. Blood 105, 3910–3917 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Bevilacqua, M. P. et al. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1. Proc. Natl Acad. Sci. USA 83, 4533–4537 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Winsauer, G. & de Martin, R. Resolution of inflammation: intracellular feedback loops in the endothelium. Thromb. Haemost. 97, 364–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Choi, J., Enis, D. R., Koh, K. P., Shiao, S. L. & Pober, J. S. T lymphocyte-endothelial cell interactions. Annu. Rev. Immunol. 22, 683–709 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Hart, D. N. et al. Localization of HLA-ABC and DR antigens in human kidney. Transplantation 31, 428–433 (1981).

    Article  CAS  PubMed  Google Scholar 

  58. Hancock, W. W., Kraft, N. & Atkins, R. C. The immunohistochemical demonstration of major histocompatibility antigens in the human kidney using monoclonal antibodies. Pathology 14, 409–414 (1982).

    Article  CAS  PubMed  Google Scholar 

  59. Shiao, S. L., McNiff, J. M. & Pober, J. S. Memory T cells and their costimulators in human allograft injury. J. Immunol. 175, 4886–4896 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Kreisel, D. et al. Vascular endothelium does not activate CD4+ direct allorecognition in graft rejection. J. Immunol. 173, 3027–3034 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Luster, A. D., Unkeless, J. C. & Ravetch, J. V. γ-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315, 672–676 (1985).

    Article  CAS  PubMed  Google Scholar 

  62. Austrup, F. et al. P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflammed tissues. Nature 385, 81–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Chaplin, D. D. Cell cooperation in development of eosinophil-predominant inflammation in airways. Immunol. Res. 26, 55–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Briscoe, D. M., Cotran, R. S. & Pober, J. S. Effects of TNF, LPS and IL-4 on the expression of vascular cell adhesion molecule-1 in vivo: Correlation with CD3+ T cell infiltration. J. Immunol. 149, 2954–2960 (1992).

    CAS  PubMed  Google Scholar 

  65. Berg, E. L. et al. The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1. J. Exp. Med. 174, 1461–1466 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Hirahara, K. et al. The majority of human peripheral blood CD4+CD25highFoxp3+ regulatory T cells bear functional skin-homing receptors. J. Immunol. 177, 4488–4494 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Phillips, G. D., Whitehead, R. A. & Knighton, D. R. Initiation and pattern of angiogenesis in wound healing in the rat. Am. J. Anat. 192, 257–262 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Paleolog, E. M. Angiogenesis in rheumatoid arthritis. Arthritis Res. 4 (Suppl. 3), 81–90 (2002).

    Article  Google Scholar 

  69. Khurana, R., Simons, M., Martin, J. F. & Zachary, I. C. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112, 1813–1824 (2005).

    Article  PubMed  Google Scholar 

  70. Monaco, C., Andreakos, E., Kiriakidis, S., Feldmann, M. & Paleolog, E. T-cell-mediated signalling in immune, inflammatory and angiogenic processes: the cascade of events leading to inflammatory diseases. Curr. Drug Targets Inflamm. Allergy 3, 35–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Shibuya, M. & Claesson-Welsh, L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell Research 312, 549–560 (2006).

    Article  CAS  Google Scholar 

  72. Dvorak, H. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. 20, 4368–4380 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Qin, L. et al. Down syndrome candidate region 1 isoform 1 mediates angiogenesis through the calcineurin-NFAT pathway. Mol. Cancer Res. 4, 811–820 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Fiedler, U. & Augustin, H. G. Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 27, 552–558 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, R. et al. Etk/Bmx transactivates vascular endothelial growth factor 2 and recruits phosphatidylinositol 3-kinase to mediate the tumor necrosis factor-induced angiogenic pathway. J. Biol. Chem. 278, 51267–51276 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Leahy, K. M., Koki, A. T. & Masferrer, J. L. Role of cyclooxygenases in angiogenesis. Curr. Med. Chem. 7, 1163–1170 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Strieter, R. M., Burdick, M. D., Gomperts, B. N., Belperio, J. A. & Keane, M. P. CXC chemokines in angiogenesis. Cytokine Growth Factor Res. 16, 593–609 (2005).

    Article  CAS  Google Scholar 

  78. Coughlin, C. M. et al. Tumor cell responses to IFNγ affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 9, 25–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Drayton, D. L., Liao, S., Mounzer, R. H. & Ruddle, N. H. Lymphoid organ development: from ontogeny to neogenesis. Nature Immunol. 7, 344–353 (2006).

    Article  CAS  Google Scholar 

  80. Liao, S. & Ruddle, N. H. Synchrony of high endothelial venules and lymphatic vessels revealed by immunization. J. Immunol. 177, 3369–3379 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Clauss, M. et al. Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J. Exp. Med. 172, 1535–1545 (1990).

    Article  CAS  PubMed  Google Scholar 

  82. Reinders, M. E. et al. Proinflammatory functions of vascular endothelial growth factor in alloimmunity. J. Clin. Invest. 112, 1655–1665 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boulday, G., Haskova, Z., Reinders, M. E., Pal, S. & Briscoe, D. M. Vascular endothelial growth factor-induced signalling pathways in endothelial cells that mediate overexpression of the chemokine IFN-γ-inducible protein of 10 kDa in vitro and in vivo. J. Immunol. 176, 3098–3107 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, C. G. et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nature Med. 10, 1095–1103 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Fiedler, U. et al. Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation. Nature Med. 12, 235–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Bhandari, V. et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nature Med. 12, 1286–1293 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Thurston, G., et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nature Med. 6, 460–463 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Kim, I., et al. Angiopoietin-1 negatively regulates expression and activity of tissue factor in endothelial cells. FASEB J. 16, 126–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Madge, L. A. & Pober, J. S. A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFκB in human endothelial cells. J. Biol. Chem. 275, 15458–15465 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Gullestad, L. & Aukrust, P. Review of trials in chronic heart failure showing broad-spectrum anti-inflammatory approaches. A. J. Card. 95, 17–23 (2005).

    Article  CAS  Google Scholar 

  91. Al-Lamki, R. S. et al. TNFR1- and TNFR2-mediated signaling pathways in human kidney are cell type-specific ad differentially contribute to renal injury. FASEB J. 19, 1637–1645 (2005). This reference provides evidence showing that the actions of TNF on endothelial cells may be determined by the pattern of TNFR expression, thereby predicting the outcome for TNF-specific therapy in different disease settings.

    Article  CAS  PubMed  Google Scholar 

  92. Wong, D., Wang, M., Cheng, Y. & FitzGerald, G. A. Cardiovascular hazard and non-steroidal anti-inflammatory drugs. Curr. Opin. Pharmacol. 5, 204–210 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Sessa, W. C. Can modulation of endothelial nitric oxide synthase explain the vasculoprotective actions of statins. Trends Mol. Med. 7, 189–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Sadeghi, M. M., Collinge, M., Pardi, R. & Bender, J. R. Simvastatin modulates cytokine-mediated endothelial cell adhesion molecule induction: involvement of an inhibitory G protein. J. Immunol. 165, 2712–2718 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Gilmore, T. D. & Herscovitch, N. Inhibitors of NF-κB signalling: 785 and counting. Oncogene 25, 6887–6899 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. O'Connor, P. Natalizumab and the role of α-4-integrin antagonism in the treatment of multiple sclerosis. Exp. Opin. Biol. Ther. 7, 123–136 (2007).

    Article  CAS  Google Scholar 

  97. Weitz-Schmidt, G., Welzenbach, K., Dawson, J. & Kallen, J. Improved lymphocyte function-associated antigen-1 (LFA-1) inhibition by statin derivatives: molecular basis determined by xray analysis and monitoring of LFA-1 conformational changes in vitro and ex vivo. J. Biol. Chem. 279, 46764–46771 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Ranjbaran, H. et al. Heparin displaces interferon-γ-inducible chemokines (IP-10, I-TAC, and Mig) sequestered in the vasculature and inhibits the transendothelial migration and arterial recruitment of T cells. Circulation 114, 1293–1300 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Furchgott, R. F. & Zawadzki, J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376 (1980). This reference describes fundamental experiments characterizing an endothelial-cell-derived relaxing factor that led to the discovery of NO.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan S. Pober.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Ectopic lymphoid structures

Organized lymphocytic aggregates that form in sites of chronic inflammation. Typically, T-cell- and B-cell-rich zones are segregated, and dendritic cells (DCs), germinal centres with follicular DC (FDC) networks and specialized endothelia are present. These structures are also known as the 'tertiary lymphoid organs' and their formation is termed 'lymphoid neogenesis'.

Lipid rafts

Cholesterol and glycosphingolipid-rich regions of the plasma membrane that provide ordered structure to the lipid bilayer.

Vesicular–vacuolar organelles

A collection of caveolae-like structures, typically located near the inter-endothelial junctions, that may participate in transcytosis of plasma proteins and fluid during certain types of inflammation or in tumour vasculature. VVOs may be distinguished from true caveolae because they are found in caveolin-1 gene deficient mice, which otherwise lack endothelial caveolae.

Angiogenesis

The process of the development of new blood vessels from existing blood vessels. It is frequently associated with tumour development and inflammation. In recent years, it has been appreciated that angiogenesis may be supplemented by the local recruitment of circulating endothelial progenitor cells. The formation of new blood vessels from progenitors is called vasculogenesis.

E3 ubiquitin ligase

An enzyme that is required to attach the molecular tag ubiquitin to proteins. Depending on the position and number of ubiquitin molecules that are attached, the ubiquitin tag can target proteins for degradation in the proteasomal complex, create a scaffold for assembly of signalling complexes, sort them to specific subcellular compartments or modify their biological activity.

Diapedesis

The last step in the leukocyte–endothelial cell adhesion cascade. This cascade includes tethering, triggering, tight adhesion and transmigration. Diapedesis is the migration of leukocytes across the endothelium, which generally occurs by squeezing through the junctions between adjacent endothelial cells, although in some settings, leukocytes have been observed to pass through transiently formed gaps in the cytoplasm of endothelial cells.

Epitope spreading

The de novo activation of autoreactive T cells by self-antigens that have been released after T- or B-cell-mediated bystander damage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pober, J., Sessa, W. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7, 803–815 (2007). https://doi.org/10.1038/nri2171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing