Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunology of placentation in eutherian mammals

Key Points

  • The anatomical relationship between the placenta and the uterus holds the key to our understanding of the 'immunological paradox' of pregnancy because this is where direct tissue contact occurs.

  • There is great diversity in placental structures in eutherian mammals. For immunologists, the most important feature is the extent to which the placental trophoblast cells invade the uterus. This ranges from no invasion at all (epitheliochorial placentation) to very extensive invasion (haemochorial placentation). The human placenta is the most invasive of all.

  • During pregnancy, in invasive forms of placentation, the uterine lining is transformed into decidual tissue. The most obvious feature of the decidua is the influx of a distinctive population of uterine natural killer (NK) cells.

  • Trophoblast cells express an array of MHC molecules some of which might be potential ligands for receptors expressed by the NK cells (CD94–NKG2A and KIRs (killer-cell immunoglobulin-like receptors)) and expressed by myelomonocytic cells (LILRB1 (leukocyte immunoglobulin-like receptor B1) and LILRB2) in the uterus. Interaction between HLA-C expressed by trophoblast cells and KIRs on maternal NK cells influences reproductive performance. Binding of HLA-G to LILRB molecules might induce tolerance in maternal T cells, thereby allowing cooperation between the innate and adaptive immune systems in mammalian reproduction.

  • It is proposed that the function of uterine NK cells is to alter the structure of the uterine spiral arteries that supply the feto-placental unit. This effect could be mediated directly by affecting the structure or function of the vessel wall (as in mice) or indirectly through the influence on trophoblast-cell infiltration. The arterial modification is necessary to allow sufficient blood flow to the placenta and fetus. Inadequate arterial transformation results in pregnancy disorders (such as fetal growth restriction or pre-eclampsia).

Abstract

The traditional way to study the immunology of pregnancy follows the classical transplantation model, which views the fetus as an allograft. A more recent approach, which is the subject of this Review, focuses on the unique, local uterine immune response to the implanting placenta. This approach requires knowledge of placental structure and its variations in different species, as this greatly affects the type of immune response that is generated by the mother. At the implantation site, cells from the mother and the fetus intermingle during pregnancy. Unravelling what happens here is crucial to our understanding of why some human pregnancies are successful whereas others are not.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Types of placentation.
Figure 2: Disorders of human pregnancy resulting from abnormal placentation.
Figure 3: Placentation in rhesus monkeys and mice.

Similar content being viewed by others

References

  1. Medawar, P. B. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp. Soc. Exp. Biol. 7, 320–338 (1953). The seminal paper that introduced the concept of the fetus as an allograft.

    Google Scholar 

  2. Trowsdale, J. & Betz, A. G. Mother's little helpers: mechanisms of maternal-fetal tolerance. Nature Immunol. 7, 241–246 (2006).

    Article  CAS  Google Scholar 

  3. Steven, D. H. (ed) Comparative Placentation (Academic Press, New York, 1975).

    Google Scholar 

  4. Mossman, H. W. Vertebrate fetal membranes. (Rutgers University Press, New Brunswick, 1987).

    Book  Google Scholar 

  5. Wooding, F. B. P. & Flint, A. P. F. in Marshall's Physiology of Reproduction Vol. 3 Ch. 4 (ed. Lamming, G. E.) 230–466 (Chapman and Hall, London, 1994).

    Google Scholar 

  6. Moffett-King, A. Natural killer cells and pregnancy. Nature Rev. Immunol. 2, 656–663 (2002).

    Article  CAS  Google Scholar 

  7. Johnson, M. Origins of pluriblast and trophoblast in the eutherian conceptus. Reprod. Fertil. Dev. 8, 699–709 (1996).

    CAS  Google Scholar 

  8. Moffett, A., Loke, Y. W. & McLaren, A. The Biology and Pathology of Trophoblast (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  9. Blackburn, D. G. Reconstructing the evolution of viviparity and placentation. J. Theor. Biol. 192, 183–190 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Romer, A. S. Major steps in vertebrate evolution. Science 158, 1629–1637 (1967).

    Article  CAS  PubMed  Google Scholar 

  11. Luckett, W. P. in Major Patterns of Vertebrate Evolution (eds Hecht, M. K., Goody, P. C. & Hecht, B. M.) 439–516 (Plenum Press, New York 1977).

    Book  Google Scholar 

  12. Hubrecht, A. A. W. Studies in mammalian embryology. 1. The placentation of Erinaceus europaeus, with remarks on the phylogeny of the placenta. Q. J. Microsc. Sci. 119, 283–404 (1889).

    Google Scholar 

  13. Amoroso, E. C. in Marshall's Physiology of Reproduction Vol. 2 Ch. 15 (ed.Parkes, A. S.) 127–311 (Longman, Green and Co., London, 1952).

    Google Scholar 

  14. Vogel, P. The current molecular phylogeny of Eutherian mammals challenges previous interpretations of placental evolution. Placenta 26, 591–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Murphy, W. J. et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294, 2348–2351 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Kriegs, J. O. et al. Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol. 4, e91 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mess, A. & Carter, A. M. Evolutionary transformations of fetal membrane characters in Eutheria with special reference to Afrotheria. J. Exp. Zoolog. B. Mol. Dev. Evol. 306, 140–163 (2006).

    Article  Google Scholar 

  18. Enders, A. C. & Carter, A. M. What can comparative studies of placental structure tell us? — A review. Placenta 25 (Suppl. A), S3–S9 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Wildman, D. E. et al. Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc. Natl Acad. Sci. USA 103, 3203–3208 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clarke, C. A. Prevention of rhesus iso-immunisation. Lancet 2, 1–7 (1968).

    Article  CAS  PubMed  Google Scholar 

  21. Nelson, J. L. Maternal-fetal immunology and autoimmune disease. Is some autoimmune disease auto-allo or allo-auto immune? Arthritis Rheum. 39, 191–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Pijnenborg, R., Vercruysse, L. & Hanssens, M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 17 February 2006 [epub ahead of print]. The definitive paper of the placental bed based on a life-time's study.

  23. Jauniaux, E., Poston, L. & Burton, G. J. Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution. Hum. Reprod. Update 8 May 2006 [epub ahead of print].

  24. King, A. et al. Uterine leukocytes and decidualization. Hum. Reprod. Update 6, 28–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Robertson, W. B. in Obstetrical and Gynaecological Pathology (ed. Fox, H.) 1149–1176 (Churchill Livingstone, 1987).

    Google Scholar 

  26. Kirby, D. R. S. in The Early Conceptus, Normal and Abnormal (ed. Park, W. W.) 68–73 (Proceedings of Symposium, Queen's College, Dundee, 1965).

    Google Scholar 

  27. Khong, T. Y. & Robertson, W. B. Placenta creta and placenta praevia creta. Placenta 8, 399–409 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. McLaren, A. in The Early Conceptus, Normal and Abnormal (ed. Park, W. W.) 27–33 (Proceedings of Symposium, Queen's College, Dundee, 1965).

    Google Scholar 

  29. Martin, R. D. Human reproduction: a comparative background for medical hypotheses. J. Reprod. Immunol. 59, 111–135 (2003).

    Article  PubMed  Google Scholar 

  30. Ramsey, E. M., Houston, M. L. & Harris, J. W. S. Interactions of the trophoblast and maternal tissues in three closely related primate species. Am. J. Obstet. Gynecol. 124, 647–652 (1976). This paper emphasizes that, even among closely related species of primates, the ways trophoblast cells interact with maternal tissues show many differences.

    Article  CAS  PubMed  Google Scholar 

  31. Rockwell, L. C., Vargas, E. & Moore, L. G. Human physiological adaptation to pregnancy: inter- and intraspecific perspectives. Am. J. Hum. Biol. 15, 330–341 (2003).

    Article  PubMed  Google Scholar 

  32. Chaline, J. Increased cranial capacity in hominoid evolution and preeclampsia. J. Reprod. Immunol. 59, 137–152 (2003).

    Article  PubMed  Google Scholar 

  33. Baker, J. M., Bamford, A. I. & Antczak, D. F. Modulation of allospecific CTL responses during pregnancy in equids: an immunological barrier to interspecies matings? J. Immunol. 162, 4496–4501 (1999).

    CAS  PubMed  Google Scholar 

  34. Davies, C. J., Eldridge, J. A., Fisher, P. J. & Schlafer, D. H. Evidence for expression of both classical and non-classical major histocompatibility complex class I genes in bovine trophoblast cells. Am. J. Reprod. Immunol. 55, 188–200 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Bainbridge, D. R., Sargent, I. L. & Ellis, S. A. Increased expression of major histocompatibility complex (MHC) class I transplantation antigens in bovine trophoblast cells before fusion with maternal cells. Reproduction 122, 907–913 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Stewart, I. J. Granulated metrial gland cells in 'minor' species. J. Reprod. Immunol. 40, 129–146 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Georgiades, P., Ferguson-Smith, A. C. & Burton, G. J. Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23, 3–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Ain, R., Canham, L. N. & Soares, M. J. Gestation stage-dependent intrauterine trophoblast cell invasion in the rat and mouse: novel endocrine phenotype and regulation. Dev. Biol. 260, 176–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Vercruysse, L., Caluwaerts, S., Luyten, C. & Pijnenborg, R. Interstitial trophoblast invasion in the decidua and mesometrial triangle during the last third of pregnancy in the rat. Placenta 27, 22–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Hemberger, M., Nozaki, T., Masutani, M. & Cross, J. C. Differential expression of angiogenic and vasodilatory factors by invasive trophoblast giant cells depending on depth of invasion. Dev. Dyn. 227, 185–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Croy, B. A., Chantakru, S., Esadeg, S., Ashkar, A. A. & Wei, Q. Decidual natural killer cells: key regulators of placental development (a review). J. Reprod. Immunol. 57, 151–168 (2002). Comprehensive review discussing uterine NK cells in mice.

    Article  CAS  PubMed  Google Scholar 

  42. Tafuri, A., Alferink, J., Moller, P., Hammerling, G. J. & Arnold, B. T cell awareness of paternal alloantigens during pregnancy. Science 270, 630–633 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Redline, R. W. & Lu, C. Y. Localization of fetal major histocompatibility complex antigens and maternal leukocytes in murine placenta. Implications for maternal-fetal immunological relationship. Lab. Invest. 61, 27–36 (1989).

    CAS  PubMed  Google Scholar 

  44. Zuckermann, F. A. & Head, J. R. Expression of MHC antigens on murine trophoblast and their modulation by interferon. J. Immunol. 137, 846–853 (1986).

    CAS  PubMed  Google Scholar 

  45. Erlebacher, A., Lukens, A. K. & Glimcher, L. H. Intrinsic susceptibility of mouse trophoblasts to natural killer cell-mediated attack in vivo. Proc. Natl Acad. Sci. USA 99, 16940–16945 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Munn, D. H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Erlebacher, A., Zhang, D., Parlow, A. F. & Glimcher, L. H. Ovarian insufficiency and early pregnancy loss induced by activation of the innate immune system. J. Clin. Invest. 114, 39–48 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aluvihare, V. R. et al. Regulatory T cells mediate maternal tolerance to the fetus. Nature Immunol. 5, 266–271 (2004). Paper describing a potential role for regulatory T cells in allogeneic murine pregnancies.

    Article  CAS  Google Scholar 

  49. Sollwedel, A. et al. Protection from abortion by heme oxygenase-1 up-regulation is associated with increased levels of Bag-1 and neuropilin-1 at the fetal-maternal interface. J. Immunol. 175, 4875–4885 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Zhu, X. Y. et al. Blockade of CD86 signaling facilitates a Th2 bias at the maternal-fetal interface and expands peripheral CD4+CD25+ regulatory T cells to rescue abortion-prone fetuses. Biol. Reprod. 72, 338–345 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Zenclussen, A. C. et al. Regulatory T cells induce a privileged tolerant microenvironment at the fetal-maternal interface. Eur. J. Immunol. 36, 82–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, C. et al. A critical role for murine complement regulator crry in fetomaternal tolerance. Science 287, 498–501 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Hunt, J. S., Vassmer, D., Ferguson, T. A. & Miller, L. Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J. Immunol. 158, 4122–4128 (1997).

    CAS  PubMed  Google Scholar 

  54. Guleria, I. et al. A critical role for the programmed death ligand 1 in fetomaternal tolerance. J. Exp. Med. 202, 231–237 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krishnan, L., Guilbert, L. J., Wegmann, T. G., Belosevic, M. & Mosmann, T. R. T helper 1 response against Leishmania major in pregnant C57BL/6 mice increases implantation failure and fetal resorptions. Correlation with increased IFN-γ and TNF and reduced IL-10 production by placental cells. J. Immunol. 156, 653–662 (1996).

    CAS  PubMed  Google Scholar 

  56. Fallon, P. G. et al. IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity 17, 7–17 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Baban, B. et al. Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J. Reprod. Immunol. 61, 67–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Somerset, D. A., Zheng, Y., Kilby, M. D., Sansom, D. M. & Drayson, M. T. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+CD4+ regulatory T-cell subset. Immunology 112, 38–43 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sasaki, Y. et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod. 10, 347–353 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Grabowska, A. Placental antigenicity and maternal immunoregulation in human and murine pregnancy. Ph.D. Thesis, Univ. Cambridge (1989).

  61. Ostensen, M. Sex hormones and pregnancy in rheumatoid arthritis and systemic lupus erythematosus. Ann. NY Acad. Sci. 876, 131–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Buyon, J. P. The effects of pregnancy on autoimmune diseases. J. Leukoc. Biol. 63, 281–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Gardner, L. & Moffett, A. Dendritic cells in the human decidua. Biol. Reprod. 69, 1438–1446 (2003).

    Article  CAS  Google Scholar 

  64. Shao, L., Jacobs, A. R., Johnson, V. V. & Mayer, L. Activation of CD8+ regulatory T cells by human placental trophoblasts. J. Immunol. 174, 7539–7547 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Shiroishi, M. et al. Efficient leukocyte Ig-like receptor signaling and crystal structure of disulfide-linked HLA-G dimer. J. Biol. Chem. 281, 10439–10447 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Chang, C. C. et al. Tolerization of dendritic cells by TS cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nature Immunol. 3, 237–243 (2002).

    Article  CAS  Google Scholar 

  67. Velten, F. W., Duperrier, K., Bohlender, J., Metharom, P. & Goerdt, S. A gene signature of inhibitory MHC receptors identifies a BDCA3+ subset of IL-10-induced dendritic cells with reduced allostimulatory capacity in vitro. Eur. J. Immunol. 34, 2800–2811 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Ristich, V., Liang, S., Zhang, W., Wu, J. & Horuzsko, A. Tolerization of dendritic cells by HLA-G. Eur. J. Immunol. 35, 1133–1142 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Sherman, M. E., Mazur, M. T. & Kurman, R. J. in Blaustain's Pathology of the Female Genital Tract (ed. Kurman, R. J.) 428 (Springer, New York, 2002).

    Google Scholar 

  70. Ryan, A. F., Grendell, R. L., Geraghty, D. E. & Golos, T. G. A soluble isoform of the rhesus monkey nonclassical MHC class I molecule Mamu-AG is expressed in the placenta and the testis. J. Immunol. 169, 673–683 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Stern, P. L. et al. Class I-like MHC molecules expressed by baboon placental syncytiotrophoblast. J. Immunol. 138, 1088–1091 (1987).

    CAS  PubMed  Google Scholar 

  72. King, A., et al. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur. J. Immunol. 30, 1623–1631 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Rajagopalan, S. et al. Activation of NK cells by an endocytosed receptor for soluble HLA-G. PLoS. Biol. 4, e9 (2006). A careful study describing stimulation of NK cells by soluble HLA-G that is endocytosed by KIR2DL4.

    Article  CAS  PubMed  Google Scholar 

  74. Redman, C. W. & Sargent, I. L. Preeclampsia and the systemic inflammatory response. Semin. Nephrol. 24, 565–570 (2004).

    Article  PubMed  Google Scholar 

  75. Parham, P. MHC class I molecules and KIRs in human history, health and survival. Nature Rev. Immunol. 5, 201–214 (2005). A comprehensive reference covering all aspects of KIRs.

    Article  CAS  Google Scholar 

  76. Hiby, S. E. et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 200, 957–965 (2004). This paper provides genetic evidence for a role for NK cells in regulating trophoblast-cell invasion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Verma, S., King, A. & Loke, Y. W. Expression of killer-cell inhibitory receptors (KIR) on human uterine NK cells. Eur. J. Immunol. 27, 979–983 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Martin, M. P. & Carrington, M. Immunogenetics of viral infections. Curr. Opin. Immunol. 17, 510–516 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Abi-Rached, L. & Parham, P. Natural selection drives recurrent formation of activating killer cell immunoglobulin-like receptor and Ly49 from inhibitory homologues. J. Exp. Med. 201, 1319–1332 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. LaBonte, M. L., Hershberger, K. L., Korber, B. & Letvin, N. L. The KIR and CD94/NKG2 families of molecules in the rhesus monkey. Immunol. Rev. 183, 25–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Guethlein, L. A., Flodin, L. R., Adams, E. J. & Parham, P. NK cell receptors of the orangutan (Pongo pygmaeus): a pivotal species for tracking the coevolution of killer cell Ig-like receptors with MHC-C. J. Immunol. 169, 220–229 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Rajalingam, R., Parham, P. & Abi-Rached, L. Domain shuffling has been the main mechanism forming new hominoid killer cell Ig-like receptors. J. Immunol. 172, 356–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Khakoo, S. I. et al. Rapid evolution of NK cell receptor systems demonstrated by comparison of chimpanzees and humans. Immunity 12, 687–698 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Emes, R. D., Goodstadt, L., Winter, E. E. & Ponting, C. P. Comparison of the genomes of human and mouse lays the foundation of genome zoology. Hum. Mol. Genet. 12, 701–709 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Selwood, L. & Johnson, M. H. Trophoblast and hypoblast in the monotreme, marsupial and eutherian mammal: evolution and origins. BioEssays 28, 128–145 (2006).

    Article  PubMed  Google Scholar 

  86. Koopman, L. A. et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J. Exp. Med. 198, 1201–1212 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bulmer, J. N. & Lash, G. E. Human uterine natural killer cells: a reappraisal. Mol. Immunol. 42, 511–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Li, X. F. et al. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J. Clin. Endocrinol. Metab. 86, 1823–1834 (2001).

    CAS  PubMed  Google Scholar 

  89. Moffett, A., Regan, L. & Braude, P. Natural killer cells, miscarriage, and infertility. BMJ 329, 1283–1285 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pijnenborg, R., Robertson, W. B. & Brosens, I. The arterial migration of trophoblast in the uterus of the golden hamster, Mesocricetus auratus. J. Reprod. Fertil. 40, 269–280 (1974).

    Article  CAS  PubMed  Google Scholar 

  91. Nanaev, A. et al. Physiological dilation of uteroplacental arteries in the guinea pig depends on nitric oxide synthase activity of extravillous trophoblast. Cell Tissue Res. 282, 407–421 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Pijnenborg, R., Robertson, W. B., Brosens, I. & Dixon, G. Trophoblast invasion and the establishment of haemochorial placentation in man and laboratory animals. Placenta 2, 71–91 (1981).

    Article  CAS  PubMed  Google Scholar 

  93. Finn, C. Menstruation: a nonadaptive consequence of uterine evolution. Q. Rev. Biol. 73, 163–173 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Blankenship, T. N. & Enders, A. C. Modification of uterine vasculature during pregnancy in macaques. Microsc. Res. Tech. 60, 390–401 (2003).

    Article  PubMed  Google Scholar 

  95. Pijnenborg, R., D'Hooghe, T., Vercruysse, L. & Bambra, C. Evaluation of trophoblast invasion in placental bed biopsies of the baboon, with immunohistochemical localisation of cytokeratin, fibronectin and laminin. J. Med. Primatol. 25, 272–281 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank D. Antczak, G. Burton, S. Ellis, S. Murphy, P. Parham, R. Pijneneborg, A. Sharkey and P. Wooding for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley Moffett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Trophoblast cells

Trophoblast cells are the earliest extra-embryonic cells to differentiate from the cells of the mammalian embryo. They surround the conceptus throughout gestation and are in direct contact with maternal tissues.

Blastocyst

After fertilization, the potential embryo undergoes mitotic division and, at the 128-cell stage in humans, two distinct cell lineages are present. Trophoblast cells are derived from the trophectoderm that surrounds the blastocyst and the inner cell mass gives rise to the embryo.

Eutherian placenta

Eutherian mammals include all mammalian species except marsupials and egg-laying monotremes. The eutherian placenta is well developed compared with the marsupial placenta and has a great diversity of forms.

Amniote egg

Eggs of amniote vertebrates provide an interface between the embryo and its immediate environment, therefore allowing increased respiratory and excretory capacity as well as nutrient provision.

Yolk sac

The first of the four extra-embryonic membranes of amniote eggs to form during embryogenesis. It surrounds the mass of yolk in reptile and bird eggs and is connected to the midgut by the yolk stalk. The yolk sac is also formed in mammals, despite the absence of yolk.

Amnion

The innermost membranous sac of amniote eggs. It is filled with a serous fluid and encloses the embryo of an amniote (reptile, bird or mammal).

Chorion

In birds and reptiles, the chorion adheres to the shell and is highly vascularized to function in gas exchange. In mammals, it forms the fetal contribution to the placenta, made by an outer layer of trophoblast cells and inner layer of extra-embryonic mesoderm, which contains blood vessels that allow exchange of materials with the maternal circulation.

Allantois

The extra-embryonic membrane that emerges as a sac from the posterior part of hindgut of the embryo. It fuses with the chorion to form the chorio-allantoic placenta. The connection it makes between the embryo and the placenta becomes the umbilical cord.

Retroposed elements

Retroposons randomly insert into the genomes with little likelihood of the same element integrating into the orthologous position in different species. Analysis of the patterns of presence or absence of retroposons is a reliable method for studying the evolutionary history of organisms.

Convergent evolution

The process whereby organisms that are not closely related independently acquire similar characteristics while evolving in separate and sometimes varying ecosystems.

Haemolytic disease of the newborn

If there is rhesus-blood-group incompatibility between the mother and her fetus, the mother makes an antibody response against fetal red blood cells that access the mother's circulation at delivery. These IgG antibodies cross the placenta during a subsequent pregnancy, which results in the destruction of fetal red blood cells, leading to haemolytic disease of the new born.

Maternal and fetal microchimerism

The presence of fetal cells in the mother or maternal cells in the fetus. Fetal or maternal cells generally cross the placenta at delivery and might persist for many years.

Systemic sclerosis

A chronic autoimmune disease that causes a hardening of the skin. The skin thickens because of increased deposits of collagen. Compared with the localized form of the disease (scleroderma), systemic sclerosis causes more widespread skin changes and can be associated with damage to the lungs, heart and kidneys.

Endometriotic foci

Foci of endometrial tissue outside the endometrium or myometrium (muscle wall) of the uterus. They are usually found in the peritoneum.

Tubal pregnancy

An ectopic pregnancy occurs when the blastocyst implants at a site outside the uterus. Most ectopic pregnancies occur in the fallopian tube so the terms ectopic pregnancy and tubal pregnancy are nearly synonymous.

Placenta creta

A condition when placental trophoblast cells invade deeply into the muscle coat (myometrium) of the uterus, usually because of the absence of decidua. This can lead to uterine rupture, torrential haemorrhage and failure of the placenta to separate after delivery.

Procrustean bed

In Greek mythology, Procrustes (whose name means he who stretches) was a host who adjusted his guests to their bed. If they were longer than the bed, he cut off the redundant part; if shorter, he stretched them till they fitted it. Any attempt to reduce men to one standard, one way of thinking or one way of acting, is called placing them on a Procrustean bed.

Pre-eclampsia

Eclampsia (in Greek meaning bolt from the blue) describes grand mal seizures (epileptic fits) occurring towards the end of pregnancy. Pre-eclampsia describes the symptoms that precede eclampsia, which include oedema, proteinuria and hypertension.

Inferior vena cava

The large vein that carries de-oxygenated blood from the lower half of the body to the heart.

Endometrial cups

A focal collection of trophoblast cells that penetrate the uterus of horses. These cells are responsible for secretion of equine chorionic gonadotrophin.

Ectoplacental cone

A core of rapidly dividing trophoblast cells with an outer layer of giant cells that is present in the developing mouse conceptus at 7.5 days post-coitum.

Syncytiotrophoblast

The outermost trophoblast-cell layer covering the chorionic villi that is formed by fusion of the underlying layer of mononuclear trophoblast cells to become a multinucleated syncytium, which forms a barrier between the fetus and the mother.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moffett, A., Loke, C. Immunology of placentation in eutherian mammals. Nat Rev Immunol 6, 584–594 (2006). https://doi.org/10.1038/nri1897

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing