Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunological mechanisms of allergen-specific immunotherapy

Key Points

  • Allergen-specific immunotherapy (SIT) for allergic diseases is the oldest form of antigen-specific disease-modifying therapy.

  • Administration of allergen by injection or mucosal (sublingual) application leads to amelioration of clinical symptoms and has lasting effects that exceed the period of treatment.

  • Immunological changes that are associated with SIT include the induction of allergen-specific antibodies (mainly IgG but also IgA) that block the interaction of allergen with IgE, preventing the activation of mast cells and basophils and reducing the IgE-dependent uptake of allergen by antigen-presenting cells (APCs).

  • SIT induces anergy in T cells, induces functional allergen-specific regulatory T-cell populations, and is associated with increased production of interleukin-10 (as well as transforming growth factor-β in some studies) by T cells and APCs.

  • Novel approaches towards SIT include the use of adjuvants to antagonize T-helper-2-cell responses and the use of modified allergen preparations, including recombinant allergens, genetically engineered hypoallergenic allergens, peptides corresponding to T-cell or B-cell epitopes, and allergen fusionproteins.

  • Improved understanding of the mechanisms that are involved in successful SIT will inform the development of novel treatments for other chronic diseases, such as autoimmune and transplantation-related conditions.

Abstract

Allergen-specific immunotherapy has been carried out for almost a century and remains one of the few antigen-specific treatments for inflammatory diseases. The mechanisms by which allergen-specific immunotherapy exerts its effects include the modulation of both T-cell and B-cell responses to allergen. There is a strong rationale for improving the efficacy of allergen-specific immunotherapy by reducing the incidence and severity of adverse reactions mediated by IgE. Approaches to address this problem include the use of modified allergens, novel adjuvants and alternative routes of administration. This article reviews the development of allergen-specific immunotherapy, our current understanding of its mechanisms of action and its future prospects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of allergic reactions.
Figure 2: Effects of allergen-specific immunotherapy on clinical and experimental immune parameters.
Figure 3: Proposed role of regulatory T cells and cytokines in allergen-specific immunotherapy.

Similar content being viewed by others

References

  1. von Pirquet, C. Allergie. Munch. Med. Wochenschr. 53, 1457 (1906) (in German).

    Google Scholar 

  2. Floistrup, H. et al. Allergic disease and sensitization in Steiner school children. J. Allergy Clin. Immunol. 117, 59–66 (2006).

    Article  PubMed  Google Scholar 

  3. Valenta, R. et al. Immunotherapy of allergic disease. Adv. Immunol. 82, 105–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Prausnitz, C. & Küstner, J. Studien uber die Ueberempfindlichkeit. Zentralbl. Bakteriol. [Orig.] 86, 160–169 (1921) (in German).

    CAS  Google Scholar 

  5. Ishizaka, K., Ishizaka, T. & Hornbrook, M. M. Physico-chemical properties of human reaginic antibody. IV. Presence of a unique immunoglobulin as a carrier of reaginic activity. J. Immunol. 97, 75–85 (1966).

    CAS  PubMed  Google Scholar 

  6. Johansson, S. G. O. & Bennich, H. Immunoglobulin studies of atypical (myeloma) immunoglobulin. Immunology 13, 381–394 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mudde, G. C., Hansel, T. T., von Reijsen, F. C., Osterhoff, B. F. & Bruijnzeel-Koomen, C. A. IgE: an immunoglobulin specialized in antigen capture? Immunol. Today 11, 440–443 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Fahy, J. V. et al. Effect of aerosolized anti-IgE (E25) on airway responses to inhaled allergen in asthmatic subjects. Am. J. Respir. Crit. Care Med. 160, 1023–1027 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Ong, Y. E. et al. Anti-IgE (omalizumab) inhibits late-phase reactions and inflammatory cells after repeat skin allergen challenge. J. Allergy Clin. Immunol. 116, 558–564 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Kay, A. B. Allergy and allergic diseases. First of two parts. N. Engl. J. Med. 344, 30–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Kay, A. B. Allergy and allergic diseases. Second of two parts. N. Engl. J. Med. 344, 109–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Akdis, C. A., Blaser, K. & Akdis, M. Apoptosis in tissue inflammation and allergic disease. Curr. Opin. Immunol. 16, 717–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Noon, L. Prophylactic inoculation against hay fever. Lancet i, 1572–1573 (1911).

    Article  Google Scholar 

  14. Durham, S. R. et al. Long-term clinical efficacy of grass-pollen immunotherapy. N. Engl. J. Med. 341, 468–475 (1999). Shows the long-term clinical efficacy of SIT, even following withdrawal of treatment.

    Article  CAS  PubMed  Google Scholar 

  15. Golden, D. B., Kagey-Sobotka, A., Norman, P. S., Hamilton, R. G. & Lichtenstein, L. M. Outcomes of allergy to insect stings in children, with and without venom immunotherapy. N. Engl. J. Med. 351, 668–674 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Pajno, G. B., Barberio, G., De Luca, F., Morabito, L. & Parmiani, S. Prevention of new sensitizations in asthmatic children monosensitized to house dust mite by specific immunotherapy. A six-year follow-up study. Clin. Exp. Allergy 31, 1392–1397 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Moller, C. et al. Pollen immunotherapy reduces the development of asthma in children with seasonal rhinoconjunctivitis (the PAT-study). J. Allergy Clin. Immunol. 109, 251–256 (2002). Shows that SIT prevents the progression of allergic rhinitis to asthma.

    Article  PubMed  Google Scholar 

  18. Walker, S. M., Pajno, G. B., Lima, M. T., Wilson, D. R. & Durham, S. R. Grass pollen immunotherapy for seasonal rhinitis and asthma: a randomized, controlled trial. J. Allergy Clin. Immunol. 107, 87–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Lichtenstein, L. M., Ishizaka, K., Norman, P. S., Sobotka, A. K. & Hill, B. M. IgE antibody measurements in ragweed hay fever. Relationship to clinical severity and the results of immunotherapy. J. Clin. Invest. 52, 472–482 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Warner, J. O., Price, J. F., Soothill, J. F. & Hey, E. N. Controlled trial of hyposensitisation to Dermatophagoides pteronyssinus in children with asthma. Lancet 2, 912–915 (1978).

    Article  CAS  PubMed  Google Scholar 

  21. Varney, V. A. et al. Influence of grass pollen immunotherapy on cellular infiltration and cytokine mRNA expression during allergen-induced late-phase cutaneous responses. J. Clin. Invest. 92, 644–651 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Durham, S. R. et al. Grass pollen immunotherapy inhibits allergen-induced infiltration of CD4+ T lymphocytes and eosinophils in the nasal mucosa and increases the number of cells expressing messenger RNA for interferon-γ. J. Allergy Clin. Immunol. 97, 1356–1365 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Freeman, J. & Noon, L. Further observations on the treatment of hayfever by hypodermic inoculations of pollen vaccine. Lancet ii, 814–817 (1911).

    Article  Google Scholar 

  24. Zoss, A. R., Koch, C. A. & Hirose, R. S. Alum–ragweed precipitate: preparation and clinical investigation; preliminary report. J. Allergy 8, 329–335 (1937).

    Article  Google Scholar 

  25. Attallah, N. A. & Sehon, A. H. Isolation of haptenic material from ragweed pollen. Immunochemistry 6, 609–619 (1969).

    Article  CAS  PubMed  Google Scholar 

  26. Malley, A. & Perlman, F. Induction of both reaginic and blocking antibodies with a low molecular weight fraction of timothy pollen extract. J. Allergy 43, 59–64 (1969).

    Article  CAS  PubMed  Google Scholar 

  27. Marsh, D. G., Lichtenstein, L. M. & Campbell, D. H. Studies on 'allergoids' prepared from naturally occurring allergens. I. Assay of allergenicity and antigenicity of formalinized rye group I component. Immunology 18, 705–722 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chua, K. Y. et al. Sequence analysis of cDNA coding for a major house dust mite allergen, Der p 1. Homology with cysteine proteases. J. Exp. Med. 167, 175–182 (1988). Describes the cloning of the first allergen gene.

    Article  CAS  PubMed  Google Scholar 

  29. Larché, M. & Wraith, D. C. Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nature Med. 11, S69–S76 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Niederberger, V. et al. Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc. Natl Acad. Sci. USA 101 (Suppl. 2), 14677–14682 (2004). Describes the first clinical trial of genetically engineered recombinant allergens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jutel, M. et al. Allergen-specific immunotherapy with recombinant grass pollen allergens. J. Allergy Clin. Immunol. 116, 608–613 (2005). Describes the first clinical trial of 'native' recombinant allergens.

    Article  CAS  PubMed  Google Scholar 

  32. Tulic, M. K. et al. Amb a 1–immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J. Allergy Clin. Immunol. 113, 235–241 (2004). Describes the use of DNA–allergen conjugates for the treatment of allergic rhinitis.

    Article  CAS  PubMed  Google Scholar 

  33. Wilson, D. R. et al. Grass pollen immunotherapy inhibits seasonal increases in basophils and eosinophils in the nasal epithelium. Clin. Exp. Allergy 31, 1705–1713 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Rak, S., Heinrich, C., Jacobsen, L., Scheynius, A. & Venge, P. A double-blinded, comparative study of the effects of short preseason specific immunotherapy and topical steroids in patients with allergic rhinoconjunctivitis and asthma. J. Allergy Clin. Immunol. 108, 921–928 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Durham, S. R. et al. Grass pollen immunotherapy decreases the number of mast cells in the skin. Clin. Exp. Allergy 29, 1490–1496 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Shim, J. Y., Kim, B. S., Cho, S. H., Min, K. U. & Hong, S. J. Allergen-specific conventional immunotherapy decreases immunoglobulin E-mediated basophil histamine releasability. Clin. Exp. Allergy 33, 52–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Vermaelen, K. Y., Carro-Muino, I., Lambrecht, B. N. & Pauwels, R. A. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J. Exp. Med. 193, 51–60 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lambrecht, B. N., Pauwels, R. A. & Fazekas De St Groth, B. Induction of rapid T cell activation, division, and recirculation by intratracheal injection of dendritic cells in a TCR transgenic model. J. Immunol. 164, 2937–2946 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A. H. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Akbari, O., DeKruyff, R. H. & Umetsu, D. T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nature Immunol. 2, 725–731 (2001).

    Article  CAS  Google Scholar 

  41. de Heer, H. J. et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med. 200, 89–98 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Akdis, C. A., Blesken, T., Akdis, M., Wuthrich, B. & Blaser, K. Role of interleukin 10 in specific immunotherapy. J. Clin. Invest. 102, 98–106 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nouri-Aria, K. T. et al. Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. J. Immunol. 172, 3252–3259 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Ebner, C. et al. Nonallergic individuals recognize the same T cell epitopes of Bet v 1, the major birch pollen allergen, as atopic patients. J. Immunol. 154, 1932–1940 (1995).

    CAS  PubMed  Google Scholar 

  45. Mark, P. G., Segal, D. B., Dallaire, M. L. & Garman, R. D. Human T and B cell immune responses to Fel d 1 in cat-allergic and non-cat-allergic subjects. Clin. Exp. Allergy 26, 1316–1328 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Carballido, J. M., Carballido-Perrig, N., Terres, G., Heusser, C. H. & Blaser, K. Bee venom phospholipase A2-specific T cell clones from human allergic and non-allergic individuals: cytokine patterns change in response to the antigen concentration. Eur. J. Immunol. 22, 1357–1363 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Akdis, M. et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J. Exp. Med. 199, 1567–1575 (2004). First report of the presence of allergen-specific regulatory T cells in healthy individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ling, E. M. et al. Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 363, 608–615 (2004). First report of deficit in allergen-specific T Reg cells in individuals who suffer from allergies.

    Article  CAS  PubMed  Google Scholar 

  49. Jutel, M. et al. IL-10 and TGF-β cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur. J. Immunol. 33, 1205–1214 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Verhoef, A., Alexander, C., Kay, A. B. & Larché, M. T cell epitope immunotherapy induces a CD4+ T cell population with regulatory activity. PLoS Med. 2, e78 (2005). First evidence that SIT with peptides induces antigen-specific regulatory T-cell responses.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Secrist, H., Chelen, C. J., Wen, Y., Marshall, J. D. & Umetsu, D. T. Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergic individuals. J. Exp. Med. 178, 2123–2130 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Ebner, C. et al. Immunological changes during specific immunotherapy of grass pollen allergy: reduced lymphoproliferative responses to allergen and shift from TH2 to TH1 in T-cell clones specific for Phl p 1, a major grass pollen allergen. Clin. Exp. Allergy 27, 1007–1015 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Akdis, C. A. et al. Epitope-specific T cell tolerance to phospholipase A2 in bee venom immunotherapy and recovery by IL-2 and IL-15 in vitro. J. Clin. Invest. 98, 1676–1683 (1996). First article to show direct T-cell tolerance to T-cell epitopes derived from a major allergen and the recovery of the T-cell response using IL-2 and IL-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bellinghausen, I. et al. Insect venom immunotherapy induces interleukin-10 production and a TH2-to-TH1 shift, and changes surface marker expression in venom-allergic subjects. Eur. J. Immunol. 27, 1131–1139 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Nasser, S. M., Ying, S., Meng, Q., Kay, A. B. & Ewan, P. W. Interleukin-10 levels increase in cutaneous biopsies of patients undergoing wasp venom immunotherapy. Eur. J. Immunol. 31, 3704–3713 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Francis, J. N., Till, S. J. & Durham, S. R. Induction of IL-10+CD4+CD25+ T cells by grass pollen immunotherapy. J. Allergy Clin. Immunol. 111, 1255–1261 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Akdis, C. A. & Blaser, K. IL-10-induced anergy in peripheral T cell and reactivation by microenvironmental cytokines: two key steps in specific immunotherapy. FASEB J. 13, 603–609 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Tarzi, M. et al. Induction of interleukin-10 and suppressor of cytokine signalling-3 gene expression following peptide immunotherapy. Clin. Exp. Allergy 36, 465–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Royer, B. et al. Inhibition of IgE-induced activation of human mast cells by IL-10. Clin. Exp. Allergy 31, 694–704 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Schandene, L. et al. B7/CD28-dependent IL-5 production by human resting T cells is inhibited by IL-10. J. Immunol. 152, 4368–4374 (1994).

    CAS  PubMed  Google Scholar 

  61. Ohkawara, Y. et al. CD40 expression by human peripheral blood eosinophils. J. Clin. Invest. 97, 1761–1766 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Drachenberg, K. J., Wheeler, A. W., Stuebner, P. & Horak, F. A well-tolerated grass pollen-specific allergy vaccine containing a novel adjuvant, monophosphoryl lipid A, reduces allergic symptoms after only four preseasonal injections. Allergy 56, 498–505 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Mothes, N. et al. Allergen-specific immunotherapy with a monophosphoryl lipid A-adjuvanted vaccine: reduced seasonally boosted immunoglobulin E production and inhibition of basophil histamine release by therapy-induced blocking antibodies. Clin. Exp. Allergy 33, 1198–1208 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Muller, U. R. Bee venom allergy in beekeepers and their family members. Curr. Opin. Allergy Clin. Immunol. 5, 343–347 (2005).

    Article  PubMed  Google Scholar 

  65. Aalberse, R. C., van der Gaag, R. & van Leeuwen, J. Serologic aspects of IgG4 antibodies. I. Prolonged immunization results in an IgG4-restricted response. J. Immunol. 130, 722–726 (1983).

    CAS  PubMed  Google Scholar 

  66. Platts-Mills, T., Vaughan, J., Squillace, S., Woodfolk, J. & Sporik, R. Sensitisation, asthma, and a modified TH2 response in children exposed to cat allergen: a population-based cross-sectional study. Lancet 357, 752–756 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Cooke, R. A., Bernhard, J. H., Hebald, S. & Stull, A. Serological evidence of immunity with co-existing sensitisation in a hay fever type of human allergy. J. Exp. Med. 62, 733–750 (1935).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Loveless, M. H. Immunological studies of pollenosis. I. The presence of two antibodies related to the same pollen antigen in the serum of treated hay fever patients. J. Immunol. 38, 25–50 (1940).

    CAS  Google Scholar 

  69. Lichtenstein, L. M., Holtzman, N. A. & Burnett, L. S. A quantitative in vitro study of the chromatographic distribution and immunoglobulin characteristics of human blocking antibody. J. Immunol. 101, 317–324 (1968).

    CAS  PubMed  Google Scholar 

  70. Golden, D. B., Meyers, D. A., Kagey-Sobotka, A., Valentine, M. D. & Lichtenstein, L. M. Clinical relevance of the venom-specific immunoglobulin G antibody level during immunotherapy. J. Allergy Clin. Immunol. 69, 489–493 (1982).

    Article  CAS  PubMed  Google Scholar 

  71. Muller, U., Helbling, A. & Bischof, M. Predictive value of venom-specific IgE, IgG and IgG subclass antibodies in patients on immunotherapy with honey bee venom. Allergy 44, 412–418 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Djurup, R. & Malling, H. J. High IgG4 antibody level is associated with failure of immunotherapy with inhalant allergens. Clin. Allergy 17, 459–468 (1987).

    Article  CAS  PubMed  Google Scholar 

  73. Visco, V. et al. Human IgG monoclonal antibodies that modulate the binding of specific IgE to birch pollen Bet v 1. J. Immunol. 157, 956–962 (1996).

    CAS  PubMed  Google Scholar 

  74. Denepoux, S. et al. Molecular characterization of human IgG monoclonal antibodies specific for the major birch pollen allergen Bet v 1. Anti-allergen IgG can enhance the anaphylactic reaction. FEBS Lett. 465, 39–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Flicker, S. et al. Conversion of grass pollen allergen-specific human IgE into a protective IgG1 antibody. Eur. J. Immunol. 32, 2156–2162 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Reisinger, J. et al. Allergen-specific nasal IgG antibodies induced by vaccination with genetically modified allergens are associated with reduced nasal allergen sensitivity. J. Allergy Clin. Immunol. 116, 347–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Gleich, G. J., Zimmermann, E. M., Henderson, L. L. & Yunginger, J. W. Effect of immunotherapy on immunoglobulin E and immunoglobulin G antibodies to ragweed antigens: a six-year prospective study. J. Allergy Clin. Immunol. 70, 261–271 (1982).

    Article  CAS  PubMed  Google Scholar 

  78. van Neerven, R. J. et al. Blocking antibodies induced by specific allergy vaccination prevent the activation of CD4+ T cells by inhibiting serum-IgE-facilitated allergen presentation. J. Immunol. 163, 2944–2952 (1999). First study to show that SIT-induced allergen-specific IgG reduces T-cell activation.

    CAS  PubMed  Google Scholar 

  79. Achatz, G., Nitschke, L. & Lamers, M. C. Effect of transmembrane and cytoplasmic domains of IgE on the IgE response. Science 276, 409–411 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Aalberse, R. C. & Schuurman, J. IgG4 breaking the rules. Immunology 105, 9–19 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jeannin, P., Lecoanet, S., Delneste, Y., Gauchat, J. F. & Bonnefoy, J. Y. IgE versus IgG4 production can be differentially regulated by IL-10. J. Immunol. 160, 3555–3561 (1998).

    CAS  PubMed  Google Scholar 

  82. Briere, F., Servet-Delprat, C., Bridon, J. M., Saint-Remy, J. M. & Banchereau, J. Human interleukin 10 induces naive surface immunoglobulin D+ (sIgD+) B cells to secrete IgG1 and IgG3. J. Exp. Med. 179, 757–762 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Kawano, Y., Noma, T. & Yata, J. Regulation of human IgG subclass production by cytokines. IFN-γ and IL-6 act antagonistically in the induction of human IgG1 but additively in the induction of IgG2. J. Immunol. 153, 4948–4958 (1994).

    CAS  PubMed  Google Scholar 

  84. Valenta, R. The future of antigen-specific immunotherapy of allergy. Nature. Rev. Immunol. 2, 446–453 (2002).

    Article  CAS  Google Scholar 

  85. Hiller, R. et al. Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB J. 16, 414–416 (2002). First pape to describe the use of allergen-microarray analysis for diagnosis of allergy.

    Article  CAS  PubMed  Google Scholar 

  86. Schmid-Grendelmeier, P. & Crameri, R. Recombinant allergens for skin testing. Int. Arch. Allergy Immunol. 125, 96–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Linhart, B. & Valenta, R. Molecular design of allergy vaccines. Curr. Opin. Immunol. 17, 646–655 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Vrtala, S. et al. T cell epitope-containing hypoallergenic recombinant fragments of the major birch pollen allergen, Bet v 1, induce blocking antibodies. J. Immunol. 165, 6653–6659 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Bannon, G. A., Shin, D., Maleki, S., Kopper, R. & Burks, A. W. Tertiary structure and biophysical properties of a major peanut allergen, implications for the production of a hypoallergenic protein. Int. Arch. Allergy Immunol. 118, 315–316 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Buhot, C. et al. Alteration of the tertiary structure of the major bee venom allergen Api m 1 by multiple mutations is concomitant with low IgE reactivity. Protein Sci. 13, 2970–2978 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Okada, T., Swoboda, I., Bhalla, P. L., Toriyama, K. & Singh, M. B. Engineering of hypoallergenic mutants of the Brassica pollen allergen, Bra r 1, for immunotherapy. FEBS Lett. 434, 255–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Swoboda, I. et al. Mutants of the major ryegrass pollen allergen, Lol p 5, with reduced IgE-binding capacity: candidates for grass pollen-specific immunotherapy. Eur. J. Immunol. 32, 270–280 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Arquint, O. et al. Reduced in vivo allergenicity of Bet v 1d isoform, a natural component of birch pollen. J. Allergy Clin. Immunol. 104, 1239–1243 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Stanley, J. S. et al. Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch. Biochem. Biophys. 342, 244–253 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Drew, A. C. et al. Hypoallergenic variants of the major latex allergen Hev b 6.01 retaining human T lymphocyte reactivity. J. Immunol. 173, 5872–5879 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Bolhaar, S. T. et al. A mutant of the major apple allergen, Mal d 1, demonstrating hypo-allergenicity in the target organ by double-blind placebo-controlled food challenge. Clin. Exp. Allergy 35, 1638–1644 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. King, T. P. et al. Recombinant allergens with reduced allergenicity but retaining immunogenicity of the natural allergens: hybrids of yellow jacket and paper wasp venom allergen antigen 5s. J. Immunol. 166, 6057–6065 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Linhart, B. et al. A hybrid molecule resembling the epitope spectrum of grass pollen for allergy vaccination. J. Allergy Clin. Immunol. 115, 1010–1016 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Hirahara, K. et al. Preclinical evaluation of an immunotherapeutic peptide comprising 7 T-cell determinants of Cry j 1 and Cry j 2, the major Japanese cedar pollen allergens. J. Allergy Clin. Immunol. 108, 94–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Gafvelin, G. et al. Cytokine and antibody responses in birch-pollen-allergic patients treated with genetically modified derivatives of the major birch pollen allergen Bet v 1. Int. Arch. Allergy Immunol. 138, 59–66 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Karamloo, F. et al. Prevention of allergy by a recombinant multi-allergen vaccine with reduced IgE binding and preserved T cell epitopes. Eur. J. Immunol. 35, 3268–3276 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Kussebi, F. et al. A major allergen gene-fusion protein for potential usage in allergen-specific immunotherapy. J. Allergy Clin. Immunol. 115, 323–329 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Zhu, D. et al. A chimeric human–cat fusion protein blocks cat-induced allergy. Nature Med. 11, 446–449 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Norman, P. S. et al. Treatment of cat allergy with T-cell reactive peptides. Am. J. Respir. Crit. Care Med. 154, 1623–1628 (1996). First clinical trial to use allergen-derived T-cell-epitope-based peptides.

    Article  CAS  PubMed  Google Scholar 

  105. Muller, U. et al. Successful immunotherapy with T-cell epitope peptides of bee venom phospholipase A2 induces specific T-cell anergy in patients allergic to bee venom. J. Allergy Clin. Immunol. 101, 747–754 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Oldfield, W. L., Larché, M. & Kay, A. B. Effect of T-cell peptides derived from Fel d 1 on allergic reactions and cytokine production in patients sensitive to cats: a randomised controlled trial. Lancet 360, 47–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Fellrath, J. M. et al. Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides: results of a Phase I trial. J. Allergy Clin. Immunol. 111, 854–861 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Haselden, B. M., Kay, A. B. & Larché, M. Immunoglobulin E-independent major histocompatibility complex-restricted T cell peptide epitope-induced late asthmatic reactions. J. Exp. Med. 189, 1885–1894 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Alexander, C., Ying, S., Kay, B. & Larché, M. Fel d 1-derived T cell peptide therapy induces recruitment of CD4+ CD25+; CD4+ interferon-γ+ T helper type 1 cells to sites of allergen-induced late-phase skin reactions in cat-allergic subjects. Clin. Exp. Allergy 35, 52–58 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Alexander, C., Tarzi, M., Larché, M. & Kay, A. B. The effect of Fel d 1-derived T-cell peptides on upper and lower airway outcome measurements in cat-allergic subjects. Allergy 60, 1269–1274 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. de Weck, A. L. & Schneider, C. H. Specific inhibition of allergic reactions to penicillin in man by a monovalent hapten. I. Experimental immunological and toxicologic studies. Int. Arch. Allergy Appl. Immunol. 42, 782–797 (1972).

    Article  CAS  PubMed  Google Scholar 

  112. Ball, T. et al. B cell epitopes of the major timothy grass pollen allergen, Phl p 1, revealed by gene fragmentation as candidates for immunotherapy. FASEB J. 13, 1277–1290 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Focke, M. et al. Nonanaphylactic synthetic peptides derived from B cell epitopes of the major grass pollen allergen, Phl p 1, for allergy vaccination. FASEB J. 15, 2042–2044 (2001). Shows the usefulness of allergen-derived B-cell-epitope-based peptides for SIT.

    Article  CAS  PubMed  Google Scholar 

  114. Gajhede, M. et al. X-ray and NMR structure of Bet v 1, the origin of birch pollen allergy. Nature Struct. Biol. 3, 1040–1045 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Westritschnig, K. et al. Generation of an allergy vaccine by disruption of the three-dimensional structure of the cross-reactive calcium-binding allergen, Phl p 7. J. Immunol. 172, 5684–5692 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Ganglberger, E. et al. Monovalent fusion proteins of IgE mimotopes are safe for therapy of type I allergy. FASEB J. 15, 2524–2526 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Suphioglu, C. et al. A novel grass pollen allergen mimotope identified by phage display peptide library inhibits allergen–human IgE antibody interaction. FEBS Lett. 502, 46–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Simons, F. E., Shikishima, Y., Van Nest, G., Eiden, J. J. & HayGlass, K. T. Selective immune redirection in humans with ragweed allergy by injecting Amb a 1 linked to immunostimulatory DNA. J. Allergy Clin. Immunol. 113, 1144–1151 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Wilcock, L. K., Francis, J. N. & Durham, S. R. Aluminium hydroxide down-regulates T helper 2 responses by allergen-stimulated human peripheral blood mononuclear cells. Clin. Exp. Allergy 34, 1373–1378 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Gronlund, H. et al. Carbohydrate-based particles: a new adjuvant for allergen-specific immunotherapy. Immunology 107, 523–529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Roth-Walter, F. et al. Mucosal targeting of allergen-loaded microspheres by Aleuria aurantia lectin. Vaccine 23, 2703–2710 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Bohle, B. et al. A novel approach to specific allergy treatment: the recombinant fusion protein of a bacterial cell surface (S-layer) protein and the major birch pollen allergen Bet v 1 (rSbsC–Bet v 1) combines reduced allergenicity with immunomodulating capacity. J. Immunol. 172, 6642–6648 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Akdis, C. A. et al. Inhibition of T helper 2-type responses, IgE production and eosinophilia by synthetic lipopeptides. Eur. J. Immunol. 33, 2717–2726 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Takagi, H. et al. A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of TH2-mediated IgE responses. Proc. Natl Acad. Sci. USA 102, 17525–17530 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, X. M. et al. Persistent protective effect of heat-killed Escherichia coli producing 'engineered,' recombinant peanut proteins in a murine model of peanut allergy. J. Allergy Clin. Immunol. 112, 159–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Raz, E. et al. Preferential induction of a TH1 immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proc. Natl Acad. Sci. USA 93, 5141–5145 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hsu, C. H. et al. Immunoprophylaxis of allergen-induced immunoglobulin E synthesis and airway hyperresponsiveness in vivo by genetic immunization. Nature Med. 2, 540–544 (1996). References 126 and 127 were the first to propose the use of DNA vaccines for the treatment of allergy.

    Article  CAS  PubMed  Google Scholar 

  128. Roy, K., Mao, H. Q., Huang, S. K. & Leong, K. W. Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Med. 5, 387–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Slater, J. E., Paupore, E., Zhang, Y. T. & Colberg-Poley, A. M. The latex allergen Hev b 5 transcript is widely distributed after subcutaneous injection in BALB/c mice of its DNA vaccine. J. Allergy Clin. Immunol. 102, 469–475 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Weiss, R. et al. Design of protective and therapeutic DNA vaccines for the treatment of allergic diseases. Curr. Drug Targets Inflamm. Allergy 4, 585–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Black, J. H. The oral administration of ragweed pollen. J. Allergy 10, 156–158 (1939).

    Article  Google Scholar 

  132. Feinberg, S. M., Foran, F. L. & Lichtenstein, M. Oral pollen therapy in ragweed pollinosis. J. Am. Med. Assoc. 115, 23–39 (1940).

    Article  Google Scholar 

  133. Cox, L. S. et al. Sublingual immunotherapy: a comprehensive review. J. Allergy Clin. Immunol. 117, 1021–1035 (2006).

    Article  PubMed  Google Scholar 

  134. Wilson, D. R., Lima, M. T. & Durham, S. R. Sublingual immunotherapy for allergic rhinitis: systematic review and meta-analysis. Allergy 60, 4–12 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Moingeon, P. et al. Immune mechanisms of allergen-specific sublingual immunotherapy. Allergy 61, 151–165 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Bahceciler, N. N. et al. Impact of sublingual immunotherapy on specific antibody levels in asthmatic children allergic to house dust mites. Int. Arch. Allergy Immunol. 136, 287–294 (2005).

    Article  PubMed  Google Scholar 

  137. Rolinck-Werninghaus, C. et al. Lack of detectable alterations in immune responses during sublingual immunotherapy in children with seasonal allergic rhinoconjunctivitis to grass pollen. Int. Arch. Allergy Immunol. 136, 134–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Lima, M. T. et al. Grass pollen sublingual immunotherapy for seasonal rhinoconjunctivitis: a randomized controlled trial. Clin. Exp. Allergy 32, 507–514 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Pajno, G. B., Morabito, L., Barberio, G. & Parmiani, S. Clinical and immunologic effects of long-term sublingual immunotherapy in asthmatic children sensitized to mites: a double-blind, placebo-controlled study. Allergy 55, 842–849 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Fanta, C. et al. Systemic immunological changes induced by administration of grass pollen allergens via the oral mucosa during sublingual immunotherapy. Int. Arch. Allergy Immunol. 120, 218–224 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Passalacqua, G. et al. Randomised controlled trial of local allergoid immunotherapy on allergic inflammation in mite-induced rhinoconjunctivitis. Lancet 351, 629–632 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Passalacqua, G. et al. Clinical and immunologic effects of a rush sublingual immunotherapy to Parietaria species: a double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 104, 964–968 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Hawrylowicz, C. M. & O'Garra, A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nature. Rev. Immunol. 5, 271–283 (2005).

    Article  CAS  Google Scholar 

  144. Lee, W. Y. & Sehon, A. H. Abrogation of reaginic antibodies with modified allergens. Nature 267, 618–619 (1977).

    Article  CAS  PubMed  Google Scholar 

  145. Rocklin, R. E., Sheffer, A. L., Greineder, D. K. & Melmon, K. L. Generation of antigen-specific suppressor cells during allergy desensitization. N. Engl. J. Med. 302, 1213–1219 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The laboratory of M.L. is supported by Asthma UK, the Medical Research Council (UK), the Canada Research Chairs Program and the Canada Foundation for Innovation. The laboratory of C.A.A. is supported by the Swiss National Science Foundation and the Global Allergy and Asthma European Network (GA2LEN). The laboratory of R.V. is partly supported by the Austrian Science Fund (FWF), the Christian Doppler Research Association and the Austrian Research Promotion Agency (FFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Larché.

Ethics declarations

Competing interests

Mark Larché is a consultant for Circassia Ltd (UK) and holds equity in Circassia Holdings Ltd. Cezmi A. Akdis has no competing financial interests. Rudolf Valenta is a consultant for Phadia AB (Sweden), in the field of allergy diagnostics, and for Biomay (Austria), in the fields of therapy and prevention of allergy. He also holds grants from both companies.

Related links

Related links

FURTHER INFORMATION

Cezmi Akdis's laboratory

Glossary

Hypersensitivity

An exaggerated and inappropriate immune response to an antigen or allergen. In the context of allergic diseases, this includes production of allergen-specific IgE to environmental or self antigens.

Class switching

The somatic-recombination process by which the class of immunoglobulin is switched from IgM to IgG, IgA or IgE.

Immediate phase of the allergic reaction

(Also known as the early phase). The biological and clinical consequences that occur within the first hour of crosslinking of IgE–FceRI (high-affinity receptor for IgE) complexes at the surface of mast cells and/or basophils by allergens. The clinical manifestations are characterized by tissue-specific effects: for example, constriction of the large airways in asthma, and wheal-and-flare reactions in the skin. Generalized symptoms in multiple target organs can include oedema and pruritus (itching). Systemic manifestations can include angio-oedema, urticaria and, in severe cases, vascular collapse (anaphylaxis).

Late phase of the allergic reaction

Clinical manifestations can be measurable (visible) two or more hours after allergen exposure but might appear much later. These manifestations peak at 6–9 hours after allergen exposure and have resolved by 24–48 hours. Reactions are characterized by oedema and the infiltration of T helper 2 cells and eosinophils. Tissue reactions are characterized by oedema, pain, warmth and erythema (redness). Reactions in the lungs are characterized by airway narrowing and mucus hypersecretion.

CpG motif

A deoxycytosine–deoxyguanosine sequence. Such sequences are prevalent in bacterial DNA but are rare in mammalian DNA. Unmethylated CpG is endocytosed by cells of the innate immune system and interacts with Toll-like receptor 9, activating a signalling cascade that results in the production of pro-inflammatory cytokines.

Plasmacytoid DC

An immature dendritic cell (DC) with a morphology that resembles that of a plasma cell. Plasmacytoid DCs produce type I interferons (that is, interferon-α and interferon-β) in response to viral infection.

TH0 cells

Precursors of T helper 1 (TH1) cells and TH2 cells. TH0 cells produce both interferon-γ and interleukin-4. They have the capacity to become TH1 cells and/or TH2 cells.

Skin-prick test

If allergen-specific IgE is present in an individual, then the introduction of tiny amounts of allergen into the epidermis by a prick or scratch induces the degranulation of mast cells. This results in a wheal-and-flare reaction, the size of which is used as a measure of the sensitivity to allergen of an individual.

Hinge region

The sequence of amino acids, which is often rich in cysteine and proline residues, that is present in the constant region of immunoglobulin heavy chains. It provides increased molecular flexibility. This region might be involved in the disulphide bonds that link adjacent immunoglobulin heavy chains.

Allergen microarray

Similar to a DNA microarray. High-density arrays of individual allergen proteins or extracts spotted onto a solid phase (usually glass). The arrays can be incubated with small volumes of serum from patients, and the binding of IgE to the arrayed allergens can be determined and this information used for diagnostic purposes.

Phage-display technology

A technology for displaying a protein on the surface of a bacteriophage that contains the gene(s) encoding the displayed protein(s), thereby physically linking the genotype and phenotype.

Microfold cells

(M cells). Specialized epithelial cells that deliver antigens from the gut lumen directly to intraepithelial lymphocytes and to subepithelial lymphoid tissues, using transepithelial vesicular transport.

Chitosan–DNA nanoparticle

A small (150–300 nm) particle that is formed by mixing plasmid DNA (in this case, encoding allergen) with the high-molecular-weight molecule chitosan, a biodegradable polysaccharide derived from crustaceans. Chitosan has been used extensively for drug delivery and increases molecular transport across the mucosal epithelial-cell barrier.

Replicon-based DNA vaccine

A vaccine that is based on DNA molecules that can replicate autonomously (for example, plasmids and phage).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larché, M., Akdis, C. & Valenta, R. Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol 6, 761–771 (2006). https://doi.org/10.1038/nri1934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing