Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signalling pathways and molecular interactions of NOD1 and NOD2

Key Points

  • The nucleotide-binding oligomerization domain (NOD) proteins NOD1 and NOD2 are members of a recently described protein family, the NACHT (domain present in NAIP, CIITA, HET-E and TP1)-LRR (leucine-rich repeat) family (NLR family). Proteins in this family are structurally related cytosolic proteins with LRR domains (which bind microbial ligands) that are similar to those found in Toll-like receptors (TLRs). As such, NOD1 and NOD2 have important roles in innate immunity.

  • NOD1 and NOD2 are expressed by epithelial cells and antigen-presenting cells. Through their LRR domain, they recognize conserved components of the bacterial cell-wall constituent peptidoglyan: NOD1 binds γ-D-glutamyl-meso-diaminopimelic acid, and NOD2 binds muramyl dipeptide. Such recognition leads to the oligomerization of NOD1 and NOD2, followed by activation of the downstream effector molecule RICK (receptor-interacting serine/threonine kinase). This, in turn, leads to activation of nuclear factor-κB and other effector pathways.

  • The outcome of NOD2 signalling is complex. NOD2 can function as a mediator of innate immunity by itself, but it might also function as a modifier of innate immunity that results from TLR activity. So, there is evidence that NOD2 downregulates T-helper-1-cell responses (that is, interleukin-12 (IL-12) production) that are induced after peptidoglycan binds TLR2. By contrast, there is also evidence that NOD2 upregulates tumour-necrosis factor, IL-6 and CXC-chemokine ligand 8 (CXCL8; also known as IL-8) production induced by signalling through a broad range of TLRs.

  • Whereas NOD1 is broadly expressed by intestinal epithelial cells, NOD2 is expressed mainly by Paneth cells, which are located at the base of the epithelial crypts. In these cells, NOD2 might be an important inducer of α-defensins, which are antibacterial peptides that have a role in host defence at the epithelial interface.

  • Mutations in the LRR domain of the caspase-recruitment domain 15 gene (CARD15; which encodes NOD2) are associated with the development of Crohn's disease, whereas mutations in the NOD of NOD2 can lead to the development of Blau syndrome. On the basis of studies of mice that lack Card15 and mice with a mutated Card15 'knocked-in', three explanations for these associations are under consideration. In each case, the proposed mechanism leads to a dysregulated innate immune response to components of the microbial flora of the gut, so this highlights the normal role of NOD2 in mucosal homeostasis.

  • NOD1 is activated by microbial components that gain entry to the cytosol of epithelial cells. Such activation leads to the production of chemokines and possibly other host-defence factors against potential gut pathogens. So, mice with defective NOD1 function are more susceptible to infection with Helicobacter pylori, and NOD1 might be a factor in human diseases that involve this organism.

Abstract

The NOD (nucleotide-binding oligomerization domain) proteins NOD1 and NOD2 have important roles in innate immunity as sensors of microbial components derived from bacterial peptidoglycan. The importance of these molecules is underscored by the fact that mutations in the gene that encodes NOD2 occur in a subpopulation of patients with Crohn's disease, and NOD1 has also been shown to participate in host defence against infection with Helicobacter pylori. Here, we focus on the molecular interactions between these NOD proteins and other intracellular molecules to elucidate the mechanisms by which NOD1 and NOD2 contribute to the maintenance of mucosal homeostasis and the induction of mucosal inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and cellular location of TLRs and NOD1 and NOD2.
Figure 2: Signalling pathways of NOD1 and NOD2.
Figure 3: Models of the molecular interactions between TLR- and NOD2-signalling pathways in antigen-presenting cells.
Figure 4: Possible mechanisms of Crohn's disease in patients with mutations in CARD15.

Similar content being viewed by others

References

  1. Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499?511 (2004).

    Article  CAS  Google Scholar 

  2. Martinon, F. & Tschopp, J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 13, 323?335 (2005).

    Google Scholar 

  3. Inohara, N. & Nunez, G. NODs: intracellular proteins involved in inflammation and apoptosis. Nature Rev. Immunol. 3, 371?382 (2003).

    Article  CAS  Google Scholar 

  4. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599?603 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603?606 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. McGovern, D. P. et al. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum. Mol. Genet. 14, 1245?1250 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Hysi, P. et al. NOD1 variation, immunoglobulin E and asthma. Hum. Mol. Genet. 14, 935?941 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol. 5, 1166?1174 (2004). This paper shows that NOD1 participates in host defence against H. pylori infection.

    Article  CAS  Google Scholar 

  9. Ting, J. P. & Davis, B. K. CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu. Rev. Immunol. 23, 387?414 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Chamaillard, M., Girardin, S. E., Viala, J. & Philpott, D. J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell. Microbiol. 5, 581?592 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A. & Kolodner, R. D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle?Wells syndrome. Nature Genet. 29, 301?305 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Barnich, N., Aguirre, J. E., Reinecker, H. C., Xavier, R. & Podolsky, D. K. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-κB activation in muramyl dipeptide recognition. J. Cell Biol. 170, 21?26 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278, 5509?5512 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nature Immunol. 4, 702?707 (2003).

    Article  CAS  Google Scholar 

  15. Girardin, S. E. et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584?1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Girardin, S. E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869?8872 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Gutierrez, O. et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-κB activation. J. Biol. Chem. 277, 41701?41705 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Ogura, Y. et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem. 276, 4812?4818 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Hisamatsu, T. et al. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124, 993?1000 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Lala, S. et al. Crohn's disease and the NOD2 gene: a role for Paneth cells. Gastroenterology 125, 47?57 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Hisamatsu, T., Suzuki, M. & Podolsky, D. K. Interferon-γ augments CARD4/NOD1 gene and protein expression through interferon regulatory factor-1 in intestinal epithelial cells. J. Biol. Chem. 278, 32962?32968 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, J. G., Lee, S. J. & Kagnoff, M. F. Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by Toll-like receptors. Infect. Immun. 72, 1487?1495 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ogura, Y. et al. Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut 52, 1591?1597 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosenstiel, P. et al. TNF-α and IFN-γ regulate the expression of the NOD2 (CARD1 5) gene in human intestinal epithelial cells. Gastroenterology 124, 1001?1009 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Stockinger, S. et al. IFN regulatory factor 3-dependent induction of type I IFNs by intracellular bacteria is mediated by a TLR- and Nod2-independent mechanism. J. Immunol. 173, 7416?7425 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Inohara, N., Chamaillard, M., McDonald, C. & Nunez, G. NOD-LRR proteins: role in host?microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74, 355?383 (2004).

    Article  CAS  Google Scholar 

  27. Pauleau, A. L. & Murray, P. J. Role of Nod2 in the response of macrophages to Toll-like receptor agonists. Mol. Cell. Biol. 23, 7531?7539 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gupta, D. K., Theisen, N., von Figura, K. & Hasilik, A. Comparison of biosynthesis and subcellular distribution of lysozyme and lysosomal enzymes in U937 monocytes. Biochim. Biophys. Acta 847, 217?222 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Araki, Y., Nakatani, T., Makino, R., Hayashi, H. & Ito, E. Isolation of glucosaminyl-β(1?4)-muramic acid and phosphoric acid ester of this disaccharide from acid hydrolysates of peptidoglycan of Bacillus cereus AHU 1356 cell walls. Biochem. Biophys. Res. Commun. 42, 684?690 (1971).

    Article  CAS  PubMed  Google Scholar 

  30. Vavricka, S. R. et al. hPepT1 transports muramyl dipeptide, activating NF-κB and stimulating IL-8 secretion in human colonic Caco2/bbe cells. Gastroenterology 127, 1401?1409 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Bell, J. K. et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 24, 528?533 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Inohara, N. et al. An induced proximity model for NF-κB activation in the Nod1/RICK and RIP signaling pathways. J. Biol. Chem. 275, 27823?27831 (2000).

    CAS  PubMed  Google Scholar 

  33. Tanabe, T. et al. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J. 23, 1587?1597 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saleh, A., Srinivasula, S. M., Acharya, S., Fishel, R. & Alnemri, E. S. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 274, 17941?17945 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Benedict, M. A., Hu, Y., Inohara, N. & Nunez, G. Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J. Biol. Chem. 275, 8461?8468 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Watanabe, T., Kitani, A., Murray, P. J. & Strober, W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nature Immunol. 5, 800?808 (2004). This paper provides evidence that NOD2 exerts a negative-regulatory role in the PGN-mediated T H 1-cell response.

    Article  CAS  Google Scholar 

  37. Kobayashi, K. et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416, 194?199 (2002). This paper shows that RICK is an important downstream effector molecule not only for NOD proteins but also for TLRs.

    Article  CAS  PubMed  Google Scholar 

  38. Inohara, N. et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-κB. J. Biol. Chem. 274, 14560?14567 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Abbott, D. W., Wilkins, A., Asara, J. M. & Cantley, L. C. The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr. Biol. 14, 2217?2227 (2004). This paper shows that, after recruitment to, and activation by, NOD2, RICK mediates ubiquitylation of a key member of the IKK complex, IKKγ.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, H. et al. Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427, 167?171 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Barnich, N. et al. GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells. J. Biol. Chem. 280, 19021?19026 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731?734 (2005). This paper shows that NOD2-deficient mice are susceptible to L. monocytogenes infection, owing to reduced production of α-defensins.

    Article  CAS  PubMed  Google Scholar 

  43. Girardin, S. E. et al. CARD4/Nod1 mediates NF-κB and JNK activation by invasive Shigella flexneri. EMBO Rep. 2, 736?742 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Damiano, J. S., Oliveira, V., Welsh, K. & Reed, J. C. Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses. Biochem. J. 381, 213?219 (2004). This paper shows that CARD12 negatively regulates NOD-protein-mediated NF-κB activation through a NOD?NOD interaction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martinon, F. & Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561?574 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Damiano, J. S., Stehlik, C., Pio, F., Godzik, A. & Reed, J. C. CLAN, a novel human CED-4-like gene. Genomics 75, 77?83 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Damiano, J. S., Newman, R. M. & Reed, J. C. Multiple roles of CLAN (caspase-associated recruitment domain, leucine-rich repeat, and NAIP CIIA HET-E, and TP1-containing protein) in the mammalian innate immune response. J. Immunol. 173, 6338?6345 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213?218 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Stehlik, C., Hayashi, H., Pio, F., Godzik, A. & Reed, J. C. CARD6 is a modulator of NF-κB activation by Nod1- and Cardiak-mediated pathways. J. Biol. Chem. 278, 31941?31949 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14, 1929?1934 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Grumont, R. et al. c-Rel regulates interleukin 12 p70 expression in CD8+ dendritic cells by specifically inducing p35 gene transcription. J. Exp. Med. 194, 1021?1032 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sanjabi, S., Hoffmann, A., Liou, H. C., Baltimore, D. & Smale, S. T. Selective requirement for c-Rel during IL-12 p40 gene induction in macrophages. Proc. Natl Acad. Sci. USA 97, 12705?12710 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. O'Neill, L. A. How NOD-ing off leads to Crohn disease. Nature Immunol. 5, 776?778 (2004).

    Article  CAS  Google Scholar 

  54. Maeda, S. et al. Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1β processing. Science 307, 734?738 (2005). This paper presents evidence that gene-knock-in mice that express NOD2 with the frameshift mutation associated with Crohn's disease produce more IL-1β than do wild-type mice.

    Article  CAS  PubMed  Google Scholar 

  55. Travassos, L. H. et al. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. 5, 1000?1006 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dziarski, R. & Gupta, D. Staphylococcus aureus peptidoglycan is a Toll-like receptor 2 activator: a reevaluation. Infect. Immun. 73, 5212?5216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Uehara, A. et al. Muramyldipeptide and diaminopimelic acid-containing desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NOD1-dependent manner, respectively, in human monocytic cells in culture. Cell. Microbiol. 7, 53?61 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Wolfert, M. A., Murray, T. F., Boons, G. J. & Moore, J. N. The origin of the synergistic effect of muramyl dipeptide with endotoxin and peptidoglycan. J. Biol. Chem. 277, 39179?39186 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. van Heel, D. A. et al. Synergy between TLR9 and NOD2 innate immune responses is lost in genetic Crohn's disease. Gut 54, 1553?1557 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Netea, M. G. et al. Nucleotide-binding oligomerization domain-2 modulates specific TLR pathways for the induction of cytokine release. J. Immunol. 174, 6518?6523 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. van Heel, D. A. et al. Muramyl dipeptide and Toll-like receptor sensitivity in NOD2-associated Crohn's disease. Lancet 365, 1794?1796 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Yang, S. et al. Synergistic effect of muramyldipeptide with lipopolysaccharide or lipoteichoic acid to induce inflammatory cytokines in human monocytic cells in culture. Infect. Immun. 69, 2045?2053 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fritz, J. H. et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur. J. Immunol. 35, 2459?2470 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. van Heel, D. A. et al. Synergistic enhancement of Toll-like receptor responses by NOD1 activation. Eur. J. Immunol. 35, 2471?2476 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Abreu, M. T., Fukata, M. & Arditi, M. TLR signaling in the gut in health and disease. J. Immunol. 174, 4453?4460 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Abreu, M. T. et al. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J. Immunol. 167, 1609?1616 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Abreu, M. T. et al. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J. Biol. Chem. 277, 20431?20437 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Melmed, G. et al. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands: implications for host?microbial interactions in the gut. J. Immunol. 170, 1406?1415 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, G. & Ghosh, S. Negative regulation of Toll-like receptor-mediated signaling by Tollip. J. Biol. Chem. 277, 7059?7065 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229?241 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Strober, W. Epithelial cells pay a Toll for protection. Nature Med. 10, 898?900 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Hooper, L. V. & Gordon, J. I. Commensal host?bacterial relationships in the gut. Science 292, 1115?1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Miceli-Richard, C. et al. CARD15 mutations in Blau syndrome. Nature Genet. 29, 19?20 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Kanazawa, N. et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-κB activation: common genetic etiology with Blau syndrome. Blood 105, 1195?1197 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Holler, E. et al. Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GvHD following allogeneic stem cell transplantation. Blood 104, 889?894 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Opitz, B. et al. Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae. Circ. Res. 96, 319?326 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nature Rev. Immunol. 4, 478?485 (2004).

    Article  CAS  Google Scholar 

  78. Becker, C. et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J. Clin. Invest. 112, 693?706 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Netea, M. G. et al. NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: implications for Crohn's disease. Eur. J. Immunol. 34, 2052?2059 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Zelinkova, Z. et al. Functional consequences of NOD2 deficiency in Crohn's disease patients peripheral blood monocytes derived dendritic cells. Gastroenterology 128, A510 (2005).

  81. Ayabe, T. et al. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nature Immunol. 1, 113?118 (2000).

    Article  CAS  Google Scholar 

  82. Porter, E. M., van Dam, E., Valore, E. V. & Ganz, T. Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infect. Immun. 65, 2396?2401 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y. & Bevins, C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522?526 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Wehkamp, J. et al. NOD2 (CARD1 5) mutations in Crohn's disease are associated with diminished mucosal α-defensin expression. Gut 53, 1658?1664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Garabedian, E. M., Roberts, L. J., McNevin, M. S. & Gordon, J. I. Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J. Biol. Chem. 272, 23729?23740 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Wilson, C. L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113?117 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Swidsinski, A. et al. Mucosal flora in inflammatory bowel disease. Gastroenterology 122, 44?54 (2002).

    Article  PubMed  Google Scholar 

  88. Martin, H. M. et al. Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology 127, 80?93 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Darfeuille-Michaud, A. et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127, 412?421 (2004).

    Article  PubMed  Google Scholar 

  90. Li, J. et al. Regulation of IL-8 and IL-1β expression in Crohn's disease associated NOD2/CARD15 mutations. Hum. Mol. Genet. 13, 1715?1725 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Chamaillard, M. et al. Gene?environment interaction modulated by allelic heterogeneity in inflammatory diseases. Proc. Natl Acad. Sci. USA 100, 3455?3460 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Uemura, N. et al. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345, 784?789 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Stoll, M. et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nature Genet. 36, 476?480 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Bouma, G. & Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nature Rev. Immunol. 3, 521?533 (2003).

    Article  CAS  Google Scholar 

  95. Strober, W., Fuss, I. J. & Blumberg, R. S. The immunology of mucosal models of inflammation. Annu. Rev. Immunol. 20, 495?549 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Lodes, M. J. et al. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest. 113, 1296?1306 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Strober, W., Fuss, I., Boirivant, M. & Kitani, A. Insights into the mechanism of oral tolerance derived from the study of models of mucosal inflammation. Ann. NY Acad. Sci. 1029, 115?131 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Chiba (Department of Gastroenterology, Kyoto University Graduate School of Medicine, Kyoto, Japan) for helpful discussions. Work in the laboratory of P.J.M. is supported by the National Institutes of Health (United States) and by the American Lebanese Syrian Associated Charities, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren Strober.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

LRR domain

(leucine-rich-repeat domain). A domain that mediates the detection of ligands derived from microbial components. The LRR domain of NLRs (NACHT-LRR proteins) is similar to that of Toll-like receptors. It consists of leucine-rich amino-acid strands forming a peptide loop. The loops occur as tandem repeats that, together, form a coil or 'solenoid' and contain constant sequences, as well as unique 'insertions' or variable residues for each ligand.

NOD

(nucleotide-binding oligomerization domain). The domain that defines NLRs (NACHT-LRR proteins). Its most characteristic feature is that it contains sequences that, on binding of ligand to the leucine-rich repeat (LRR) domain, facilitate self-oligomerization, and it also has ATPase activity. This oligomerization might be a key activation event that allows NLRs to bind to, and activate, downstream effector molecules through their caspase-recruitment domain or pyrin domain.

CARD or pyrin domain

(caspase-recruitment domain or pyrin domain). The amino-terminal effector-binding domain of NLRs (NACHT-LRR proteins) usually consists of a CARD or a pyrin cassette for promoting molecular interactions. Proteins that contain a pyrin or CARD cassette in this region are also known as NALPs (NACHT-, LRR- and pyrin-domain-containing proteins) or nucleotide-binding oligomerization domain (NOD) proteins, respectively.

Type IV secretion system

A type of molecular syringe of Gram-negative bacteria. It enables the bacteria to deliver DNA (delivered by species such as Agrobacterium spp.) and protein effectors (delivered by species such as Helicobacter pylori) into eukaryotic cells.

Pathogenicity island

The genetic element, the 'island of evil', in the genome of an organism that is responsible for the capacity of the organism to cause disease (that is, its pathogenicity). The virulence of the organism is modulated by genes harboured on this island.

K63-linked polyubiquitylation

Ubiquitylation that involves polyubiquitin chains linked through the lysine residue at position 63 of ubiquitin.

Dextran-sulphate-sodium-salt-induced colitis

(DSS-induced colitis). An animal model of colitis induced by administration of DSS in the drinking water. DSS changes epithelial-cell barrier function and creates a condition in which antigen-presenting cells or epithelial cells in the gut are exposed to mucosal microflora.

Adherent invasive E. coli

A type of Escherichia coli that has the ability to adhere to intestinal epithelial cells, to invade epithelial cells through a mechanism involving actin polymerization and microtubules, and to survive and replicate within macrophages.

Blau syndrome

A rare, autosomal dominant disorder that is characterized by granulomatous arthritis, uveitis, skin rash and cranial neuropathy.

Early-onset sarcoidosis

A rare disease that usually manifests in children younger than 4 years of age. This disease is characterized by non-caseating epithelioid granulomas in the skin, joints and eyes. Unlike typical sarcoidosis seen in adults, pulmonary involvement is not observed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strober, W., Murray, P., Kitani, A. et al. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6, 9–20 (2006). https://doi.org/10.1038/nri1747

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1747

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing