Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell-surface enzymes in control of leukocyte trafficking

Key Points

  • Ectoenzymes are membrane proteins that have their catalytically active sites in the extracellular environment. Leukocytes and endothelial cells express many ectoenzymes, and they have recently been shown to be involved in leukocyte trafficking from the blood into the tissues, under physiological and inflammatory conditions.

  • Extracellular nucleotide metabolism, which involves ectonucleotidases (CD39 and CD73) and adenosine deaminase, regulates ATP and adenosine concentrations. Adenosine inhibits the function of many leukocyte and endothelial cell-adhesion molecules and decreases vascular permeability, which results in attenuated inflammatory reactions.

  • Chemotaxis is regulated by ecto-ADP-ribosyl cyclases (CD38 and CD157) and ectopeptidases (CD10, CD13 and CD26). CD38-mediated signalling promotes chemotaxis towards certain chemokines, whereas proteolytic trimming of chemokines by peptidases, in most cases, decreases their potency to attract leukocytes.

  • Vascular adhesion protein 1 (VAP1) is an endothelial-cell-expressed ecto-oxidase that regulates leukocyte rolling, firm adhesion and transmigration.

  • The availability of substrates, inhibitors and cofactors for ectoenzymes can dynamically regulate leukocyte extravasation. Moreover, many of the end-products of the enzymatic reactions are biologically active substances that trigger responses in their target cells.

  • The activity of ectoenzymes can be therapeutically modulated to treat inappropriate inflammation. Inhibiting migration-promoting ectoenzymes (such as CD38 and VAP1) with small-molecule enzyme inhibitors or increasing (for example, by providing more substrate) the activity of migration-suppressing ectoenzymes (such as CD26 and endothelial-cell-expressed CD73) will provide promising new forms of anti-adhesive therapy.

  • The role in leukocyte trafficking of most ectoenzymes that are expressed by leukocytes and endothelial cells has not been tested, although many of these enzymes regulate the migration of other cell types. Emerging biological tools (such as gene-targeted animals) should provide further insight into how these multifunctional molecules are involved in leukocyte extravasation.

Abstract

Leukocyte trafficking between the blood and the tissues is pivotal for normal immune responses. Cell-adhesion molecules (such as selectins and leukocyte integrins) and chemoattractants (such as chemokines) have well-established roles in supporting leukocyte exit from the blood. Emerging data now show that, for both leukocytes and endothelial cells, enzymatic reactions that are catalysed by cell-surface-expressed enzymes with catalytic domains outside the plasma membrane (known as ectoenzymes) also make crucial contributions to this process. Ectoenzymes can function physically as adhesion receptors and can regulate the recruitment of cells through their catalytic activities. Here, we provide new insights into how ectoenzymes — including nucleotidases, cyclases, ADP-ribosyltransferases, peptidases, proteases and oxidases — guide leukocyte traffic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ectoenzymes and the leukocyte-extravasation cascade.
Figure 2: Extracellular ATP metabolism and leukocyte trafficking.
Figure 3: Extracellular NAD(P) metabolism and leukocyte trafficking.
Figure 4: A model of the action of vascular adhesion protein 1 during leukocyte–endothelial-cell interaction.

Similar content being viewed by others

References

  1. von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nature Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  Google Scholar 

  2. Muller, W. A. Leukocyte–endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 24, 327–334 (2003).

    CAS  PubMed  Google Scholar 

  3. Ley, K. & Kansas, G. S. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nature Rev. Immunol. 4, 325–335 (2004).

    Article  CAS  Google Scholar 

  4. Pribila, J. T., Quale, A. C., Mueller, K. L. & Shimizu, Y. Integrins and T cell-mediated immunity. Annu. Rev. Immunol. 22, 157–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kunkel, E. J. & Butcher, E. C. Chemokines and the tissue-specific migration of lymphocytes. Immunity 16, 1–4 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Moser, B., Wolf, M., Walz, A. & Loetscher, P. Chemokines: multiple levels of leukocyte migration control. Trends Immunol. 25, 75–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Di Virgilio, F. et al. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97, 587–600 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Goding, J. W. & Howard, M. C. Ecto-enzymes of lymphoid cells. Immunol. Rev. 161, 5–10 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Seman, M., Adriouch, S., Haag, F. & Koch-Nolte, F. Ecto-ADP-ribosyltransferases (ARTs): emerging actors in cell communication and signaling. Curr. Med. Chem. 11, 857–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Jalkanen, S. & Salmi, M. Cell surface monoamine oxidases: enzymes in search of a function. EMBO J. 20, 3893–3901 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sedo, A. & Malik, R. Dipeptidyl peptidase IV-like molecules: homologous proteins or homologous activities? Biochim. Biophys. Acta 1550, 107–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Schuber, F. & Lund, F. E. Structure and enzymology of ADP-ribosyl cyclases: conserved enzymes that produce multiple calcium mobilizing metabolites. Curr. Mol. Med. 4, 249–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Christopherson, K. W. 2nd, Hangoc, G., Mantel, C. R. & Broxmeyer, H. E. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305, 1000–1003 (2004). This paper shows that there is an increase in homing of haematopoietic stem cells in Cd26−/− mice, and it shows the potential of chemical inhibitors of CD26 for the manipulation of cell migration in vivo.

    Article  CAS  PubMed  Google Scholar 

  14. Partida-Sanchez, S. et al. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nature Med. 7, 1209–1216 (2001). This paper shows that, in vivo , the absence of CD38 impairs leukocyte trafficking as a consequence of defects in chemotaxis.

    Article  CAS  PubMed  Google Scholar 

  15. Eltzschig, H. K. et al. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104, 3986–3992 (2004). This work shows that an increase in leukocyte infiltration occurs under hypoxic conditions in CD73-deficient mice.

    Article  CAS  PubMed  Google Scholar 

  16. Stolen, C. M. et al. Absence of the endothelial oxidase AOC3 leads to abnormal leukocyte traffic in vivo. Immunity 22, 105–115 (2005). This report describes the importance of VAP1 in leukocyte migration under physiological and pathological conditions.

    Article  CAS  PubMed  Google Scholar 

  17. Lazarowski, E. R., Boucher, R. C. & Harden, T. K. Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol. Pharmacol. 64, 785–795 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Ralevic, V. & Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413–492 (1998).

    CAS  PubMed  Google Scholar 

  19. MacKenzie, A. et al. Rapid secretion of interleukin-1β by microvesicle shedding. Immunity 15, 825–835 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Idzko, M. et al. Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood 100, 925–932 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Sitkovsky, M. V. et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu. Rev. Immunol. 22, 657–682 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Dombrowski, K. E., Ke, Y., Brewer, K. A. & Kapp, J. A. Ecto-ATPase: an activation marker necessary for effector cell function. Immunol. Rev. 161, 111–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Goepfert, C. et al. Disordered cellular migration and angiogenesis in cd39-null mice. Circulation 104, 3109–3115 (2001). This study shows that CD39-deficient monocytes and macrophages have impaired transmigration in vitro and diminished influx to angiogenic sites in vivo.

    Article  CAS  PubMed  Google Scholar 

  24. Guckelberger, O. et al. Beneficial effects of CD39/ecto-nucleoside triphosphate diphosphohydrolase-1 in murine intestinal ischemia–reperfusion injury. Thromb. Haemost. 91, 576–586 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Mizumoto, N. et al. CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nature Med. 8, 358–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Airas, L., Salmi, M. & Jalkanen, S. Lymphocyte-vascular adhesion protein-2 is a novel 70-kDa molecule involved in lymphocyte adhesion to vascular endothelium. J. Immunol. 151, 4228–4238 (1993).

    CAS  PubMed  Google Scholar 

  27. Airas, L. et al. CD73 is involved in lymphocyte binding to the endothelium: characterization of lymphocyte-vascular adhesion protein 2 identifies it as CD73. J. Exp. Med. 182, 1603–1608 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Resta, R., Yamashita, Y. & Thompson, L. F. Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol. Rev. 161, 95–109 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Thiel, M. et al. Effect of adenosine on the expression of β2 integrins and L-selectin of human polymorphonuclear leukocytes in vitro. J. Leukoc. Biol. 59, 671–682 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Cronstein, B. N. et al. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J. Immunol. 148, 2201–2206 (1992).

    CAS  PubMed  Google Scholar 

  31. Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414, 916–920 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Bouma, M. G., van den Wildenberg, F. A. & Buurman, W. A. Adenosine inhibits cytokine release and expression of adhesion molecules by activated human endothelial cells. Am. J. Physiol. 270, C522–C529 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Comerford, K. M., Lawrence, D. W., Synnestvedt, K., Levi, B. P. & Colgan, S. P. Role of vasodilator-stimulated phosphoprotein in PKA-induced changes in endothelial junctional permeability. FASEB J. 16, 583–585 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Thompson, L. F. et al. Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med. 200, 1395–1405 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Niemela, J. et al. IFN-α induced adenosine production on the endothelium: a mechanism mediated by CD73 (ecto-5′-nucleotidase) up-regulation. J. Immunol. 172, 1646–1653 (2004).

    Article  PubMed  Google Scholar 

  36. Airas, L., Niemela, J. & Jalkanen, S. CD73 engagement promotes lymphocyte binding to endothelial cells via a lymphocyte function-associated antigen-1-dependent mechanism. J. Immunol. 165, 5411–5417 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Airas, L. et al. Differential regulation and function of CD73, a glycosyl-phosphatidylinositol-linked 70-kD adhesion molecule, on lymphocytes and endothelial cells. J. Cell Biol. 136, 421–431 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Henttinen, T., Jalkanen, S. & Yegutkin, G. G. Adherent leukocytes prevent adenosine formation and impair endothelial barrier function by ecto-5′-nucleotidase/CD73-dependent mechanism. J. Biol. Chem. 278, 24888–24895 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Kameoka, J., Tanaka, T., Nojima, Y., Schlossman, S. F. & Morimoto, C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 261, 466–469 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Koszalka, P. et al. Targeted disruption of cd73/ecto-5′-nucleotidase alters thromboregulation and augments vascular inflammatory response. Circ. Res. 95, 814–821 (2004). This paper describes the increased attachment of leukocytes to inflamed endothelia in CD73-deficient mice.

    Article  CAS  PubMed  Google Scholar 

  41. Goding, J. W., Grobben, B. & Slegers, H. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim. Biophys. Acta 1638, 1–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Tokumura, A. et al. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J. Biol. Chem. 277, 39436–39442 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Clair, T. et al. Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res. 63, 5446–5453 (2003).

    CAS  PubMed  Google Scholar 

  44. Xie, Y. & Meier, K. E. Lysophospholipase D and its role in LPA production. Cell. Signal. 16, 975–981 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Rosen, H. & Goetzl, E. J. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nature Rev. Immunol. 5, 560–570 (2005).

    Article  CAS  Google Scholar 

  46. Redegeld, F. A., Caldwell, C. C. & Sitkovsky, M. V. Ecto-protein kinases: ecto-domain phosphorylation as a novel target for pharmacological manipulation? Trends Pharmacol. Sci. 20, 453–459 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Yegutkin, G. G., Henttinen, T., Samburski, S. S., Spychala, J. & Jalkanen, S. The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. Biochem. J. 367, 121–128 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deaglio, S., Mehta, K. & Malavasi, F. Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk. Res. 25, 1–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Wilson, H. L. et al. ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase act as a redox sensor. A primary role for cyclic ADP-ribose in hypoxic pulmonary vasoconstriction. J. Biol. Chem. 276, 11180–11188 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, H. C. Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu. Rev. Pharmacol. Toxicol. 41, 317–345 (2001).

    Article  PubMed  Google Scholar 

  51. Guse, A. H. Biochemistry, biology, and pharmacology of cyclic adenosine diphosphoribose (cADPR). Curr. Med. Chem. 11, 847–855 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Sánchez-Madrid, F. & del Pozo, M. A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Dransfield, I., Cabanas, C., Craig, A. & Hogg, N. Divalent cation regulation of the function of the leukocyte integrin LFA-1. J. Cell Biol. 116, 219–226 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Dewitt, S., Laffafian, I. & Hallett, M. B. Does neutrophil CD38 have a role in Ca++ signaling triggered by β2 integrin? Nature Med. 8, 307 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Partida-Sanchez, S. et al. Regulation of dendritic cell trafficking by the ADP-ribosyl cyclase CD38: impact on the development of humoral immunity. Immunity 20, 279–291 (2004). The importance of CD38 in DC trafficking was uncovered by this elegant study.

    Article  CAS  PubMed  Google Scholar 

  57. Rah, S. Y., Park, K. H., Han, M. K., Im, M. J. & Kim, U. H. Activation of CD38 by interleukin-8 signaling regulates intracellular Ca2+ level and motility of lymphokine-activated killer cells. J. Biol. Chem. 280, 2888–2895 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Dianzani, U. et al. Interaction between endothelium and CD4+CD45RA+ lymphocytes. Role of the human CD38 molecule. J. Immunol. 153, 952–959 (1994).

    CAS  PubMed  Google Scholar 

  59. Deaglio, S. et al. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J. Immunol. 160, 395–402 (1998).

    CAS  PubMed  Google Scholar 

  60. Funaro, A. et al. CD157 is an important mediator of neutrophil adhesion and migration. Blood 104, 4269–4278 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Koch-Nolte, F. et al. Mouse T cell membrane proteins Rt6-1 and Rt6-2 are arginine/protein mono(ADPribosyl)transferases and share secondary structure motifs with ADP-ribosylating bacterial toxins. J. Biol. Chem. 271, 7686–7693 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Haag, F., Koch-Nolte, F., Kuhl, M., Lorenzen, S. & Thiele, H. G. Premature stop codons inactivate the RT6 genes of the human and chimpanzee species. J. Mol. Biol. 243, 537–546 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Nemoto, E., Yu, Y. & Dennert, G. Cell surface ADP-ribosyltransferase regulates lymphocyte function-associated molecule-1 (LFA-1) function in T cells. J. Immunol. 157, 3341–3349 (1996).

    CAS  PubMed  Google Scholar 

  64. Okamoto, S., Azhipa, O., Yu, Y., Russo, E. & Dennert, G. Expression of ADP-ribosyltransferase on normal T lymphocytes and effects of nicotinamide adenine dinucleotide on their function. J. Immunol. 160, 4190–4198 (1998).

    CAS  PubMed  Google Scholar 

  65. Han, M. K., Cho, Y. S., Kim, Y. S., Yim, C. Y. & Kim, U. H. Interaction of two classes of ADP-ribose transfer reactions in immune signaling. J. Biol. Chem. 275, 20799–20805 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Seman, M. et al. NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 19, 571–582 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Adriouch, S. et al. A natural P451L mutation in the cytoplasmic domain impairs the function of the mouse P2X7 receptor. J. Immunol. 169, 4108–4112 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Ohlrogge, W. et al. Generation and characterization of ecto-ADP-ribosyltransferase ART2.1/ART2.2-deficient mice. Mol. Cell. Biol. 22, 7535–7542 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Struyf, S., Proost, P. & Van Damme, J. Regulation of the immune response by the interaction of chemokines and proteases. Adv. Immunol. 81, 1–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. De Meester, I., Korom, S., Van Damme, J. & Scharpe, S. CD26, let it cut or cut it down. Immunol. Today 20, 367–375 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Lambeir, A. M. et al. Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J. Biol. Chem. 276, 29839–29845 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Christopherson, K. W. 2nd, Cooper, S. & Broxmeyer, H. E. Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood 101, 4680–4686 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Ludwig, A., Schiemann, F., Mentlein, R., Lindner, B. & Brandt, E. Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. J. Leukoc. Biol. 72, 183–191 (2002).

    CAS  PubMed  Google Scholar 

  74. Shioda, T. et al. Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1α (SDF-1α) and SDF-1β are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. Proc. Natl Acad. Sci. USA 95, 6331–6336 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oravecz, T. et al. Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J. Exp. Med. 186, 1865–1872 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Iwata, S. et al. CD26/dipeptidyl peptidase IV differentially regulates the chemotaxis of T cells and monocytes toward RANTES: possible mechanism for the switch from innate to acquired immune response. Int. Immunol. 11, 417–426 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Kruschinski, C. et al. CD26 (dipeptidyl-peptidase IV)-dependent recruitment of T cells in a rat asthma model. Clin. Exp. Immunol. 139, 17–24 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Busso, N. et al. Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am. J. Pathol. 166, 433–442 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gonzalez-Gronow, M., Misra, U. K., Gawdi, G. & Pizzo, S. V. Association of plasminogen with dipeptidyl peptidase IV and Na+/H+ exchanger isoform NHE3 regulates invasion of human 1-LN prostate tumor cells. J. Biol. Chem. 280, 27173–27178 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Ikushima, H. et al. Soluble CD26/dipeptidyl peptidase IV enhances transendothelial migration via its interaction with mannose 6-phosphate/insulin-like growth factor II receptor. Cell. Immunol. 215, 106–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Cheng, H. C., Abdel-Ghany, M., Elble, R. C. & Pauli, B. U. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J. Biol. Chem. 273, 24207–24215 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Boonacker, E. & Van Noorden, C. J. The multifunctional or moonlighting protein CD26/DPPIV. Eur. J. Cell Biol. 82, 53–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Kanayama, N. et al. Inactivation of interleukin-8 by aminopeptidase N (CD13). J. Leukoc. Biol. 57, 129–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Shipp, M. A., Stefano, G. B., Switzer, S. N., Griffin, J. D. & Reinherz, E. L. CD10 (CALLA)/neutral endopeptidase 24.11 modulates inflammatory peptide-induced changes in neutrophil morphology, migration, and adhesion proteins and is itself regulated by neutrophil activation. Blood 78, 1834–1841 (1991).

    CAS  PubMed  Google Scholar 

  85. Kirkwood, K. S. et al. Deletion of neutral endopeptidase exacerbates intestinal inflammation induced by Clostridium difficile toxin A. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G544–G551 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Blake, G. J. & Ridker, P. M. Novel clinical markers of vascular wall inflammation. Circ. Res. 89, 763–771 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Bazil, V. Physiological enzymatic cleavage of leukocyte membrane molecules. Immunol. Today 16, 135–140 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Smalley, D. M. & Ley, K. L-selectin: mechanisms and physiological significance of ectodomain cleavage. J. Cell. Mol. Med. 9, 255–266 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Peschon, J. J. et al. An essential role for ectodomain shedding in mammalian development. Science 282, 1281–1284 (1998). This report shows that CD156b is a sheddase that cleaves the rolling receptor CD62L from the surface of leukocytes.

    Article  CAS  PubMed  Google Scholar 

  90. Mohan, M. J. et al. The tumor necrosis factor-α converting enzyme (TACE): a unique metalloproteinase with highly defined substrate selectivity. Biochemistry 41, 9462–9469 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Walcheck, B., Alexander, S. R., St Hill, C. A. & Matala, E. ADAM-17-independent shedding of L-selectin. J. Leukoc. Biol. 74, 389–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Faveeuw, C., Preece, G. & Ager, A. Transendothelial migration of lymphocytes across high endothelial venules into lymph nodes is affected by metalloproteinases. Blood 98, 688–695 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Galkina, E. et al. L-selectin shedding does not regulate constitutive T cell trafficking but controls the migration pathways of antigen-activated T lymphocytes. J. Exp. Med. 198, 1323–1335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Venturi, G. M. et al. Leukocyte migration is regulated by L-selectin endoproteolytic release. Immunity 19, 713–724 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Itoh, Y. & Seiki, M. MT1-MMP: an enzyme with multidimensional regulation. Trends Biochem. Sci. 29, 285–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Nakamura, H. et al. Constitutive and induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase. Cancer Res. 64, 876–882 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Suenaga, N., Mori, H., Itoh, Y. & Seiki, M. CD44 binding through the hemopexin-like domain is critical for its shedding by membrane-type 1 matrix metalloproteinase. Oncogene 24, 859–868 (2005). In this work, the authors show that the hemopexin domain of MT-MMPs is involved in the shedding of CD44.

    Article  CAS  PubMed  Google Scholar 

  98. Vivinus-Nebot, M. et al. Mature human thymocytes migrate on laminin-5 with activation of metalloproteinase-14 and cleavage of CD44. J. Immunol. 172, 1397–1406 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. McQuibban, G. A. et al. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100, 1160–1167 (2002).

    CAS  PubMed  Google Scholar 

  100. Hundhausen, C. et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell–cell adhesion. Blood 102, 1186–1195 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Salmi, M., Kalimo, K. & Jalkanen, S. Induction and function of vascular adhesion protein-1 at sites of inflammation. J. Exp. Med. 178, 2255–2260 (1993).

    Article  CAS  PubMed  Google Scholar 

  102. Jaakkola, K. et al. In vivo detection of vascular adhesion protein-1 in experimental inflammation. Am. J. Pathol. 157, 463–471 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Smith, D. J. et al. Cloning of vascular adhesion protein-1 reveals a novel multifunctional adhesion molecule. J. Exp. Med. 188, 17–27 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Klinman, J. P. & Mu, D. Quinoenzymes in biology. Annu. Rev. Biochem. 63, 299–344 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Salmi, M. et al. A cell surface amine oxidase directly controls lymphocyte migration. Immunity 14, 265–276 (2001). This was the first study to show that SSAO activity is required for lymphocyte–endothelial-cell interactions.

    Article  CAS  PubMed  Google Scholar 

  106. Bonder, C. S. et al. Rules of recruitment for TH1 and TH2 lymphocytes in inflamed liver: a role for α-4 integrin and vascular adhesion protein-1. Immunity 23, 153–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Salmi, M. & Jalkanen, S. A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans. Science 257, 1407–1409 (1992).

    Article  CAS  PubMed  Google Scholar 

  108. Lalor, P. F. et al. Vascular adhesion protein-1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells. J. Immunol. 169, 983–992 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Yoong, K. F., McNab, G., Hubscher, S. G. & Adams, D. H. Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor-infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma. J. Immunol. 160, 3978–3988 (1998).

    CAS  PubMed  Google Scholar 

  110. Tohka, S., Laukkanen, M.-L., Jalkanen, S. & Salmi, M. Vascular adhesion protein 1 (VAP-1) functions as a molecular brake during granulocyte rolling and mediates their recruitment in vivo. FASEB J. 15, 373–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Martelius, T. et al. Blockade of vascular adhesion protein-1 inhibits lymphocyte infiltration in rat liver allograft rejection. Am. J. Pathol. 165, 1993–2001 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Merinen, M. et al. Vascular adhesion protein-1 is involved in both acute and chronic inflammation in the mouse. Am. J. Pathol. 166, 793–800 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Koskinen, K. et al. Granulocyte transmigration through endothelium is regulated by the oxidase activity of vascular adhesion protein-1 (VAP-1). Blood 103, 3388–3395 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Stolen, C. M. et al. Semicarbazide sensitive amine oxidase overexpression has dual consequences: insulin mimicry and diabetes-like complications. FASEB J. 18, 702–704 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Airenne, T. T. et al. Crystal structure of the human vascular adhesion protein-1: unique structural features with functional implications. Protein Sci. 14, 1964–1974 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. O'Sullivan, J. et al. The inhibition of semicarbazide-sensitive amine oxidase by aminohexoses. Biochim. Biophys. Acta 1647, 367–371 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Reth, M. Hydrogen peroxide as second messenger in lymphocyte activation. Nature Immunol. 3, 1129–1134 (2002).

    Article  CAS  Google Scholar 

  118. Nathan, C. Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J. Clin. Invest. 111, 769–778 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Johnston, B., Kanwar, S. & Kubes, P. Hydrogen peroxide induces leukocyte rolling: modulation by endogenous antioxidant mechanisms including NO. Am. J. Physiol. 271, H614–H621 (1996).

  120. Willam, C., Schindler, R., Frei, U. & Eckardt, K. U. Increases in oxygen tension stimulate expression of ICAM-1 and VCAM-1 on human endothelial cells. Am. J. Physiol. 276, H2044–H2052 (1999).

  121. Saccani, A. et al. Redox regulation of chemokine receptor expression. Proc. Natl Acad. Sci. USA 97, 2761–2766 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yoon, S. O., Park, S. J., Yoon, S. Y., Yun, C. H. & Chung, A. S. Sustained production of H2O2 activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-κB pathway. J. Biol. Chem. 277, 30271–30282 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Deem, T. L. & Cook-Mills, J. M. Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: role of reactive oxygen species. Blood 104, 2385–2393 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Yegutkin, G. G., Henttinen, T. & Jalkanen, S. Extracellular ATP formation on vascular endothelial cells is mediated by ecto-nucleotide kinase activities via phosphotransfer reactions. FASEB J. 15, 251–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Schwartz, B., Olgin, A. K. & Klinman, J. P. The role of copper in topa quinone biogenesis and catalysis, as probed by azide inhibition of a copper amine oxidase from yeast. Biochemistry 40, 2954–2963 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Krebs, C. et al. CD38 controls ADP-ribosyltransferase-2-catalyzed ADP-ribosylation of T cell surface proteins. J. Immunol. 174, 3298–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Peola, S. et al. Selective induction of CD73 expression in human lymphocytes by CD38 ligation: a novel pathway linking signal transducers with ecto-enzyme activities. J. Immunol. 157, 4354–4362 (1996).

    CAS  PubMed  Google Scholar 

  128. Deterre, P. et al. Coordinated regulation in human T cells of nucleotide-hydrolyzing ecto-enzymatic activities, including CD38 and PC-1. Possible role in the recycling of nicotinamide adenine dinucleotide metabolites. J. Immunol. 157, 1381–1388 (1996).

    CAS  PubMed  Google Scholar 

  129. Vainio, P. J. et al. Safety of blocking vascular adhesion protein-1 in patients with contact dermatitis. Basic Clin. Pharmacol. Toxicol. 96, 429–435 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Cannon, R. Mechanisms, management and future directions for reperfusion injury after acute myocardial infarction. Nature Clin. Pract. Cardiovasc. Med. 2, 88–94 (2005).

    Article  CAS  Google Scholar 

  131. Kupatt, C. et al. ACE-inhibition prevents postischemic coronary leukocyte adhesion and leukocyte-dependent reperfusion injury. Cardiovasc. Res. 36, 386–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Riaz, A. A. et al. Role of angiotensin II in ischemia/reperfusion-induced leukocyte–endothelium interactions in the colon. FASEB J. 18, 881–883 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Schumacher, M. et al. Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature 319, 407–409 (1986).

    Article  CAS  PubMed  Google Scholar 

  134. Goding, J. W. Ecto-enzymes: physiology meets pathology. J. Leukoc. Biol. 67, 285–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Cheng, H. C., Abdel-Ghany, M., Zhang, S. & Pauli, B. U. Is the Fischer 344/CRJ rat a protein-knock-out model for dipeptidyl peptidase IV-mediated lung metastasis of breast cancer? Clin. Exp. Metastasis 17, 609–615 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Marttila-Ischihara for the intravital-microscopy video and G. Yegutkin for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Salmi.

Ethics declarations

Competing interests

Sirpa Jalkanen owns shares in a Finnish biotechnology company that is targeting one of the molecules (VAP1) described in this Review.

Supplementary information

Supplementary Information S1

S1 | Leukocyte-extravasation cascade in vivo. Leukocyte-endothelial-cell contacts were visualized in a living, anaesthetized mouse, using intravital microscopy. In an inflamed venule of cremaster muscle, numerous rolling cells can be seen (moving from top to bottom). There are also many firmly adherent leukocytes (some indicated by red arrows) and cells that have transmigrated (some indicated by blue arrows). Non-interacting cells (for example, erythrocytes) move too fast to be distinguished as individual cells.The blood flow is from the top to the bottom. The video runs at real-time speed, and the yellow bar indicates a distance of 30µm. (AVI 1618 kb)

Related links

Related links

DATABASES

Entrez Gene

adenosine deaminase

ART2

autotaxin

CD10

CD13

CD26

CD38

CD39

CD73

CD156b

CD157

VAP1

FURTHER INFORMATION

Department of Bacterial and Inflammatory Diseases

Sirpa Jalkanen's homepage

Glossary

EXTRAVASATION CASCADE

The multistep process during which a leukocyte migrates from the blood into the tissue through the blood-vessel wall.

CHEMOKINES

Most chemokines are short, soluble peptides that bind serpentine receptors to trigger leukocyte activation and directed movement. Most chemokines belong to the CC-chemokine ligand (CCL) and CXC-chemokine ligand (CXCL) families, which are defined on the basis of their protein sequence. Chemokine receptors are named CC-chemokine receptor (CCR) and CXC-chemokine receptor (CXCR) depending on whether they bind mainly CCL or CXCL chemokines, respectively.

EC NUMBER

(Enzyme commission number). A number that belongs to an international classification of enzymes.

ISCHAEMIA-REPERFUSION INJURY

An injury in which the tissue first suffers from hypoxia as a result of severely decreased, or completely arrested, blood flow. Restoration of normal blood flow then triggers inflammation, which exacerbates the tissue damage.

fMLP

(N-formyl-methionyl-leucyl-phenylalanine). A bacterial peptide that is a highly potent chemoattractant, especially for granulocytes.

TOPA-QUINONE

A modified tyrosine residue (2,4,5-trihydroxyphenylalanyl quinone) that is required for the enzymatic activity of certain amine oxidases.

SCHIFF BASE

The functional group or compound that contains a carbon–nitrogen double bond.

HYDROGEN PEROXIDE

A potent signalling molecule and inflammatory mediator that is a reactive oxygen species.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmi, M., Jalkanen, S. Cell-surface enzymes in control of leukocyte trafficking. Nat Rev Immunol 5, 760–771 (2005). https://doi.org/10.1038/nri1705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1705

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing