Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Will telomere erosion lead to a loss of T-cell memory?

Abstract

Evidence is accumulating that elderly individuals are more susceptible to infection with organisms to which they were previously immune. This indicates that there might be a limit to the persistence of immune memory. This fact is particularly disturbing because the average life expectancy of humans has almost doubled in the past 200 years and is still increasing. We discuss mechanisms that might constrain the persistence of memory T cells and consider whether humans will suffer from memory T-cell exhaustion as life expectancy increases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human life expectancy.
Figure 2: Mechanism of telomere erosion in T cells.
Figure 3: Constraints on human T-cell memory during ageing.

Similar content being viewed by others

References

  1. Lomborg, B. The Skeptical Environmentalist: Measuring the Real State of the World (Cambridge Univ. Press, 2001).

    Book  Google Scholar 

  2. Keyfitz, N. & Flieger, W. World Population Growth and Aging Vol. 107 (Univ. Chicago Press, 1990).

    Google Scholar 

  3. Lutz, W., Sanderson, W. & Scherbov, S. Doubling of world population unlikely. Nature 387, 803–805 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Russell, J. C. in Fontana Economic History of Europe Vol. 1 (ed. Cipolla, C.) 25–70 (Fontana, London, 1978).

    Google Scholar 

  5. La Croix, A. Z., Lipson, S., Miles, T. P. & Whilte, L. Prospective study of pneumonia hospitalization and mortality of U.S. older people: the role of chronic conditions, health behaviours and nutritional status. Public Health Rep. 104, 350–360 (1989).

    CAS  Google Scholar 

  6. Gorse, G. J. et al. Bacterial meningitis in the elderly. Arch. Intern. Med. 144, 1603–1607 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Chattopadhyay, B. & Al Zahawi, M. Septicaemia and its unacceptably high mortality in the elderly. J. Infect. 7, 134–138 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Ackermann, R. J. & Monroe, P. W. Bacteremic urinary tract infection in older people. J. Am. Geriatr. Soc. 44, 927–933 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Barker, W. H. & Mullooly, J. P. Impact of epidemic type A influenza in a defined adult population. Am. J. Epidemiol. 112, 798–811 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Sprenger, M. J., Mulder, P. G., Beyer, W. E., Van Strik, R. & Masurel, N. Impact of influenza on mortality in relation to age and underlying disease, 1967–1989. Int. J. Epidemiol. 22, 334–340 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Yoshikawa, T. T. Perspective: aging and infectious diseases: past, present, and future. J. Infect. Dis. 176, 1053–1057 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Grubeck-Loebenstein, B. & Wick, G. The aging of the immune system. Adv. Immunol. 80, 243–284 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Berger, R., Florent, G. & Just, M. Decrease of the lymphoproliferative response to varicella-zoster virus antigen in the aged. Infect. Immun. 32, 24–27 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scott, B. J., Powers, D. C., Johnson, J. E. & Morley, J. E. Seroepidemiologic evidence of Epstein–Barr virus re-activation in a veterans' nursing home. Serodiagn. Immunother. Infect. Dis. 6, 87–92 (1994).

    Article  Google Scholar 

  15. Nagami, P. H. & Yoshikawa, T. T. Tuberculosis in the geriatric patient. J. Am. Geriatr. Soc. 31, 356–363 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Y., Cosyns, M., Levin, M. J. & Hayward, A. R. Cytokine production in varicella zoster virus-stimulated limiting dilution lymphocyte cultures. Clin. Exp. Immunol. 98, 128–133 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Demkowicz, W. E. Jr, Littaua, R. A., Wang, J. & Ennis, F. A. Human cytotoxic T-cell memory: long-lived responses to vaccinia virus. J. Virol. 70, 2627–2631 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsieh, S. M., Pan, S. C., Chen, S. Y., Huang, P. F. & Chang, S. C. Age distribution for T cell reactivity to vaccinia virus in a healthy population. Clin. Infect. Dis. 38, 86–89 (2004).

    Article  PubMed  Google Scholar 

  19. Dworsky, R., Paganini-Hill, A., Arthur, M. & Parker, J. Immune responses of healthy humans 83–104 years of age. J. Natl Cancer Inst. 71, 265–268 (1983).

    CAS  PubMed  Google Scholar 

  20. Linton, P. J. & Dorshkind, K. Age-related changes in lymphocyte development and function. Nature Immunol. 5, 133–139 (2004).

    Article  CAS  Google Scholar 

  21. Olsson, J. & Wikby, A. Age-related change in peripheral blood T lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech. Ageing Dev. 121, 187–201 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Ouyang, Q. et al. Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp. Gerontol. 38, 911–920 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Ouyang, Q. et al. An age-related increase in the number of CD8+ T cells carrying receptors for an immunodominant Epstein–Barr virus (EBV) epitope is counteracted by a decreased frequency of their antigen-specific responsiveness. Mech. Ageing Dev. 124, 477–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Faint, J. M. et al. Memory T cells constitute a subset of the human CD8+CD45RA+ pool with distinct phenotypic and migratory characteristics. J. Immunol. 167, 212–220 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Weninger, W., Crowley, M. A., Manjunath, N. & von Andrian, U. H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407–1418 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salmon, M. et al. The progressive differentiation of primed T cells is associated with an increasing susceptibility to apoptosis. Eur. J. Immunol. 24, 892–899 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Akbar, A. N., Salmon, M., Savill, J. & Janossy, G. A possible role for Bcl-2 in regulating T-cell memory — a 'balancing act' between cell death and survival. Immunol. Today 14, 526–532 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Pawelec, G. et al. T cells and aging, January 2002 update. Front. Biosci. 7, d1056–d1183 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Akbar, A. N., Terry, L., Timms, A., Beverley, P. C. & Janossy, G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J. Immunol. 140, 2171–2178 (1988).

    CAS  PubMed  Google Scholar 

  32. Geginat, J., Lanzavecchia, A. & Sallusto, F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101, 4260–4266 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Dunne, P. J. et al. Epstein–Barr virus-specific CD8+ T cells that re-express CD45RA are apoptosis-resistant memory cells that retain replicative potential. Blood 100, 933–940 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Wills, M. R. et al. Human virus-specific CD8+ CTL clones revert from CD45ROhi to CD45RAhiin vivo: CD45RAhi CD8+ T cells comprise both naive and memory cells. J. Immunol. 162, 7080–7087 (1999).

    CAS  PubMed  Google Scholar 

  35. Kuijpers, T. W. et al. Frequencies of circulating cytolytic, CD45RA+CD27CD8+ T lymphocytes depend on infection with CMV. J. Immunol. 170, 4342–4348 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Khan, N. et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J. Immunol. 169, 1984–1992 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Voehringer, D., Koschella, M. & Pircher, H. Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). Blood 100, 3698–3702 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Hodes, R. J., Hathcock, K. S. & Weng, N. P. Telomeres in T and B cells. Nature Rev. Immunol. 2, 699–706 (2002).

    Article  CAS  Google Scholar 

  40. Haynes, B. F., Markert, M. L., Sempowski, G. D., Patel, D. D. & Hale, L. P. The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu. Rev. Immunol. 18, 529–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Jamieson, B. D. et al. Generation of functional thymocytes in the human adult. Immunity 10, 569–575 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Douek, D. C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690–695 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Nagel, J. E., Chrest, F. J. & Adler, W. H. Enumeration of T lymphocyte subsets by monoclonal antibodies in young and aged humans. J. Immunol. 127, 2086–2088 (1981).

    CAS  PubMed  Google Scholar 

  44. Wright, W. E. & Shay, J. W. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nature Med. 6, 849–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Blackburn, E. H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Ducray, C., Pommier, J. P., Martins, L., Boussin, F. D. & Sabatier, L. Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process. Oncogene 18, 4211–4223 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. d'Adda, D. F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  CAS  Google Scholar 

  48. Plunkett, F. J. et al. The flow cytometric analysis of telomere length in antigen-specific CD8+ T cells during acute Epstein–Barr virus infection. Blood 97, 700–707 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Reed, J. R. et al. Telomere erosion in memory T cells induced by telomerase inhibition at the site of antigenic challenge in vivo. J. Exp. Med. 199, 1433–1443 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rufer, N. et al. Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood 102, 1779–1787 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Pawelec, G. et al. Is immunosenescence infectious? Trends Immunol. 25, 406–410 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Akbar, A. N., Soares, M. V., Plunkett, F. J. & Salmon, M. Differential regulation of CD8+ T cell senescence in mice and men. Mech. Ageing Dev. 121, 69–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Gupta, S., Kim, C., Yel, L. & Gollapudi, S. A role of Fas-associated death domain (FADD) in increased apoptosis in aged humans. J. Clin. Immunol. 24, 24–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Maini, M. K., Soares, M. V., Zilch, C. F., Akbar, A. N. & Beverley, P. C. Virus-induced CD8+ T cell clonal expansion is associated with telomerase up-regulation and telomere length preservation: a mechanism for rescue from replicative senescence. J. Immunol. 162, 4521–4526 (1999).

    CAS  PubMed  Google Scholar 

  55. Hathcock, K. S., Kaech, S. M., Ahmed, R. & Hodes, R. J. Induction of telomerase activity and maintenance of telomere length in virus-specific effector and memory CD8+ T cells. J. Immunol. 170, 147–152 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Soares, M. V. et al. Integration of apoptosis and telomere erosion in virus-specific CD8+ T cells from blood and tonsils during primary infection. Blood 103, 162–167 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Sedgwick, R. P. & Boder, E. in Handbook of Clinical Neurology (ed. de Jong, J. M. J. V.) 347–423 (Elsevier Science, Amsterdam, 1991).

    Google Scholar 

  58. Dokal, I. Dyskeratosis congenita in all its forms. Br. J. Haematol. 110, 768–779 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Solder, B., Weiss, M., Jager, A. & Belohradsky, B. H. Dyskeratosis congenita: multisystemic disorder with special consideration of immunologic aspects. A review of the literature. Clin. Pediatr. (Phila.) 37, 521–530 (1998).

    Article  CAS  Google Scholar 

  60. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med. 8, 379–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Wikby, A. et al. Expansions of peripheral blood CD8 T lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp. Gerontol. 37, 445–453 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Davenport, M. P., Fazou, C., McMichael, A. J. & Callan, M. F. Clonal selection, clonal senescence, and clonal succession: the evolution of the T cell response to infection with a persistent virus. J. Immunol. 168, 3309–3317 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Wallace, D. L. et al. Direct measurement of T cell subset kinetics in vivo in elderly men and women. J. Immunol. 173, 1787–1794 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Rufer, N. et al. Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential. Blood 98, 597–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Hooijberg, E. et al. Immortalization of human CD8+ T cell clones by ectopic expression of telomerase reverse transcriptase. J. Immunol. 165, 4239–4245 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Soares, M. V. et al. IL-7-dependent extrathymic expansion of CD45RA+ T cells enables preservation of a naive repertoire. J. Immunol. 161, 5909–5917 (1998).

    CAS  PubMed  Google Scholar 

  69. Henson, S. M., Pido-Lopez, J. & Aspinall, R. Reversal of thymic atrophy. Exp. Gerontol. 39, 673–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Sharpless, N. E. & DePinho, R. A. Telomeres, stem cells, senescence, and cancer. J. Clin. Invest. 113, 160–168 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crimmins, E. M. Mortality and health in human life spans. Exp. Gerontol. 36, 885–897 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Franceschi, C. et al. Long telomeres and well preserved proliferative vigor in cells from centenarians: a contribution to longevity? Aging (Milano) 11, 69–72 (1999).

    CAS  Google Scholar 

  73. Makinodan, T. Studies on the influence of age on immune response to understand the biology of immunosenescence. Exp. Gerontol. 33, 27–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Kipling, D. & Cooke, H. J. Hypervariable ultra-long telomeres in mice. Nature 347, 400–402 (1990).

    Article  CAS  PubMed  Google Scholar 

  75. Engwerda, C. R., Handwerger, B. S. & Fox, B. S. Aged T cells are hyporesponsive to costimulation mediated by CD28. J. Immunol. 152, 3740–3747 (1994).

    CAS  PubMed  Google Scholar 

  76. Valenzuela, H. F. & Effros, R. B. Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin. Immunol. 105, 117–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Maini, M. K., Gudgeon, N., Wedderburn, L. R., Rickinson, A. B. & Beverley, P. C. Clonal expansions in acute EBV infection are detectable in the CD8 and not the CD4 subset and persist with a variable CD45 phenotype. J. Immunol. 165, 5729–5737 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Hassan, J. & Reen, D. J. IL-7 promotes the survival and maturation but not differentiation of human post-thymic CD4+ T cells. Eur. J. Immunol. 28, 3057–3065 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. White, A. & Cash, K. The State of Men's Health Across Seventeen European Countries (European Men's Health Forum, Brussels, 2003).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Vukmanovic-Stejic, R. Faragher, J. Fletcher and R. Aspinall for helpful discussions. This work was supported by grants from Research Into Ageing, London, United Kingdom, and The Biotechnology and Biological Sciences Research Council, United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne N. Akbar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

BCL-2

CCR7

CD4

CD8

CD27

CD28

CD45

CD62 ligand

CD95

dyskerin

IFN-γ

KLRG1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbar, A., Beverley, P. & Salmon, M. Will telomere erosion lead to a loss of T-cell memory?. Nat Rev Immunol 4, 737–743 (2004). https://doi.org/10.1038/nri1440

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1440

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing