Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and functional significance of tumour-induced dendritic-cell defects

Key Points

  • Dendritic cells (DCs) are crucial for the induction of a potent immune response.

  • The dysfunction of DCs in cancer is caused mainly by abnormalities in their differentiation.

  • These abnormalities include decreased production of mature DCs, accumulation of immature DCs and accumulation of immature myeloid cells.

  • Tumour cells produce several factors that affect DC differentiation. These factors include vascular endothelial growth factor, interleukin-10 (IL-10), granulocyte/macrophage colony-stimulating factor (GM-CSF), IL-6 and M-CSF.

  • These factors might converge on a common signal-transduction pathway — the JAK2 (Janus activated kinase 2)–STAT3 (signal transducer and activator of transcription 3) pathway.

  • Hyperactivation of STAT3 in haematopoietic progenitor cells results in the accumulation of immature myeloid cells that cannot differentiate into DCs.

  • STAT3 might exert its effect on DC differentiation by inhibiting activation of nuclear factor-κB.

Abstract

The failure of the immune system to provide protection against tumour cells is an important immunological problem. It is now evident that inadequate function of the host immune system is one of the main mechanisms by which tumours escape from immune control, as well as an important factor that limits the success of cancer immunotherapy. In recent years, it has become increasingly clear that defects in dendritic cells have a crucial role in non-responsiveness to tumours. This article focuses on the functional consequences and recently described mechanisms of the dendritic-cell defects in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of normal DC differentiation and the role of DCs in antitumour immunity.
Figure 2: Functional consequences of abnormal DC differentiation in cancer.
Figure 3: Model of STAT3-mediated signalling in abnormal differentiation of DCs.
Figure 4: Involvement of NF-κB in abnormal DC differentiation in cancer.

Similar content being viewed by others

References

  1. Vuckovic, S., Clark, G. J. & Hart, D. N. Growth factors, cytokines and dendritic cell development. Curr. Pharm. Des. 8, 405–418 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Cheng, P., Nefedova, Y., Miele, L., Osborne, B. A. & Gabrilovich, D. Notch signaling is necessary but not sufficient for differentiation of dendritic cells. Blood 102, 3980–3988 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Weijzen, S. et al. The Notch ligand Jagged-1 is able to induce maturation of monocyte-derived human dendritic cells. J. Immunol. 169, 4273–4278 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Ohishi, K., Varnum-Finney, B., Serda, R. E., Anasetti, C. & Bernstein, I. D. The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells. Blood 98, 1402–1407 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Shigematsu, H. et al. Plasmacytoid dendritic cells activate lymphoid-specific genetic programs irrespective of their cellular origin. Immunity 21, 43–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Shortman, K. & Liu, Y. J. Mouse and human dendritic cell subtypes. Nature Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  Google Scholar 

  7. del Hoyo, G. M. et al. Characterization of a common precursor population for dendritic cells. Nature 415, 1043–1047 (2002).

    Article  PubMed  Google Scholar 

  8. Sauter, B. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Steinman, R. M. Some interfaces of dendritic cell biology. APMIS 111, 675–697 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–812 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Lanzavecchia, A. & Sallusto, F. Regulation of T cell immunity by dendritic cells. Cell 106, 263–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Tas, M., Simons, P., Balm, F. & Drexhage, H. Depressed monocyte polarization and clustering of dendritic cells in patients with head and neck cancer: in vitro restoration of this immunosuppression by thymic hormones. Cancer Immunol. Immunother. 36, 108–114 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Thurnher, M. et al. Human renal-cell carcinoma tissue contains dendritic cells. Int. J. Cancer 67, 1–7 (1996).

    Article  Google Scholar 

  14. Gabrilovich, D., Ciernik, F. & Carbone, D. P. Dendritic cells in anti-tumor immune responses. I. Defective antigen presentation in tumor-bearing hosts. Cell. Immunol. 170, 101–110 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Gabrilovich, D. I., Corak, J., Ciernik, I. F., Kavanaugh, D. & Carbone, D. P. Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin. Cancer Res. 3, 483–490 (1997).

    CAS  PubMed  Google Scholar 

  16. Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. & Carbone, D. P. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5, 2963–2970 (1999).

    CAS  PubMed  Google Scholar 

  17. Ishida, T., Oyama, T., Carbone, D. & Gabrilovich, D. I. Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hematopoietic progenitors. J. Immunol. 161, 4842–4851 (1998).

    CAS  PubMed  Google Scholar 

  18. Almand, B. et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin. Cancer Res. 6, 1755–1766 (2000). This study shows decreased numbers of DCs and accumulation of iMCs in patients with three types of cancer.

    CAS  PubMed  Google Scholar 

  19. Wojas, K., Tabarkiewicz, J., Jankiewicz, M. & Rolinski, J. Dendritic cells in peripheral blood of patients with breast and lung cancer — a pilot study. Folia Histochem. Cytobiol. 42, 45–48 (2004).

    CAS  PubMed  Google Scholar 

  20. Della Bella, S. et al. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br. J. Cancer 89, 1463–1472 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Hoffmann, T. K. et al. Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck. Clin. Cancer Res. 8, 1787–1793 (2002). References 20 and 21 report that DC defects in cancer patients are confined to the population of myeloid DCs and not pDCs or lymphoid DCs.

    PubMed  Google Scholar 

  22. Troy, A., Davidson, P., Atkinson, C. & Hart, D. Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer. J. Urol. 160, 214–219 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Troy, A. J., Summers, K. L., Davidson, P. J., Atkinson, C. H. & Hart, D. N. Minimal recruitment and activation of dendritic cells within renal cell carcinoma. Clin. Cancer Res. 4, 585–593 (1998).

    CAS  PubMed  Google Scholar 

  24. Enk, A. H., Jonuleit, H., Saloga, J. & Knop, J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int. J. Cancer 73, 309–316 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Nestle, F. O., Burg, G., Fah, J., Wrone-Smith, T. & Nickoloff, B. J. Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells. Am. J. Pathol. 150, 641–651 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chaux, P., Favre, N., Martin, M. & Martin, F. Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression in rats. Int. J. Cancer 72, 619–624 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Ciavarra, R. P. et al. Prostate tumor microenvironment alters immune cells and prevents long-term survival in an orthotopic mouse model following FLT3-ligand/CD40-ligand immunotherapy. J. Immunother. 27, 13–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Harding, F. A., McArthur, J. G., Gross, J. A., Raulet, D. H. & Allison, J. P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196, 1627–1638 (2002). This paper reports that non-activated DCs loaded with antigen in vivo can induce peripheral T-cell tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bronte, V., Serafini, P., Appoloni, E. & Zanovello, P. Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J. Immunother. 24, 431–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kusmartsev, S. & Gabrilovich, D. I. Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol. Immunother. 51, 293–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Kusmartsev, S. & Gabrilovich, D. I. Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J. Leukoc. Biol. 74, 186–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Nefedova, Y. et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J. Immunol. 172, 464–474 (2004). This paper shows a crucial role for STAT3 in tumour-induced abnormalities in the differentiation of myeloid cells.

    Article  CAS  PubMed  Google Scholar 

  34. Terabe, M. et al. Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J. Exp. Med. 198, 1741–1752 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bronte, V. et al. Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J. Immunol. 161, 5313–5320 (1998).

    CAS  PubMed  Google Scholar 

  36. Gabrilovich, D. I., Velders, M., Sotomayor, E. & Kast, W. M. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J. Immunol. 166, 5398–5406 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Melani, C., Chiodoni, C., Forni, G. & Colombo, M. P. Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102, 2138–2145 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Li, Q., Pan, P. Y., Gu, P., Xu, D. & Chen, S. H. Role of immature myeloid Gr-1+ cells in the development of antitumor immunity. Cancer Res. 64, 1130–1139 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Young, M., Newby, M. & Wepsic, T. Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res. 47, 100–105 (1987).

    CAS  PubMed  Google Scholar 

  40. Kusmartsev, S., Li, Y. & Chen, S. Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J. Immunol. 165, 779–785 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Ruiz de Morales, J., Velez, D. & Subiza, J. Ehrlich tumor stimulates extramedullar hematopoiesis in mice without secreting identifiable colony-stimulating factors and without engagement of host T cells. Exp. Hematol. 27, 1757–1767 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Fu, Y., Watson, G., Jimenez, J., Wang, Y. & Lopez, D. Expansion of immunoregulatory macrophages by granulocyte–macrophage colony-stimulating factor derived from a murine mammary tumor. Cancer Res. 50, 227–234 (1990).

    CAS  PubMed  Google Scholar 

  43. Salvadori, S., Martinelli, G. & Zier, K. Resection of solid tumors reverses T cell defects and restores protective immunity. J. Immunol. 164, 2214–2220 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Kusmartsev, S., Nefedova, Y., Yoder, D. & Gabrilovich, D. I. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J. Immunol. 172, 989–999 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Otsuji, M., Kimura, Y., Aoe, T., Okamoto, Y. & Saito, T. Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 ζ chain of T-cell receptor complex and antigen-specific T-cell responses. Proc. Natl Acad. Sci. USA 93, 13119–13124 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schmielau, J. & Finn, O. J. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 61, 4756–4760 (2001).

    CAS  PubMed  Google Scholar 

  47. Bronte, V. et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol. 170, 270–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Almand, B. et al. Increased production of immature myeloid cells in cancer patients. A mechanism of immunosuppression in cancer. J. Immunol. 166, 678–689 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Danna, E. A. et al. Surgical removal of primary tumor reverses tumor-induced immunosuppression despite the presence of metastatic disease. Cancer Res. 64, 2205–2211 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Gabrilovich, D. & Pisarev, V. Tumor escape from immune response: mechanisms and targets of activity. Curr. Drug Targets 4, 525–536 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Gabrilovich, D. I., Nadaf, S., Corak, J., Berzofsky, J. A. & Carbone, D. P. Dendritic cells in anti-tumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell. Immunol. 170, 111–120 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Med. 2, 1096–1103 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Toi, M. et al. Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer 77, 1101–1106 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Ellis, L. M. & Fidler, I. J. Angiogenesis and metastasis. Eur. J. Cancer 32A, 2451–2460 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Gabrilovich, D. et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Ohm, J. E. et al. Effect of vascular endothelial growth factor and FLT3 ligand on dendritic cell generation in vivo. J. Immunol. 163, 3260–3268 (1999).

    CAS  PubMed  Google Scholar 

  57. Saito, H., Tsujitani, S., Ikeguchi, M., Maeta, M. & Kaibara, N. Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue. Br. J. Cancer 78, 1573–1577 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lissoni, P. et al. Abnormally enhanced blood concentrations of vascular endothelial growth factor (VEGF) in metastatic cancer patients and their relation to circulating dendritic cells, IL-12 and endothelin-1. J. Biol. Regul. Homeost. Agents 15, 140–144 (2001).

    CAS  PubMed  Google Scholar 

  59. Takahashi, A. et al. Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol. Immunother. 53, 543–550 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Fan, X. H. et al. Vascular endothelial growth factor inhibits dendritic cells from patients with non-small cell lung carcinoma. Zhonghua Jie He He Hu Xi Za Zhi 26, 539–543 (2003) (in Chinese).

    PubMed  Google Scholar 

  61. Menetrier-Caux, C. et al. Inhibition of the differentiation of dendritic cells from CD34+ progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92, 4778–4791 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Menetrier-Caux, C., Thomachot, M. C., Alberti, L., Montmain, G. & Blay, J. Y. IL-4 prevents the blockade of dendritic cell differentiation induced by tumor cells. Cancer Res. 61, 3096–3104 (2001).

    CAS  PubMed  Google Scholar 

  63. Ratta, M. et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100, 230–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Hayashi, T. et al. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood 102, 1435–1442 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Park, S. J. et al. IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J. Immunol. 173, 3844–3854 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Bronte, V. et al. Unopposed production of granulocyte–macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J. Immunol. 162, 5728–5737 (1999).

    CAS  PubMed  Google Scholar 

  67. Young, M., Wright, M. & Young, M. Antibodies to colony-stimulating factors block Lewis lung carcinoma cell stimulation of immune-suppressive bone marrow cells. Cancer Immunol. Immunother. 33, 146–152 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Dranoff, G. GM-CSF-secreting melanoma vaccines. Oncogene 22, 3188–3192 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Serafini, P. et al. High-dose GM-CSF-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 64, 6337–6343 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Sharma, S. et al. T-cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. J. Immunol. 163, 5020–5028 (1999).

    CAS  PubMed  Google Scholar 

  71. Steinbrink, K., Wolfl, M., Jonuleit, H., Knop, J. & Enk, A. H. Induction of tolerance by IL-10-treated dendritic cells. J. Immunol. 159, 4772–4780 (1997).

    CAS  PubMed  Google Scholar 

  72. Steinbrink, K., Graulich, E., Kubsch, S., Knop, J. & Enk, A. CD4+ and CD8+ anergic T cells induced by interleukin-10-treated human dendritic cells display antigen specific suppressor activity. Blood 99, 2468–2476 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Allavena, P. et al. IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur. J. Immunol. 28, 359–363 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Buelens, C. et al. Human dendritic cell responses to lipopolysaccharide and CD40 ligation are differentially regulated by interleukin-10. Eur. J. Immunol. 27, 1848–1852 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Enk, A. H., Angeloni, V. L., Udey, M. C. & Katz, S. I. Inhibition of Langerhans cell antigen-presenting function by IL-10. A role for IL-10 in induction of tolerance. J. Immunol. 151, 2390–2398 (1993).

    CAS  PubMed  Google Scholar 

  76. Peguet Navarro, J. et al. Interleukin-10 inhibits the primary allogeneic T cell response to human epidermal Langerhans cells. Eur. J. Immunol. 24, 884–889 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Beissert, S., Hosoi, J., Grabbe, S., Asahina, A. & Granstein, R. D. IL-10 inhibits tumor antigen presentation by epidermal antigen-presenting cells. J. Immunol. 154, 1280–1286 (1995).

    CAS  PubMed  Google Scholar 

  78. Caux, C. et al. Interleukin 10 inhibits T cell alloreaction induced by human dendritic cells. Int. Immunol. 6, 1177–1185 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Seo, N., Hayakawa, S., Takigawa, M. & Tokura, Y. Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4+ T-regulatory cells and systemic collapse of antitumour immunity. Immunology 103, 449–457 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Berman, R. M. et al. Systemic administration of cellular IL-10 induces an effective, specific, and long-lived immune response against established tumors in mice. J. Immunol. 157, 231–238 (1996).

    CAS  PubMed  Google Scholar 

  81. Yang, A. S. & Lattime, E. C. Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res. 63, 2150–2157 (2003).

    CAS  PubMed  Google Scholar 

  82. Hakomori, S. Structure, organization, and function of glycosphingolipids in membrane. Curr. Opin. Hematol. 10, 16–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Birkle, S., Zeng, G., Gao, L., Yu, R. K. & Aubry, J. Role of tumor-associated gangliosides in cancer progression. Biochimie 85, 455–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Shurin, G. V. et al. Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res. 61, 363–369 (2001).

    CAS  PubMed  Google Scholar 

  85. Peguet-Navarro, J. et al. Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. J. Immunol. 170, 3488–3494 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Kalinski, P., Hilkens, C. M., Snijders, A., Snijdewint, F. G. & Kapsenberg, M. L. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J. Immunol. 159, 28–35 (1997).

    CAS  PubMed  Google Scholar 

  87. Rane, S. G. & Reddy, E. S. Janus kinases: components of multiple signaling pathways. Oncogene 19, 5662–5679 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Imada, K. & Leonard, W. J. The JAK–STAT pathway. Mol. Immunol. 37, 1–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Nosaka, T. & Kitamura, T. Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) in hematopoietic cells. Int. J. Hematol. 71, 309–319 (2000).

    CAS  PubMed  Google Scholar 

  90. Steelman, L. S. et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18, 189–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Yu, H. & Jove, R. The STATs of cancer — new molecular targets come of age. Nature Rev. Cancer 4, 97–105 (2004). This paper reviews the role of STAT3 in cancer.

    Article  CAS  Google Scholar 

  92. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nature Med. 10, 48–54 (2004). This study shows an important role for STAT3 in regulating the effect of tumour cells on DC differentiation.

    Article  PubMed  CAS  Google Scholar 

  93. Takeda, K. et al. Enhanced TH1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Cheng, F. et al. A critical role for Stat3 signaling in immune tolerance. Immunity 19, 425–436 (2003). The study shows the important role of STAT3 in the induction of T-cell tolerance.

    Article  CAS  PubMed  Google Scholar 

  95. Duarte, R. F. & Franf, D. A. The synergy between stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF): molecular basis and clinical relevance. Leuk. Lymphoma 43, 1179–1187 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Smithgall, T. E. et al. Control of myeloid differentiation and survival by Stats. Oncogene 19, 2612–2618 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Liou, H. C. & Baltimore, D. Regulation of the NF-κB/Rel transcription factor and IκB inhibitor system. Curr. Opin. Cell Biol. 5, 477–487 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Ouaaz, F., Arron, J., Zheng, Y., Choi, Y. & Beg, A. A. Dendritic cell development and survival require distinct NF-κB subunits. Immunity 16, 257–270 (2002). This paper describes a detailed study of the role of different NF-κB subunits in DC differentiation.

    Article  CAS  PubMed  Google Scholar 

  99. Boehmelt, G. et al. Dendritic cell progenitor is transformed by a conditional v-Rel estrogen receptor fusion protein v-RelER. Cell 80, 341–352 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Burkly, L. et al. Expression of RelB is required for development of thymic medulla and dendritic cells. Nature 373, 531–536 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Oyama, T. et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-κB activation in hemopoietic progenitor cells. J. Immunol. 160, 1224–1232 (1998).

    CAS  PubMed  Google Scholar 

  102. Dikov, M. et al. Vascular endothelial growth factor effects on nuclear factor-κB activation in hematopoietic progenitor cells. Cancer Res. 61, 2015–2021 (2001).

    CAS  PubMed  Google Scholar 

  103. Yu, Z., Zhang, W. & Kone, B. C. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor κB. Biochem. J. 367, 97–105 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hoentjen, F., Sartor, R. B., Ozaki, M. & Jobin, C. STAT3 regulates NF-κB recruitment to the IL-12p40 promoter in dendritic cells. Blood 13 Jul 2004 (doi:10.1182/blood-2004-04-1309). References 103 and 104 show that direct interaction occurs between STAT3 and NF-κB and that NF-κB activation is inhibited by STAT3.

  105. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Manz, M. G., Miyamoto, T., Akashi, K. & Weissman, I. L. Prospective isolation of human clonogenic common myeloid progenitors. Proc. Natl Acad. Sci. USA 99, 11872–11877 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nolan, K. F. et al. IL-10-conditioned dendritic cells, decommissioned for recruitment of adaptive immunity, elicit innate inflammatory gene products in response to danger signals. J. Immunol. 172, 2201–2209 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank members of my laboratory for valuable discussions and the National Institutes of Health (Bethesda, United States) for supporting my research.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CD11b

GM-CSF

GR1

IL-6

IL-10

JAK2

M-CSF

STAT3

VEGF

Glossary

ANERGY

A state of non-responsiveness to antigen. Anergic T or B cells cannot respond to their cognate antigens under optimal conditions of stimulation.

LANGERHANS CELLS

Professional antigen-presenting dendritic cells that are localized in the skin epidermis.

SRC HOMOLOGY 2 DOMAIN

(SH2 domain). A protein domain that is commonly found in signal-transduction molecules. It interacts specifically with phosphotyrosine-containing sequences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4, 941–952 (2004). https://doi.org/10.1038/nri1498

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1498

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing