Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategies to enhance T-cell reconstitution in immunocompromised patients

Key Points

  • T-cell deficiency that results from ageing, infections (such as HIV), immunosuppressive therapies (especially in patients with cancer and recipients of transplants) and bone-marrow transplantation causes significant morbidity and mortality from infections.

  • Strategies to enhance T-cell recovery in recipients of an allogeneic haematopoietic stem-cell transplant, who suffer from a severe and prolonged T-cell deficiency after transplantation, have been studied in preclinical and clinical trials.

  • These strategies are, in most cases, also applicable to other patients with T-cell deficiencies.

  • Strategies include the following: adoptive transfer of lymphoid precursors; enhancing thymopoiesis with thymic grafts or grafting of thymic epithelial cells; generating thymic precursors or T cells using ex vivo culture systems; stimulating production of T cells using hormones and growth factors, including sex-steroid inhibition and/or administration of growth hormone and insulin-like growth factor 1 or keratinocyte growth factor; and stimulating production of T cells using cytokines and co-stimulation, including interleukin-2 (IL-2), IL-7, IL-12 and IL-15, superagonistic CD28-specific antibodies and oncostatin M.

Abstract

Immune deficiency, together with its associated risks such as infections, is becoming an increasingly important clinical problem owing to the ageing of the general population and the increasing number of patients with HIV/AIDS, malignancies (especially those treated with intensive chemotherapy or radiotherapy) or transplants (of either solid organs or haematopoietic stem cells). Of all immune cells, T cells are the most often affected, leading to a prolonged deficiency of T cells, which has important clinical consequences. Accordingly, strategies to improve the recovery and function of T cells, as we discuss here, should have a direct impact on reducing the morbidity and mortality of many patients and should increase the efficacy of therapeutic and prophylactic vaccinations against microbial pathogens or tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies to enhance T-cell reconstitution after allogeneic bone-marrow transplantation.
Figure 2: T-cell reconstitution after allogeneic haematopoietic stem-cell transplantation.
Figure 3: T-cell precursors in mice.

Similar content being viewed by others

References

  1. Berzins, S. P. et al. Thymic regeneration: teaching an old immune system new tricks. Trends Mol. Med. 8, 469–476 (2002).

    CAS  PubMed  Google Scholar 

  2. O'Reilly, R. J. et al. Biology and adoptive cell therapy of Epstein–Barr virus-associated lymphoproliferative disorders in recipients of marrow allografts. Immunol. Rev. 157, 195–216 (1997).

    CAS  PubMed  Google Scholar 

  3. Dudley, M. E. & Rosenberg, S. A. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nature Rev. Cancer 3, 666–675 (2003).

    CAS  Google Scholar 

  4. Small, T. N. et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood 93, 467–480 (1999).

    CAS  PubMed  Google Scholar 

  5. Storek, J. et al. Immunity of patients surviving 20 to 30 years after allogeneic or syngeneic bone marrow transplantation. Blood 98, 3505–3512 (2001).

    CAS  PubMed  Google Scholar 

  6. Parkman, R. & Weinberg, K. I. Immunological reconstitution following bone marrow transplantation. Immunol. Rev. 157, 73–78 (1997).

    CAS  PubMed  Google Scholar 

  7. Storek, J., Gooley, T., Witherspoon, R. P., Sullivan, K. M. & Storb, R. Infectious morbidity in long-term survivors of allogeneic marrow transplantation is associated with low CD4 T cell counts. Am. J. Hematol. 54, 131–138 (1997).

    CAS  PubMed  Google Scholar 

  8. Maraninchi, D. et al. Impact of T-cell depletion on outcome of allogeneic bone-marrow transplantation for standard-risk leukaemias. Lancet 2, 175–178 (1987).

    CAS  PubMed  Google Scholar 

  9. Curtis, R. E. et al. Solid cancers after bone marrow transplantation. N. Engl. J. Med. 336, 897–904 (1997).

    CAS  PubMed  Google Scholar 

  10. BitMansour, A. et al. Myeloid progenitors protect against invasive aspergillosis and Pseudomonas aeruginosa infection following hematopoietic stem cell transplantation. Blood 100, 4660–4667 (2002).

    CAS  PubMed  Google Scholar 

  11. Arber, C. et al. Common lymphoid progenitors rapidly engraft and protect against lethal murine cytomegalovirus infection after hematopoietic stem cell transplantation. Blood 102, 421–428 (2003).

    CAS  PubMed  Google Scholar 

  12. Atkinson, K. et al. Thymus transplantation after allogeneic bone marrow graft to prevent chronic graft-versus-host disease in humans. Transplantation 33, 168–173 (1982).

    CAS  PubMed  Google Scholar 

  13. Markert, M. L. et al. Transplantation of thymus tissue in complete DiGeorge syndrome. N. Engl. J. Med. 341, 1180–1189 (1999).

    CAS  PubMed  Google Scholar 

  14. Markert, M. L. et al. Thymus transplantation in complete DiGeorge syndrome: immunologic and safety evaluations in 12 patients. Blood 102, 1121–1130 (2003). This article reports on the first series of patients with no detectable thymus function who received allogeneic cultured thymic tissue, resulting in recovery of T-cell function in 7 of 12 patients.

    CAS  PubMed  Google Scholar 

  15. Hong, R., Schulte-Wissermann, H., Jarrett-Toth, E., Horowitz, S. D. & Manning, D. D. Transplantation of cultured thymic fragments. II. Results in nude mice. J. Exp. Med. 149, 398–415 (1979).

    CAS  PubMed  Google Scholar 

  16. Waer, M., Palathumpat, V., Sobis, H. & Vandeputte, M. Induction of transplantation tolerance in mice across major histocompatibility barrier by using allogeneic thymus transplantation and total lymphoid irradiation. J. Immunol. 145, 499–504 (1990).

    CAS  PubMed  Google Scholar 

  17. Yamada, K. et al. Thymic transplantation in miniature swine. II. Induction of tolerance by transplantation of composite thymokidneys to thymectomized recipients. J. Immunol. 164, 3079–3086 (2000).

    CAS  PubMed  Google Scholar 

  18. Kamano, C. et al. Vascularized thymic lobe transplantation in miniature swine: thymopoiesis and tolerance induction across fully MHC-mismatched barriers. Proc. Natl Acad. Sci. USA 101, 3827–3832 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Menard, M. T. et al. Composite 'thymoheart' transplantation improves cardiac allograft survival. Am. J. Transplant. 4, 79–86 (2004).

    PubMed  Google Scholar 

  20. Godfrey, D. I., Izon, D. J., Wilson, T. J., Tucek, C. L. & Boyd, R. L. Thymic stromal elements defined by M.Abs: ontogeny, and modulation in vivo by immunosuppression. Adv. Exp. Med. Biol. 237, 269–275 (1988).

    CAS  PubMed  Google Scholar 

  21. Blackburn, C. C. et al. The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc. Natl Acad. Sci. USA 93, 5742–5746 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gill, J., Malin, M., Hollander, G. A. & Boyd, R. Generation of a complete thymic microenvironment by MTS24+ thymic epithelial cells. Nature Immunol. 3, 635–642 (2002).

    CAS  Google Scholar 

  23. Bennett, A. R. et al. Identification and characterization of thymic epithelial progenitor cells. Immunity 16, 803–814 (2002). These two articles describe the identification of a TEC subpopulation based on expression of the glycoprotein MTS24. These cells can fully reconstitute the thymic epithelial microenvironment and can support normal T-cell development.

    CAS  PubMed  Google Scholar 

  24. Ceredig, R., Jenkinson, E. J., MacDonald, H. R. & Owen, J. J. Development of cytolytic T lymphocyte precursors in organ-cultured mouse embryonic thymus rudiments. J. Exp. Med. 155, 617–622 (1982).

    CAS  PubMed  Google Scholar 

  25. Poznansky, M. C. et al. Efficient generation of human T cells from a tissue-engineered thymic organoid. Nature Biotechnol. 18, 729–734 (2000).

    CAS  Google Scholar 

  26. Rosenzweig, M. et al. In vitro T lymphopoiesis of human and rhesus CD34+ progenitor cells. Blood 87, 4040–4048 (1996).

    CAS  PubMed  Google Scholar 

  27. Gardner, J. P., Zhu, H., Colosi, P. C., Kurtzman, G. J. & Scadden, D. T. Robust, but transient expression of adeno-associated virus-transduced genes during human T lymphopoiesis. Blood 90, 4854–4864 (1997).

    CAS  PubMed  Google Scholar 

  28. Pawelec, G., Muller, R., Rehbein, A., Hahnel, K. & Ziegler, B. L. Extrathymic T cell differentiation in vitro from human CD34+ stem cells. J. Leukoc. Biol. 64, 733–739 (1998).

    CAS  PubMed  Google Scholar 

  29. Radtke, F., Wilson, A., Mancini, S. J. & MacDonald, H. R. Notch regulation of lymphocyte development and function. Nature Immunol. 5, 247–253 (2004). This recent review provides an excellent overview of the role of the Notch family and their ligands in lymphocyte development.

    CAS  Google Scholar 

  30. Harman, B. C., Jenkinson, E. J. & Anderson, G. Microenvironmental regulation of Notch signalling in T cell development. Semin. Immunol. 15, 91–97 (2003).

    CAS  PubMed  Google Scholar 

  31. Schmitt, T. M. & Zuniga-Pflucker, J. C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002). This article describes the capability of a bone-marrow stromal cell line ectopically expressing the Notch ligand Delta-like-1 to support the differentiation of haematopoietic progenitors into mature T cells in vitro.

    CAS  PubMed  Google Scholar 

  32. Varnum-Finney, B., Brashem-Stein, C. & Bernstein, I. D. Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 101, 1784–1789 (2003).

    CAS  PubMed  Google Scholar 

  33. Zuniga-Pflucker, J. C. T-cell development made simple. Nature Rev. Immunol. 4, 67–72 (2004).

    CAS  Google Scholar 

  34. Aspinall, R. & Andrew, D. Thymic atrophy in the mouse is a soluble problem of the thymic environment. Vaccine 18, 1629–1637 (2000).

    CAS  PubMed  Google Scholar 

  35. Nabarra, B. & Andrianarison, I. Ultrastructural study of thymic microenvironment involution in aging mice. Exp. Gerontol. 31, 489–506 (1996).

    CAS  PubMed  Google Scholar 

  36. Steffens, C. M., Al-Harthi, L., Shott, S., Yogev, R. & Landay, A. Evaluation of thymopoiesis using T cell receptor excision circles (TRECs): differential correlation between adult and pediatric TRECs and naive phenotypes. Clin. Immunol. 97, 95–101 (2000).

    CAS  PubMed  Google Scholar 

  37. Linton, P. J. & Dorshkind, K. Age-related changes in lymphocyte development and function. Nature Immunol. 5, 133–139 (2004).

    CAS  Google Scholar 

  38. Fitzpatrick, F. T., Kendall, M. D., Wheeler, M. J., Adcock, I. M. & Greenstein, B. D. Reappearance of thymus of ageing rats after orchidectomy. J. Endocrinol. 106, R17–R19 (1985).

    CAS  PubMed  Google Scholar 

  39. Greenstein, B. D., Fitzpatrick, F. T., Kendall, M. D. & Wheeler, M. J. Regeneration of the thymus in old male rats treated with a stable analogue of LHRH. J. Endocrinol. 112, 345–350 (1987).

    CAS  PubMed  Google Scholar 

  40. Windmill, K. F. & Lee, V. W. Effects of castration on the lymphocytes of the thymus, spleen and lymph nodes. Tissue Cell 30, 104–111 (1998).

    CAS  PubMed  Google Scholar 

  41. Castro, J. E. Orchidectomy and the immune response. II. Response of orchidectomized mice to antigens. Proc. R. Soc. Lond. B 185, 437–451 (1974).

    CAS  PubMed  Google Scholar 

  42. Olsen, N. J., Olson, G., Viselli, S. M., Gu, X. & Kovacs, W. J. Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology 142, 1278–1283 (2001).

    CAS  PubMed  Google Scholar 

  43. Clark, R., Strasser, J., McCabe, S., Robbins, K. & Jardieu, P. Insulin-like growth factor-1 stimulation of lymphopoiesis. J. Clin. Invest. 92, 540–548 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Welniak, L. A., Sun, R. & Murphy, W. J. The role of growth hormone in T-cell development and reconstitution. J. Leukoc. Biol. 71, 381–387 (2002).

    CAS  PubMed  Google Scholar 

  45. Murphy, W. J. & Longo, D. L. Growth hormone as an immunomodulating therapeutic agent. Immunol. Today 21, 211–213 (2000).

    CAS  PubMed  Google Scholar 

  46. Stuart, C. A., Meehan, R. T., Neale, L. S., Cintron, N. M. & Furlanetto, R. W. Insulin-like growth factor-I binds selectively to human peripheral blood monocytes and B-lymphocytes. J. Clin. Endocrinol. Metab. 72, 1117–1122 (1991).

    CAS  PubMed  Google Scholar 

  47. Walsh, P. T. & O'Connor, R. The insulin-like growth factor-I receptor is regulated by CD28 and protects activated T cells from apoptosis. Eur. J. Immunol. 30, 1010–1018 (2000).

    CAS  PubMed  Google Scholar 

  48. Murphy, W. J., Durum, S. K. & Longo, D. L. Role of neuroendocrine hormones in murine T cell development. Growth hormone exerts thymopoietic effects in vivo. J. Immunol. 149, 3851–3857 (1992).

    CAS  PubMed  Google Scholar 

  49. Foster, M., Montecino-Rodriguez, E., Clark, R. & Dorshkind, K. Regulation of B and T cell development by anterior pituitary hormones. Cell. Mol. Life Sci. 54, 1076–1082 (1998).

    CAS  PubMed  Google Scholar 

  50. Dobashi, H., Sato, M., Tanaka, T., Tokuda, M. & Ishida, T. Growth hormone restores glucocorticoid-induced T cell suppression. FASEB J. 15, 1861–1863 (2001).

    CAS  PubMed  Google Scholar 

  51. Tian, Z. G. et al. Recombinant human growth hormone promotes hematopoietic reconstitution after syngeneic bone marrow transplantation in mice. Stem Cells 16, 193–199 (1998).

    CAS  PubMed  Google Scholar 

  52. Small, T. et al. Longitudinal analysis of serum levels of insulin-like growth factor-1 post bone marrow transplantation. Blood 90, 541a (1997).

    Google Scholar 

  53. Jardieu, P., Clark, R., Mortensen, D. & Dorshkind, K. In vivo administration of insulin-like growth factor-I stimulates primary B lymphopoiesis and enhances lymphocyte recovery after bone marrow transplantation. J. Immunol. 152, 4320–4327 (1994).

    CAS  PubMed  Google Scholar 

  54. Alpdogan, O. et al. Insulin-like growth factor-I enhances lymphoid and myeloid reconstitution after allogeneic bone marrow transplantation. Transplantation 75, 1977–1983 (2003).

    CAS  PubMed  Google Scholar 

  55. Sun, R. et al. Immunologic and hematopoietic effects of recombinant human prolactin after syngeneic bone marrow transplantation in mice. Biol. Blood Marrow Transplant 9, 426–434 (2003).

    CAS  PubMed  Google Scholar 

  56. Housley, R. M. et al. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract. J. Clin. Invest. 94, 1764–1777 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pierce, G. F. et al. Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor. J. Exp. Med. 179, 831–840 (1994).

    CAS  PubMed  Google Scholar 

  58. Min, D. et al. Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 99, 4592–4600 (2002). This article describes how KGF can protect TECs against cytotoxic-therapy-induced damage, resulting in enhanced post-transplant T-cell recovery and function.

    CAS  PubMed  Google Scholar 

  59. Erickson, M. et al. Regulation of thymic epithelium by keratinocyte growth factor. Blood 100, 3269–3278 (2002).

    CAS  PubMed  Google Scholar 

  60. Revest, J. M., Suniara, R. K., Kerr, K., Owen, J. J. & Dickson, C. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J. Immunol. 167, 1954–1961 (2001).

    CAS  PubMed  Google Scholar 

  61. Panoskaltsis-Mortari, A., Lacey, D. L., Vallera, D. A. & Blazar, B. R. Keratinocyte growth factor administered before conditioning ameliorates graft-versus-host disease after allogeneic bone marrow transplantation in mice. Blood 92, 3960–3967 (1998).

    CAS  PubMed  Google Scholar 

  62. Krijanovski, O. I. et al. Keratinocyte growth factor separates graft-versus-leukemia effects from graft-versus-host disease. Blood 94, 825–831 (1999).

    CAS  PubMed  Google Scholar 

  63. Panoskaltsis-Mortari, A. et al. Keratinocyte growth factor facilitates alloengraftment and ameliorates graft-versus-host disease in mice by a mechanism independent of repair of conditioning-induced tissue injury. Blood 96, 4350–4356 (2000).

    CAS  PubMed  Google Scholar 

  64. Rossi, S. et al. Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood 100, 682–691 (2002).

    CAS  PubMed  Google Scholar 

  65. Meropol, N. J. et al. Randomized phase I trial of recombinant human keratinocyte growth factor plus chemotherapy: potential role as mucosal protectant. J. Clin. Oncol. 21, 1452–1458 (2003).

    CAS  PubMed  Google Scholar 

  66. Nelson, B. H. IL-2, regulatory T Cells, and tolerance. J. Immunol. 172, 3983–3988 (2004).

    CAS  PubMed  Google Scholar 

  67. Dutcher, J. Current status of interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma. Oncology (Huntington, NY) 16, 4–10 (2002).

    Google Scholar 

  68. Soiffer, R. J., Murray, C., Gonin, R. & Ritz, J. Effect of low-dose interleukin-2 on disease relapse after T-cell-depleted allogeneic bone marrow transplantation. Blood 84, 964–971 (1994).

    CAS  PubMed  Google Scholar 

  69. Sereti, I. et al. Long-term effects of intermittent interleukin 2 therapy in patients with HIV infection: characterization of a novel subset of CD4+/CD25+ T cells. Blood 100, 2159–2167 (2002).

    CAS  PubMed  Google Scholar 

  70. MacMillan, M. L. et al. High-producer interleukin-2 genotype increases risk for acute graft-versus-host disease after unrelated donor bone marrow transplantation. Transplantation 76, 1758–1762 (2003).

    CAS  PubMed  Google Scholar 

  71. Rizzitelli, A., Berthier, R., Collin, V., Candeias, S. M. & Marche, P. N. T lymphocytes potentiate murine dendritic cells to produce IL-12. J. Immunol. 169, 4237–4245 (2002).

    CAS  PubMed  Google Scholar 

  72. Li, L. et al. IL-12 inhibits thymic involution by enhancing IL-7- and IL-2-induced thymocyte proliferation. J. Immunol. 172, 2909–2916 (2004).

    CAS  PubMed  Google Scholar 

  73. Fry, T. J. & Mackall, C. L. Interleukin-7: from bench to clinic. Blood 99, 3892–3904 (2002).

    CAS  PubMed  Google Scholar 

  74. Noguchi, M. et al. Interleukin-2 receptor γ chain: a functional component of the interleukin-7 receptor. Science 262, 1877–1880 (1993).

    CAS  PubMed  Google Scholar 

  75. Goodwin, R. G. et al. Cloning of the human and murine interleukin-7 receptors: demonstration of a soluble form and homology to a new receptor superfamily. Cell 60, 941–951 (1990).

    CAS  PubMed  Google Scholar 

  76. von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    CAS  PubMed  Google Scholar 

  77. Peschon, J. J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    CAS  PubMed  Google Scholar 

  78. von Freeden-Jeffry, U., Solvason, N., Howard, M. & Murray, R. The earliest T lineage-committed cells depend on IL-7 for Bcl-2 expression and normal cell cycle progression. Immunity 7, 147–154 (1997).

    CAS  PubMed  Google Scholar 

  79. Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R. & Weissman, I. L. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89, 1033–1041 (1997).

    CAS  PubMed  Google Scholar 

  80. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature Immunol. 1, 426–432 (2000). This is one of several articles to define the crucial role of IL-7 in the homeostasis of peripheral T cells.

    CAS  Google Scholar 

  81. Schober, S. L. et al. Expression of the transcription factor lung Kruppel-like factor is regulated by cytokines and correlates with survival of memory T cells in vitro and in vivo. J. Immunol. 163, 3662–3667 (1999).

    CAS  PubMed  Google Scholar 

  82. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nature Immunol. 4, 1191–1198 (2003).

    CAS  Google Scholar 

  83. Tang, J. et al. TGF-β down-regulates stromal IL-7 secretion and inhibits proliferation of human B cell precursors. J. Immunol. 159, 117–125 (1997).

    CAS  PubMed  Google Scholar 

  84. Alpdogan, O. et al. IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation. J. Clin. Invest. 112, 1095–1107 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sempowski, G. D., Gooding, M. E., Liao, H. X., Le, P. T. & Haynes, B. F. T cell receptor excision circle assessment of thymopoiesis in aging mice. Mol. Immunol. 38, 841–848 (2002).

    CAS  PubMed  Google Scholar 

  86. Bolotin, E., Smogorzewska, M., Smith, S., Widmer, M. & Weinberg, K. Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood 88, 1887–1894 (1996).

    CAS  PubMed  Google Scholar 

  87. Okamoto, Y., Douek, D. C., McFarland, R. D. & Koup, R. A. Effects of exogenous interleukin-7 on human thymus function. Blood 99, 2851–2858 (2002).

    CAS  PubMed  Google Scholar 

  88. Geiselhart, L. A. et al. IL-7 administration alters the CD4:CD8 ratio, increases T cell numbers, and increases T cell function in the absence of activation. J. Immunol. 166, 3019–3027 (2001).

    CAS  PubMed  Google Scholar 

  89. Lynch, D. H. & Miller, R. E. Interleukin 7 promotes long-term in vitro growth of antitumor cytotoxic T lymphocytes with immunotherapeutic efficacy in vivo. J. Exp. Med. 179, 31–42 (1994).

    CAS  PubMed  Google Scholar 

  90. Wiryana, P., Bui, T., Faltynek, C. R. & Ho, R. J. Augmentation of cell-mediated immunotherapy against herpes simplex virus by interleukins: comparison of in vivo effects of IL-2 and IL-7 on adoptively transferred T cells. Vaccine 15, 561–563 (1997).

    CAS  PubMed  Google Scholar 

  91. Abdul-Hai, A. et al. Stimulation of immune reconstitution by interleukin-7 after syngeneic bone marrow transplantation in mice. Exp. Hematol. 24, 1416–1422 (1996).

    CAS  PubMed  Google Scholar 

  92. Alpdogan, O. et al. Administration of interleukin-7 after allogeneic bone marrow transplantation improves immune reconstitution without aggravating graft-versus-host disease. Blood 98, 2256–2265 (2001).

    CAS  PubMed  Google Scholar 

  93. Mackall, C. L. et al. IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood 97, 1491–1497 (2001).

    CAS  PubMed  Google Scholar 

  94. Sinha, M. L., Fry, T. J., Fowler, D. H., Miller, G. & Mackall, C. L. Interleukin 7 worsens graft-versus-host disease. Blood 100, 2642–2649 (2002).

    CAS  PubMed  Google Scholar 

  95. Storek, J. et al. Interleukin-7 improves CD4 T-cell reconstitution after autologous CD34 cell transplantation in monkeys. Blood 101, 4209–4218 (2003).

    CAS  PubMed  Google Scholar 

  96. Fehniger, T. A. & Caligiuri, M. A. Interleukin 15: biology and relevance to human disease. Blood 97, 14–32 (2001).

    CAS  PubMed  Google Scholar 

  97. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    CAS  PubMed  Google Scholar 

  99. Carson, W. E. et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J. Exp. Med. 180, 1395–1403 (1994).

    CAS  PubMed  Google Scholar 

  100. Carson, W. E. et al. A potential role for interleukin-15 in the regulation of human natural killer cell survival. J. Clin. Invest. 99, 937–943 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, X., Sun, S., Hwang, I., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    CAS  PubMed  Google Scholar 

  102. Maeurer, M. J. et al. Interleukin-7 or interleukin-15 enhances survival of Mycobacterium tuberculosis-infected mice. Infect. Immun. 68, 2962–2970 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yajima, T. et al. Memory phenotype CD8+ T cells in IL-15 transgenic mice are involved in early protection against a primary infection with Listeria monocytogenes. Eur. J. Immunol. 31, 757–766 (2001).

    CAS  PubMed  Google Scholar 

  104. Klebanoff, C. A. et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc. Natl Acad. Sci. USA 101, 1969–1974 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Katsanis, E. et al. IL-15 administration following syngeneic bone marrow transplantation prolongs survival of lymphoma bearing mice. Transplantation 62, 872–875 (1996).

    CAS  PubMed  Google Scholar 

  106. Alpdogan, O. et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood July 27 2004 (doi:10.1182/blood-2003-09-3344).

  107. Munger, W. et al. Studies evaluating the antitumor activity and toxicity of interleukin-15, a new T cell growth factor: comparison with interleukin-2. Cell. Immunol. 165, 289–293 (1995).

    CAS  PubMed  Google Scholar 

  108. Castelli, J., Thomas, E. K., Gilliet, M., Liu, Y. J. & Levy, J. A. Mature dendritic cells can enhance CD8+ cell noncytotoxic anti-HIV responses: the role of IL-15. Blood 103, 2699–2704 (2004).

    CAS  PubMed  Google Scholar 

  109. Acuto, O. & Michel, F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nature Rev. Immunol. 3, 939–951 (2003).

    CAS  Google Scholar 

  110. Elflein, K., Rodriguez-Palmero, M., Kerkau, T. & Hunig, T. Rapid recovery from T lymphopenia by CD28 superagonist therapy. Blood 102, 1764–1770 (2003). This article shows that a novel class of superagonistic CD28-specific antibodies can induce polyclonal T-cell proliferation without TCR engagement.

    CAS  PubMed  Google Scholar 

  111. Lin, C. H. & Hunig, T. Efficient expansion of regulatory T cells in vitro and in vivo with a CD28 superagonist. Eur. J. Immunol. 33, 626–638 (2003).

    CAS  PubMed  Google Scholar 

  112. Kerstan, A. & Hunig, T. Distinct TCR- and CD28-derived signals regulate CD95L, Bcl-xL, and the survival of primary T cells. J. Immunol. 172, 1341–1345 (2004).

    CAS  PubMed  Google Scholar 

  113. Clegg, C. H., Rulffes, J. T., Wallace, P. M. & Haugen, H. S. Regulation of an extrathymic T-cell development pathway by oncostatin M. Nature 384, 261–263 (1996).

    CAS  PubMed  Google Scholar 

  114. Sempowski, G. D. et al. Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J. Immunol. 164, 2180–2187 (2000).

    CAS  PubMed  Google Scholar 

  115. Mackall, C. L. & Gress, R. E. Pathways of T-cell regeneration in mice and humans: implications for bone marrow transplantation and immunotherapy. Immunol. Rev. 157, 61–72 (1997).

    CAS  PubMed  Google Scholar 

  116. Dulude, G. et al. Thymic and extrathymic differentiation and expansion of T lymphocytes following bone marrow transplantation in irradiated recipients. Exp. Hematol. 25, 992–1004 (1997).

    CAS  PubMed  Google Scholar 

  117. Roux, E. et al. Analysis of T-cell repopulation after allogeneic bone marrow transplantation: significant differences between recipients of T-cell depleted and unmanipulated grafts. Blood 87, 3984–3992 (1996).

    CAS  PubMed  Google Scholar 

  118. Hebib, N. C. et al. Peripheral blood T cells generated after allogeneic bone marrow transplantation: lower levels of Bcl-2 protein and enhanced sensitivity to spontaneous and CD95-mediated apoptosis in vitro. Blood 94, 1803–1813 (1999).

    CAS  PubMed  Google Scholar 

  119. Lin, M. T. et al. Increased apoptosis of peripheral blood T cells following allogeneic hematopoietic cell transplantation. Abrogation of the apoptotic phenotype coincides with the recovery of normal naive/primed T-cell profiles. Blood 95, 3832–3839 (2000).

    CAS  PubMed  Google Scholar 

  120. Scollay, R., Smith, J. & Stauffer, V. Dynamics of early T cells: prothymocyte migration and proliferation in the adult mouse thymus. Immunol. Rev. 91, 129–157 (1986).

    CAS  PubMed  Google Scholar 

  121. Foss, D. L., Donskoy, E. & Goldschneider, I. The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J. Exp. Med. 193, 365–374 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Petrie, H. T. Role of thymic organ structure and stromal composition in steady-state postnatal T-cell production. Immunol. Rev. 189, 8–20 (2002).

    CAS  PubMed  Google Scholar 

  123. Bhandoola, A., Sambandam, A., Allman, D., Meraz, A. & Schwarz, B. Early T lineage progenitors: new insights, but old questions remain. J. Immunol. 171, 5653–5658 (2003).

    CAS  PubMed  Google Scholar 

  124. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997). This article describes the identification of a CLP in adult bone marrow that can give rise to T cells, B cells and NK cells.

    CAS  PubMed  Google Scholar 

  125. Martin, C. H. et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nature Immunol. 4, 866–873 (2003).

    CAS  Google Scholar 

  126. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nature Immunol. 4, 168–174 (2003). This article shows that early T-cell lineage progenitors are present in the thymus, and therefore the production of T-cell lineage progeny could be sustained by a CLP-independent pathway.

    CAS  Google Scholar 

  127. Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17, 463–472 (2002).

    CAS  PubMed  Google Scholar 

  128. Igarashi, H., Gregory, S. C., Yokota, T., Sakaguchi, N. & Kincade, P. W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    CAS  PubMed  Google Scholar 

  129. Perry, S. et al. L-selectin defines a bone marrow analog to the thymic early T-lineage progenitor. Blood 103, 2990–2996 (2004).

    CAS  PubMed  Google Scholar 

  130. Rocha, B., Dautigny, N. & Pereira, P. Peripheral T lymphocytes: expansion potential and homeostatic regulation of pool sizes and CD4/CD8 ratios in vivo. Eur. J. Immunol. 19, 905–911 (1989).

    CAS  PubMed  Google Scholar 

  131. Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).

    CAS  PubMed  Google Scholar 

  132. Tanchot, C. & Rocha, B. The organization of mature T-cell pools. Immunol. Today 19, 575–579 (1998).

    CAS  PubMed  Google Scholar 

  133. Freitas, A. A. & Rocha, B. Peripheral T cell survival. Curr. Opin. Immunol. 11, 152–156 (1999).

    CAS  PubMed  Google Scholar 

  134. Goldrath, A. W. & Bevan, M. J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

    CAS  PubMed  Google Scholar 

  135. Viret, C., Wong, F. S. & Janeway, C. A. Jr. Designing and maintaining the mature TCR repertoire: the continuum of self-peptide:self-MHC complex recognition. Immunity 10, 559–568 (1999).

    CAS  PubMed  Google Scholar 

  136. Dulude, G., Roy, D. C. & Perreault, C. The effect of graft-versus-host disease on T cell production and homeostasis. J. Exp. Med. 189, 1329–1342 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl Acad. Sci. USA 98, 8732–8737 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature Immunol. 1, 426–432 (2000).

    CAS  Google Scholar 

  139. Goldrath, A. W. et al. Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med. 195, 1515–1522 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Seddon, B., Tomlinson, P. & Zamoyska, R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nature Immunol. 4, 680–686 (2003).

    CAS  Google Scholar 

  141. Alves, N. L., Hooibrink, B., Arosa, F. A. & van Lier, R. A. IL-15 induces antigen-independent expansion and differentiation of human naive CD8+ T cells in vitro. Blood 102, 2541–2546 (2003).

    CAS  PubMed  Google Scholar 

  142. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Oukka, M. et al. The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity 9, 295–304 (1998).

    CAS  PubMed  Google Scholar 

  144. Kuo, C. T., Veselits, M. L. & Leiden, J. M. LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986–1990 (1997).

    CAS  PubMed  Google Scholar 

  145. Veis, D. J., Sorenson, C. M., Shutter, J. R. & Korsmeyer, S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to M.R.M.B. from the National Institutes of Health, United States. M.R.M.B. is also the recipient of a Damon Runyon Scholar Award from the Damon Runyon Cancer Research Foundation, United Kingdom. This work was also supported by grants to R.L.B. from the National Health and Medical Research Council, Australia. The authors thank G. Goldberg for her many valuable contributions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel R. M. van den Brink.

Ethics declarations

Competing interests

Richard Boyd and Marcel van den Brink are both consultants for Norwood Immunology Pty Ltd, which is involved in the development of Leuprolide to enhance immune reconstitution.

Related links

Related links

DATABASES

Entrez Gene

CD28

growth hormone

IGF1

IL-7

IL-12

IL-15

KGF

oncostatin M

Notch-1

FURTHER INFORMATION

Marcel van den Brink's laboratory

Richard Boyd's laboratory

Glossary

SEVERE COMBINED IMMUNODEFICIENCY

(SCID). Humans or mice with this rare genetic disorder lack functional T and B cells owing to a mutation in a gene that is involved in T-cell and/or B-cell development; consequently, they suffer from recurrent infections. Several forms of SCID have been described, including mutations in the common cytokine-receptor γ-chain of several interleukin receptors, Janus activated kinase 3 (JAK3) and adenosine deaminase.

ALLOGENEIC

Allogeneic tissues or cells are genetically different from the host and can elicit an immune response when transplanted, resulting in rejection or graft-versus-host disease.

GRAFT-VERSUS-HOST DISEASE

(GVHD). Tissue damage in a recipient of allogeneic transplanted tissue (usually bone marrow) that results from the activity of donor cytotoxic T cells that recognize the tissue of the recipient as foreign. GVHD varies markedly in severity, but it can be life threatening in severe cases and, in particular, affects the intestines, liver and skin.

CONGENIC

An animal strain that is genetically identical to another strain except for one or more allelic differences that do not result in an antigen that can elicit an immunological response when tissue is transferred or transplanted from one strain to another.

DIGEORGE SYNDROME

A syndrome characterized by cardiac malformations, facial anomalies and hypoplasia of the parathyroid gland and thymus. Most cases are the result of a deletion of the chromosomal region 22q11.2. Mice deficient in the homeobox A3 protein (HOXA3) develop a phenotype similar to patients with DiGeorge syndrome.

CENTRAL TOLERANCE

Lack of self-responsiveness that occurs as lymphoid cells develop. It is associated with the deletion of autoreactive clones. For T cells, this occurs in the thymus.

MIXED LYMPHOCYTE REACTION

A tissue-culture technique that is used for the in vitro testing of the proliferative response of T cells from one individual to lymphocytes from another individual.

NUDE MICE

Mice with a mutation in the forkhead box N1 gene (Foxn1), which results in hairlessness, defective formation of the thymus and a lack of mature T cells.

DOUBLE-NEGATIVE 1 (DN1) TO DN2 TRANSITION

Thymic precursors at the DN1 (CD3CD4CD8CD25CD44+) stage lose the ability to generate B cells, natural killer cells and dendritic cells after their transition to DN2 (CD3CD4CD8CD25+CD44+) thymocytes.

ACTIVATION-INDUCED CELL DEATH

(AICD). The apoptotic cell death of activated lymphocytes. It ensures the rapid elimination of effector cells after their antigen-dependent clonal expansion. Defects in AICD result in lymphoproliferative diseases that are associated with autoimmune disorders.

EFFECTOR MEMORY CELLS

Memory T cells that home to peripheral tissues and plasma cells that home to the bone marrow and secrete antibodies. They are responsible for immediate protection.

CENTRAL MEMORY CELLS

Memory T and B cells that home to secondary lymphoid organs. These cells are heterogeneous and do not have the full range of functions that are characteristic of effector T cells or plasma cells. They are responsible for secondary or chronic responses to antigen and might be involved in long-term maintenance of effector memory cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Brink, M., Alpdogan, Ö. & Boyd, R. Strategies to enhance T-cell reconstitution in immunocompromised patients. Nat Rev Immunol 4, 856–867 (2004). https://doi.org/10.1038/nri1484

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1484

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing