Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Individuality: the barrier to optimal immunosuppression

Key Points

  • New immunosuppressive therapies are required to overcome present limitations to transplantation success.

  • There have been four stages in the development of therapeutic immunosuppression: anti-proliferative strategies, anti-inflammatory steroids, lymphocyte depletion and disruption of cytokines.

  • The molecular targets of most immunosuppressive agents available at present are widely distributed among human tissues, producing a range of adverse side effects.

  • Immunosuppressive therapy at present involves a three phase strategy: immunosuppression is established in the first week post-transplantation (the induction phase); for the next 90 days, the risks of acute rejection episodes are minimized while reducing unacceptable toxicity (the equilibration phase). In the maintenance phase that follows, immunosuppression is progressively reduced.

  • Potential fifth-generation approaches include refinements of the depletion model, manipulation of cell trafficking, interruption of the maturation of antigen-presenting cells, donor-antigen modification, identification of lymphoid-selective targets in the cytokine model and immune deviation.

Abstract

Immunosuppressive therapy aims to protect transplanted organs from host responses. Individuals have unique repertoires of responses to foreign antigens and toxic reactions to immunosuppressants; the former determining the type or intensity of rejection reactions and the latter influencing the severity of iatrogenic effects. Because existing agents target molecules that are widely distributed in tissues, new strategies must selectively block lymphoid cells only, disrupt alloresponses but not innate immune responses, interact synergistically with other agents, facilitate the homeostatic process that naturally leads to graft acceptance and ideally only interrupt donor-specific responses. Approaches presently under investigation aim to alter cell trafficking, or selectively deviate the maturation of antigen-presenting cells or inhibit lymphocyte-activation cascades — events that are crucial to rejection responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sites of action of available immunosuppressants that inhibit the three-signal model of T-cell activation and proliferation.
Figure 2: Potential fifth-generation immunosuppressive strategies.

References

  1. Tagliacozzi, G. De cortorum chirurgia. (Venice: Bindoni) (1597).

    Google Scholar 

  2. Benjamin, E. & Sulka, E. Antikörperbildung nach experimenteller schadgung des haematopoietischen systems durch röntgenstrahlen. Wien. Klin. Wochenschr. 21, 311–314 (1908).

    Google Scholar 

  3. Murphy, J. B. & Morton, J. J. The lymphocyte as a factor in natural and induced resistance to transplanted cancer. Proc. Natl Acad. Sci. USA 1, 435 (1915).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hamburger, J., Vayesse, J. & Crosnier, J. Transplantation of kidney between nonhomozygotic twins after irradiation of the recipient. Presse. Med. 67, 1771–1773 (1959).

    Google Scholar 

  5. Myburgh, J. A. et al. Total lymphoid irradiation in renal transplantation. World J. Surg. 10, 369–380 (1986).

    CAS  PubMed  Google Scholar 

  6. Levin, B. et al. Treatment of cadaveric renal transplant recipients with total lymphoid irradiation, antithymocyte globulin, and low-dose prednisone. Lancet 2, 1321–1325 (1985).

    CAS  PubMed  Google Scholar 

  7. Hektoen, L. The effect of benzene on the production of antibodies. J. Infect. Dis. 19, 69 (1916).

    Google Scholar 

  8. Baker, R., Gordon, R., Huffer, J. & Miller, G. H. Jr. Experimental renal transplantation: I. Effect of nitrogen mustard, cortisone, and splenectomy. Arch Surg. 65, 702–705 (1952).

    CAS  Google Scholar 

  9. Schwartz, R. S. & Dameshek, W. Drug-induced immunological tolerance. Nature 183, 1682 (1959).

    CAS  PubMed  Google Scholar 

  10. Hitchings, G. H. & Elion, G. B. The chemistry and biochemistry of purine analogs. Ann. NY Acad. Sci. 60, 195 (1954).

    CAS  PubMed  Google Scholar 

  11. Calne, R. Y., Alexandre, G. P. & Murray, J. E. A study of the effects of drugs in prolonged survival of homologous renal transplantation in dogs. Ann. NY Acad. Sci. 99, 743 (1962).

    CAS  PubMed  Google Scholar 

  12. Oscarson, M. Pharmacogenetics of drug metabolising enzymes: importance for personalised medicine. Clin. Chem. Lab. Med. 41, 573–580 (2003).

    CAS  PubMed  Google Scholar 

  13. Matthew, T. H. A blinded, long-term randomized, multicenter study of mycophenolate mofetil in cadaveric renal transplantation. Transplantation 65, 1450–1454 (1998).

    Google Scholar 

  14. Granger, D. K. Enteric-coated mycophenolate sodium: results of two pivotal global multicenter trials. Transplant Proc. 33, 3241–3244 (2001).

    CAS  PubMed  Google Scholar 

  15. Starzl, T. E., Marchioro, T. L. & Waddell, W. R. The reversal of rejection in human renal homografts with subsequent development of homograft tolerance. Surg. Gynecol. Obstet. 117, 385 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Murray, J. E., Tilney, N. L. & Wilson, R. E. Renal transplantation: a twenty-five year experience. Ann. Surg. 184, 565–573 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Woodruff, M. F. & Anderson, N. F. Effect of lymphocyte depletion by thoracic duct fistula and administration of antilymphocyte serum on the survival of skin homografts in rats. Nature 200, 702 (1963).

    CAS  PubMed  Google Scholar 

  18. Franksson, C. & Bloomstrand, R. Drainage of the thoracic lymph duct during homologous kidney transplantation in man. Scan. J. Urol. Nephrol. 1, 123 (1967).

    Google Scholar 

  19. Abaza, H. M., Nolan, B., Watt, J. G. & Woodruff, M. F. Effect of antilymphocytic serum on the survival of renal homotransplants in dogs. Transplantation 4, 618–632 (1966).

    CAS  PubMed  Google Scholar 

  20. Brennan, D. C. et al. A randomized, double-blinded comparison of thymoglobulin versus atgam for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation 67, 1011–1018 (1999).

    CAS  PubMed  Google Scholar 

  21. Bonnefoy-Berard, N., Vincent, C. & Revillard, J. P. Antibodies against functional leukocyte surface molecules in polyclonal antilymphocyte and antithymocyte globulins. Transplantation 51, 669–673 (1991).

    CAS  PubMed  Google Scholar 

  22. Starzl, T. E., Marchioro, T. L., Porter, K. A., Iwasaki, Y. & Cerilli, G. J. The use of heterologous antilymphoid agents in canine renal and liver homotransplantation and in human renal homotransplantation. Surg. Gynecol. Obstet. 124, 301–308 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Najarian, J. S. et al. Antihuman lymphoblast globulin. Fed. Proc. 29, 197–201 (1970).

    CAS  PubMed  Google Scholar 

  24. Calne, R. et al. Campath IH allows low-dose cyclosporine monotherapy in 31 cadaveric renal allograft recipients. Transplantation 68, 1613–1616 (1999).

    CAS  PubMed  Google Scholar 

  25. Riechmann, L., Clark, M., Waldmann, H. & Winter, G. Reshaping human antibodies for therapy. Nature 332, 323–327 (1988).

    CAS  PubMed  Google Scholar 

  26. Hamawy, M. M., Manthei, E. R., Fechner, J., Hu, H. & Knechtle, S. J. Modulation of TCR function by the anti-CD52 antibody (Campath–1H). Am. J. Transplant. 3, 273 (2003).

    Google Scholar 

  27. Starzl, T. E. et al. Tolerogenic immunosuppression for organ transplantation. Lancet 361, 1502–1510 (2003).

    PubMed  PubMed Central  Google Scholar 

  28. Cosimi, A. B. et al. Use of monoclonal antibodies to T-cell subsets for immunologic monitoring and treatment in recipients of renal allografts. N. Engl. J. Med. 305, 308–314 (1981).

    CAS  PubMed  Google Scholar 

  29. Kahan, B. D., Rajagopalan, P. R. & Hall, M. L. Reduction of the occurrence of acute cellular rejection among renal allograft recipients treated with basiliximab, a chimeric anti-interleukin-2-receptor monoclonal antibody. The United States Simulect® Renal Study Group. Transplantation 67, 276–284 (1999).

    CAS  PubMed  Google Scholar 

  30. Vincenti, F. et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. N. Engl. J. Med. 338, 161–165 (1998).

    CAS  PubMed  Google Scholar 

  31. Kahan, B. D. Cyclosporine. N. Engl. J. Med. 321, 1725–1738 (1989).

    CAS  PubMed  Google Scholar 

  32. Ochiai, T. et al. Studies of the induction and maintenance of long-term graft acceptance by treatment with FK506 in heterotopic cardiac allotransplantation in rats. Transplantation 44, 734–738 (1987).

    CAS  PubMed  Google Scholar 

  33. Pirsch, J. D., Miller, J., Deierhoi, M. H., Vincenti, F. & Filo, R. S. A comparison of tacrolimus and cyclosporine for immunosuppression after cadaveric renal transplantation. Transplantation 63, 977–983 (1997).

    CAS  PubMed  Google Scholar 

  34. Lai, M. M., Burnett, P. E., Wolosker, H., Blackshaw, S. & Snyder, S. H. Cain, a novel physiologic protein inhibitor of calcineurin. J. Biol. Chem. 273, 18325–18331 (1998).

    CAS  PubMed  Google Scholar 

  35. Sehgal, S. N. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc. 35, S7–S14 (2003).

    Google Scholar 

  36. Kahan, B. D. et al. RAD in de novo renal transplantation: comparison of three doses on the incidence and severity of acute rejection. Transplantation 71, 1400–1406 (2001).

    CAS  PubMed  Google Scholar 

  37. Kahan, B. D. et al. Ten years of sirolimus therapy for human renal transplantation: the University of Texas at Houston experience. Transplant Proc. 35, S25–S34 (2003).

    Google Scholar 

  38. Monti, P. et al. Rapamycin impairs antigen uptake of human dendritic cells. Transplantation 75, 137–145 (2003).

    CAS  PubMed  Google Scholar 

  39. Fletcher, A. & Thomson, A. The introduction of human monoclonal anti-D for therapeutic use. Transfus. Med. Rev. 9, 314–326 (1995).

    CAS  PubMed  Google Scholar 

  40. Kazatchkine, M. D. & Kaveri, S. V. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N. Engl. J. Med. 345, 747–755 (2001).

    CAS  PubMed  Google Scholar 

  41. Jordan, S. C. Management of the highly HLA-sensitized patient. A novel role for intravenous gammaglobulin. Am. J. Transplant. 2, 691–692 (2002).

    PubMed  Google Scholar 

  42. Montgomery, R. A. et al. Plasmapheresis and intravenous immune globulin provides effective rescue therapy for refractory humoral rejection and allows kidneys to be successfully transplanted into cross-match-positive recipients. Transplantation 70, 887–895 (2000).

    CAS  PubMed  Google Scholar 

  43. Verschuuren, E. A. et al. Treatment of posttransplant lymphoproliferative disease with rituximab: the remission, the relapse, and the complication. Transplantation 73, 100–104 (2002).

    CAS  PubMed  Google Scholar 

  44. Aranda, J. M. Jr. et al. Anti-CD20 monoclonal antibody (rituximab) therapy for acute cardiac humoral rejection: a case report. Transplantation 73, 907–910 (2002).

    PubMed  Google Scholar 

  45. Hancock, W. W., Gao, W., Faia, K. L. & Csizmadia, V. Chemokines and their receptors in allograft rejection. Curr. Opin. Immunol. 12, 511–516 (2000).

    CAS  PubMed  Google Scholar 

  46. Azzawi, M. et al. RANTES chemokine expression is related to acute cardiac cellular rejection and infiltration by CD45RO T-lymphocytes and macrophages. J. Heart Lung Transplant. 17, 881–887 (1998).

    CAS  PubMed  Google Scholar 

  47. Rivory, L. P. et al. Frequency of cytochrome P450 3A4 variant genotype in transplant population and lack of association with cyclosporin clearance. Eur. J. Clin. Pharmacol. 56, 395–398 (2000).

    CAS  PubMed  Google Scholar 

  48. Cummins, C. L., Salphati, L., Reid, M. J. & Benet, L. Z. In vivo modulation of intestinal CYP3A metabolism by P-glycoprotein: studies using the rat single-pass intestinal perfusion model. J. Pharmacol. Exp. Ther. 305, 306–314 (2003).

    CAS  PubMed  Google Scholar 

  49. Woodruff, M. F. Evidence of adaptation in homografts of normal tissue. Bull. Soc. Internat. Chir. Brux. 18, 131–138 (1959).

    CAS  Google Scholar 

  50. Penn, I. Cancers in renal transplant recipients. Adv. Ren. Replace. Ther. 7, 147–156 (2000).

    CAS  PubMed  Google Scholar 

  51. Ramos, E. et al. Clinical course of polyoma virus nephropathy in 67 renal transplant patients. J. Am. Soc. Nephrol. 13, 2145–2151 (2002).

    PubMed  Google Scholar 

  52. Lo, A. et al. Patterns of cytomegalovirus infection in simultaneous kidney-pancreas transplant recipients receiving tacrolimus, mycophenolate mofetil, and prednisone with ganciclovir prophylaxis. Transpl. Infect. Dis. 3, 8–15 (2001).

    CAS  PubMed  Google Scholar 

  53. Kahan, B. D. et al. Sirolimus reduces the incidence of acute rejection episodes despite lower cyclosporine doses in Caucasian recipients of mismatched primary renal allografts: a phase II trial. Transplantation 68, 1526–1532 (1999).

    CAS  PubMed  Google Scholar 

  54. Kung, L. et al. Tissue distribution of calcineurin and its sensitivity to inhibition by cyclosporine. Am. J. Transplant. 1, 325–333 (2001).

    CAS  PubMed  Google Scholar 

  55. Ho, A. M., Jain, J., Rao, A. & Hogan, P. G. Expression of the transcription factor NFATp in a neuronal cell line and in the murine nervous system. J. Biol. Chem. 269, 28181–28186 (1994).

    CAS  PubMed  Google Scholar 

  56. Pham, P. T. et al. Assessment of cell-signaling pathways in the regulation of mammalian target of rapamycin (mTOR) by amino acids in rat adipocytes. J. Cell. Biochem. 79, 427–441 (2000).

    CAS  PubMed  Google Scholar 

  57. Mahalati, K. & Kahan, B. D. Advancing the art of immunosuppression with the science of pharmacology. Curr. Opin. Organ Transplant. 5, 255–262 (2000).

    Google Scholar 

  58. Kahan, B. D. & Kramer, W. G. Median effect analysis of efficacy versus adverse effects of immunosuppressants. Clin. Pharmacol. Ther. 70, 74–81 (2001).

    CAS  PubMed  Google Scholar 

  59. Spitzer, T. R. et al. Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 68, 480–484 (1999).

    CAS  PubMed  Google Scholar 

  60. Griffith, T. S., Brunner, T., Fletcher, S. M., Green, D. R. & Ferguson, T. A. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    CAS  PubMed  Google Scholar 

  61. Lenardo, M. et al. Mature T lymphocyte apoptosis — immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 17, 221–253 (1999).

    CAS  PubMed  Google Scholar 

  62. Kahan, B. D. et al. Safety and tolerability of multiple doses of FTY720 in stable renal transplant patients. Transplantation (in the press).

  63. Brinkmann, V., Pinschewer, D. D., Feng, L. & Chen, S. FTY720: altered lymphocyte traffic results in allograft protection. Transplantation 72, 764–769 (2001).

    CAS  PubMed  Google Scholar 

  64. Paik, J. H., Chae, S. S., Lee, M. J., Thangada, S. & Hla, T. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of αvβ3- and β1-containing integrins. J. Biol. Chem. 276, 11830–11837 (2001).

    CAS  PubMed  Google Scholar 

  65. Gelman, A. E. & Turka, L. E. A novel role for toll like receptor 4: inhibition of TNFα induced dendritic cell maturation. Am. J. Transplant. 3, 194 (2003).

    Google Scholar 

  66. Pendse, S. S., Behjati, S., Sayegh, M. H. & Frank, M. H. MDR1 P-glycoprotein is a dendritic cell/macrophage differentiation switch in antigen presenting cell maturation. Am. J. Transplant. 3, 340 (2003).

    Google Scholar 

  67. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196, 1627–1638 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Thompson, A. G. & Thomas, R. Induction of immune tolerance by dendritic cells: implications for preventative and therapeutic immunotherapy of autoimmune disease. Immunol. Cell Biol. 80, 509–519 (2002).

    PubMed  Google Scholar 

  69. Strober, S. Natural killer 1. 1+ T cells and 'natural suppressor' T cells in the bone marrow. J. Allergy Clin. Immunol. 106, S113–S114 (2000).

    CAS  PubMed  Google Scholar 

  70. Fandrich, F. et al. Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nature Med. 8, 171–178 (2002).

    CAS  PubMed  Google Scholar 

  71. Vincenti, F. Immunosuppression minimization: current and future trends in transplant immunosuppression. J. Am. Soc. Nephrol. 14, 1940–1948 (2003).

    PubMed  Google Scholar 

  72. Shurin, M. R., Yurkovetsky, Z. R., Tourkova, I. L., Balkir, L. & Shurin, G. V. Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int. J. Cancer 101, 61–68 (2002).

    CAS  PubMed  Google Scholar 

  73. Kirk, A. D. et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nature Med. 5, 686–693 (1999).

    CAS  PubMed  Google Scholar 

  74. Sayegh, M. H. & Turka, L. A. The role of T-cell co-stimulatory activation pathways in transplant rejection. N. Engl. J. Med. 338, 1813–1821 (1998).

    CAS  PubMed  Google Scholar 

  75. Hwang, K. W. et al. Cutting edge: targeted ligation of CTLA-4 in vivo by membrane-bound anti-CTLA-4 antibody prevents rejection of allogeneic cells. J. Immunol. 169, 633–637 (2002).

    CAS  PubMed  Google Scholar 

  76. Chambers, C. A., Kuhns, M. S., Egen, J. G. & Allison, J. P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 19, 565–594 (2001).

    CAS  PubMed  Google Scholar 

  77. Sandner, S. E. et al. Functions of the regulatory T cell co-stimulatory pathways CTLA-4 and PD-1 in alloreactive CD4+ T cell responses in vivo. Am. J. Transplant. 3, 152 (2003).

    Google Scholar 

  78. Wang, M., Stepkowski, S. M., Yu, J., Wang, M. & Kahan, B. D. Localization of cryptic tolerogenic epitopes in the α1-helical region of the RT1. Au alloantigen. Transplantation 63, 1373–1379 (1997).

    CAS  PubMed  Google Scholar 

  79. Slansky, J. E. et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC–peptide–TCR complex. Immunity 13, 529–538 (2000).

    CAS  PubMed  Google Scholar 

  80. Waegell, W. et al. A420983, a novel small molecule inhibitor of lck prevents allograft rejection. Transplant Proc. 34, 1411–1417 (2002).

    CAS  PubMed  Google Scholar 

  81. Wang, M. E., Stepkowski, S. M., Kirken, R., Dimmock, J. & Kahan, B. D. In vivo immunosuppressive effects of NC1153, a novel selective janus tyrosine kinase (Jak 3) antagonist. Am. J. Transplant. 3, 305 (2003).

    Google Scholar 

  82. Pardoll, D. M. Spinning molecular immunology into successful immunotherapy. Nature Rev. Immunol. 2, 227–238 (2002).

    CAS  Google Scholar 

  83. Waldmann, T. A., Dubois, S. & Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14, 105–110 (2001).

    CAS  PubMed  Google Scholar 

  84. Smith, X. G. et al. Selective blockade of IL-15 by soluble IL-15 receptor α-chain enhances cardiac allograft survival. J. Immunol. 165, 3444–3450 (2000).

    CAS  PubMed  Google Scholar 

  85. Asherson, G. L. & Stone, S. H. Selective and specific inhibition of 24 hour skin reactions in the guinea-pig. I. Immune deviation: description of the phenomenon and the effect of splenectomy. Immunol. 9, 205–217 (1965).

    CAS  Google Scholar 

  86. Claas, F. H., Roelen, D. L., van Rood, J. J. & Brand, A. Modulation of the alloimmune response by blood transfusions. Transfus. Clin. Biol. 8, 315–317 (2001).

    CAS  PubMed  Google Scholar 

  87. Jiang, S. & Lechler, R. I. Regulatory T cells in the control of transplantation tolerance and autoimmunity. Am. J. Transplant. 3, 516–524 (2003).

    CAS  PubMed  Google Scholar 

  88. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunol. 4, 337–342 (2003).

    CAS  Google Scholar 

  89. Li, S. et al. Cytokine-induced Src homology 2 protein (CIS) promotes T cell receptor-mediated proliferation and prolongs survival of activated T cells. J. Exp. Med. 191, 985–994 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yasukawa, H., Sasaki A & Yoshimura A. Negative regulation of cytokine signaling pathways. Annu. Rev. Immunol. 18, 143–164 (2000).

    CAS  PubMed  Google Scholar 

  91. Calne, R. Y. et al. Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet 2, 1323–1327 (1978).

    CAS  PubMed  Google Scholar 

  92. Kahan, B. D. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. For the Rapamune U. S. Study Group. Lancet 356, 194–202 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the expert editorial assistance of J. A. Kochis and the skilled preparation of the elegant figures by S. Holmes. This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

CD2

CD3

CD4

CD8

CD25

CD28

CD45

CD95

CD95L

CIS

CTLA4

CXCL10

CXCR3

ICAM1

JAK3

JNK

MTOR

NFAT

NF-κB

STAT4

TLR4

TNF

Further information

Barry Kahan's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahan, B. Individuality: the barrier to optimal immunosuppression. Nat Rev Immunol 3, 831–838 (2003). https://doi.org/10.1038/nri1204

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing