Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

AID and mismatch repair in antibody diversification

Key Points

  • In response to antigen, antibody genes are diversified by three genetic events: somatic hypermutation (SHM) and/or gene conversion, which improve antibody affinity; and class-switch recombination, which alters the antibody isotype and, thereby, effector function.

  • SHM requires transcription; is targeted to particular regions or hotspots; is not restricted to immunoglobulin genes only; and might be associated with double- and/or single-stranded DNA breaks.

  • In mice that are deficient in mismatch repair (MMR), there is a bias for mutation of G–C base pairs in hotspot motifs. This indicates that MMR repair might preferentially correct mutations of G–C base pairs in hotspots, or that SHM might involve two phases — one that targets G–C base pairs in hotspots, and a MMR-dependent phase that mutates A–T base pairs and G–C base pairs outside hotspots.

  • Variable region (V) genes can also be diversified by gene conversion, whereby sequences from upstream V pseudogenes are copied into functional V genes. The mechanism of gene conversion seems to be similar to homologous recombination.

  • CSR involves recombination between switch regions. The cleaving enzyme is not known, but repair of the lesion probably involves the non-homologous end joining (NHEJ) pathway.

  • Activation-induced cytidine deaminase (AID) and MMR are involved in SHM, CSR and gene conversion.

  • AID is the only B-cell-specific factor that is required for SHM, gene conversion and CSR.

  • Two models for AID activity have been proposed: that AID is a messenger RNA editor, or that it is a DNA-specific cytidine deaminase. The MMR system might have an important role at latter stages in the repair process.

Abstract

In response to antigen, B cells undergo a series of specialized genetic events to produce the 'ideal' population of antibodies to prevent and eradicate infections. Although these events — somatic hypermutation, gene conversion and class-switch recombination — have been recognized for many years, the enzymes that are involved have remained elusive. The recent discovery that activation-induced cytidine deaminase (AID) and the mismatch repair (MMR) system are involved in these processes has led to new models of the biochemical events that generate antibody diversity. However, there is still considerable uncertainty about the mechanism of action of AID, and there are differing viewpoints about the role of MMR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antibody-diversification mechanisms in mature B cells.
Figure 2: Two-stranded invasion in gene conversion.
Figure 3: Staggered cleavages and processing during class-switch recombination.
Figure 4: Putative modes of AID and MMR function in SHM, gene conversion and CSR.

Similar content being viewed by others

References

  1. Weill, J. C. & Reynaud, C. A. Rearrangement/ hypermutation/gene conversion: when, where and why? Immunol. Today 17, 92–97 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Diaz, M., Flajnik, M. F. & Klinman, N. Evolution and the molecular basis of somatic hypermutation of antigen-receptor genes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 67–72 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lanning, D., Zhu, X., Zhai, S. K. & Knight, K. L. Development of the antibody repertoire in rabbit: gut-associated lymphoid tissue, microbes and selection. Immunol. Rev. 175, 214–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Sayegh, C. E., Demaries, S. L., Pike, K. A., Friedman, J. E. & Ratcliffe, M. J. The chicken B-cell receptor complex and its role in avian B-cell development. Immunol. Rev. 175, 187–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Rajewsky, K., Forster, I. & Cumano, A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 238, 1088–1094 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. McKean, D. et al. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA 81, 3180–3184 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sale, J. E. & Neuberger, M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B-cell line. Immunity 9, 859–869 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, W. et al. Clonal instability of V-region hypermutation in the Ramos Burkitt's lymphoma cell line. Int. Immunol. 13, 1175–1184 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Golding, G. B., Gearhart, P. J. & Glickman, B. W. Patterns of somatic mutations in immunoglobulin variable genes. Genetics 115, 169–176 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rogozin, I. B. & Kolchanov, N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim. Biophys. Acta 1171, 11–18 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Shapiro, G. S., Aviszus, K., Ikle, D. & Wysocki, L. J. Predicting regional mutability in antibody V genes based solely on di- and trinucleotide sequence composition. J. Immunol. 163, 259–268 (1999).

    CAS  PubMed  Google Scholar 

  12. Michael, N. et al. Effects of sequence and structure on the hypermutability of immunoglobulin genes. Immunity 16, 123–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Lebecque, S. G. & Gearhart, P. J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is approximately 1 kb from V(D)J gene. J. Exp. Med. 172, 1717–1727 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Rada, C., Yelamos, J., Dean, W. & Milstein, C. The 5′ hypermutation boundary of κ chains is independent of local and neighbouring sequences and related to the distance from the initiation of transcription. Eur. J. Immunol. 27, 3115–3120 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Peters, A. & Storb, U. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4, 57–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Maizels, N. Somatic hypermutation: how many mechanisms diversify V-region sequences? Cell 83, 9–12 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Bachl, J., Carlson, C., Gray-Schopfer, V., Dessing, M. & Olsson, C. Increased transcription levels induce higher mutation rates in a hypermutating cell line. J. Immunol. 166, 5051–5057 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Goyenechea, B. et al. Cells strongly expressing Ig(κ) transgenes show clonal recruitment of hypermutation: a role for both MAR and the enhancers. EMBO J. 16, 3987–3994 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tumas-Brundage, K. & Manser, T. The transcriptional promoter regulates hypermutation of the antibody heavy-chain locus. J. Exp. Med. 185, 239–250 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fukita, Y., Jacobs, H. & Rajewsky, K. Somatic hypermutation in the heavy-chain locus correlates with transcription. Immunity 9, 105–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Storb, U. et al. Somatic hypermutation of immunoglobulin genes is linked to transcription. Curr. Top. Microbiol. Immunol. 229, 11–19 (1998).

    CAS  PubMed  Google Scholar 

  22. Muschen, M. et al. Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal-center reaction. J. Exp. Med. 192, 1833–1840 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pasqualucci, L. et al. BCL-6 mutations in normal germinal-center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA 95, 11816–11821 (1998).The first report, together with reference 25 , to indicate that the SHM mechanism is not restricted to antibody genes. Curiously, this finding has never been replicated in mice, which indicates that differences in SHM targeting exist between mice and humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pasqualucci, L., Neri, A., Baldini, L., Dalla-Favera, R. & Migliazza, A. BCL-6 mutations are associated with immunoglobulin variable heavy-chain mutations in B-cell chronic lymphocytic leukemia. Cancer Res. 60, 5644–5648 (2000).

    CAS  PubMed  Google Scholar 

  25. Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Storb, U. et al. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol. Rev. 162, 153–160 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Shen, H. M., Michael, N., Kim, N. & Storb, U. The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells. Int. Immunol. 12, 1085–1093 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Bachl, J. & Wabl, M. Enhancers of hypermutation. Immunogenetics 45, 59–64 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Betz, A. G. et al. Elements regulating somatic hypermutation of an immunoglobulin κ gene: critical role for the intron enhancer/matrix attachment region. Cell 77, 239–248 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Shen, H. M., Peters, A., Kao, D. & Storb, U. The 3′ Igκ enhancer contains RNA polymerase II promoters: implications for endogenous and transgenic κ gene expression. Int. Immunol. 13, 665–674 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Lin, M. M., Green, N. S., Zhang, W. & Scharff, M. D. The effects of Eμ, 3′α (hs 1,2) and 3′κ enhancers on mutation of an Ig–VDJ–Cγ2a immunoglobulin heavy gene in cultured B cells. Int. Immunol. 10, 1121–1129 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Yelamos, J. et al. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376, 225–229 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Kodama, M. et al. The PU.1 and NF-EM5 binding motifs in the Igκ 3′ enhancer are responsible for directing somatic hypermutations to the intrinsic hotspots in the transgenic Vκ gene. Int. Immunol. 13, 1415–1422 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Yoshikawa, K. et al. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296, 2033–2036 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Okazaki Im, I., Kinoshita, K., Muramatsu, M., Yoshikawa, K. & Honjo, T. The AID enzyme induces class-switch recombination in fibroblasts. Nature 416, 340–345 (2002).Using an artificial switch substrate, this report shows that AID is the only lymphocyte-specific factor that is required to induce CSR.

    Article  CAS  PubMed  Google Scholar 

  37. Jolly, C. J. & Neuberger, M. S. Somatic hypermutation of immunoglobulin κ transgenes: association of mutability with demethylation. Immunol. Cell. Biol. 79, 18–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class-switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Kuppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B-cell lymphomas. Oncogene 20, 5580–5594 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity 13, 589–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Lo, A. K., Ching, A. K., Lim, P. L. & Chui, Y. L. Strand breaks in immunoglobulin gene hypermutation. Ann. NY Acad. Sci. 815, 432–435 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Kong, Q. & Maizels, N. DNA breaks in hypermutating immunoglobulin genes: evidence for a break and repair pathway of somatic mutation. Genetics 158, 369–378 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chua, K. F., Alt, F. W. & Manis, J. P. The function of AID in somatic mutation and class-switch recombination: upstream or downstream of DNA breaks. J. Exp. Med. 195, F37–F41 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bross, L., Muramatsu, M., Kinoshita, K., Honjo, T. & Jacobs, H. DNA double-strand breaks: prior to but not sufficient in targeting hypermutation. J. Exp. Med. 195, 1187–1192 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Papavasiliou, F. N. & Schatz, D. G. The activation-induced deaminase functions in a postcleavage step of the somatic hypermutation process. J. Exp. Med. 195, 1193–1198 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muramatsu, M. et al. Class-switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).This report, together with reference 92 , shows that mice and humans who lack AID are deficient in both CSR and SHM, which indicates that these two processes are mechanistically linked.

    Article  CAS  PubMed  Google Scholar 

  48. Peltomaki, P. & Vasen, H. F. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 113, 1146–1158 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Wei, K., Kucherlapati, R. & Edelmann, W. Mouse models for human DNA mismatch-repair gene defects. Trends Mol. Med. 8, 346–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Phung, Q. H. et al. Increased hypermutation at G and C nucleotides in immunoglobulin variable genes from mice deficient in the MSH2 mismatch repair protein. J. Exp. Med. 187, 1745–1751 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rada, C., Ehrenstein, M. R., Neuberger, M. S. & Milstein, C. Hot-spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 9, 135–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Wiesendanger, M., Kneitz, B., Edelmann, W. & Scharff, M. D. Somatic hypermutation in MutS homologue (MSH)3-, MSH6-, and MSH3/MSH6-deficient mice reveals a role for the MSH2–MSH6 heterodimer in modulating the base substitution pattern. J. Exp. Med. 191, 579–584 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reynaud, C. A. et al. Mismatch repair and immunoglobulin gene hypermutation: did we learn something? Immunol. Today 20, 522–527 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Vora, K. A. et al. Severe attenuation of the B-cell immune response in Msh2-deficient mice. J. Exp. Med. 189, 471–482 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Frey, S. et al. Mismatch-repair deficiency interferes with the accumulation of mutations in chronically stimulated B cells and not with the hypermutation process. Immunity 9, 127–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Zeng, X. et al. DNA polymerase eta is an A–T mutator in somatic hypermutation of immunoglobulin variable genes. Nature Immunol. 2, 537–541 (2001).Xeroderma pigmentosum variant patients, who lack DNA polymerase η, mutate mostly G–C base pairs, similar to the mutations that are observed in MMR-deficient mice. Together with reference 64 , these results indicate that DNA polymerase η might be responsible for the second phase of SHM that involves A–T base pairs.

    Article  CAS  Google Scholar 

  57. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Gearhart, P. J. & Wood, R. D. Emerging links between hypermutation of antibody genes and DNA polymerases. Nat. Rev. Immunol. 1, 187–192 (2001).|PubMed|

    Article  CAS  PubMed  Google Scholar 

  59. Poltoratsky, V., Goodman, M. F. & Scharff, M. D. Error-prone candidates vie for somatic mutation. J. Exp. Med. 192, F27–F30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Poltoratsky, V. et al. Expression of error-prone polymerases in BL2 cells activated for Ig somatic hypermutation. Proc. Natl Acad. Sci. USA 98, 7976–7981 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Diaz, M., Verkoczy, L. K., Flajnik, M. F. & Klinman, N. R. Decreased frequency of somatic hypermutation and impaired affinity maturation, but intact germinal-center formation in mice expressing antisense RNA to DNA polymerase ζ. J. Immunol. 167, 327–335 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Zan, H. et al. The translesion DNA polymerase ζ plays a major role in Ig and bcl-6 somatic hypermutation. Immunity 14, 643–653 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rogozin, I. B., Pavlov, Y. I., Bebenek, K., Matsuda, T. & Kunkel, T. A. Somatic mutation hotspots correlate with DNA polymerase η error spectrum. Nature Immunol. 2, 530–536 (2001).

    Article  CAS  Google Scholar 

  64. Reynaud, C. A., Bertocci, B., Dahan, A. & Weill, J. C. Formation of the chicken B-cell repertoire: ontogenesis, regulation of Ig gene rearrangement, and diversification by gene conversion. Adv. Immunol. 57, 353–378 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C. A hyperconversion mechanism generates the chicken light-chain preimmune repertoire. Cell 48, 379–388 (1987).

    Article  CAS  PubMed  Google Scholar 

  66. Elliott, B. & Jasin, M. Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol. Cell. Biol. 21, 2671–2682 (2001).Using cells that are deficient in MSH2, this paper reveals that gene conversion repairs double-stranded DNA breaks by the formation of heteroduplex DNA structures that are subsequently repaired by the MMR system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, J., Read, L. R. & Baker, M. D. The mechanism of mammalian gene replacement is consistent with the formation of long regions of heteroduplex DNA associated with two crossing-over events. Mol. Cell. Biol. 21, 501–510 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Buerstedde, J. M. et al. Light-chain gene conversion continues at high rate in an ALV-induced cell line. EMBO J. 9, 921–927 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bezzubova, O., Silbergleit, A., Yamaguchi-Iwai, Y., Takeda, S. & Buerstedde, J. M. Reduced X-ray resistance and homologous recombination frequencies in a RAD54−/− mutant of the chicken DT40 cell line. Cell 89, 185–193 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Sale, J. E., Calandrini, D. M., Takata, M., Takeda, S. & Neuberger, M. S. Ablation of XRCC2/3 transforms immunoglobulin V-gene conversion into somatic hypermutation. Nature 412, 921–926 (2001).This report shows that DT40 cells, which normally undergo gene conversion, are activated for SHM when XRCC2 or XRCC3 are deleted, thereby providing further evidence for a mechanistic linkage between SHM and gene conversion.

    Article  CAS  PubMed  Google Scholar 

  71. Takata, M. et al. Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol. Cell. Biol. 21, 2858–2866 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Harris, R. S., Sale, J. E., Petersen-Mahrt, S. K. & Neuberger, M. S. AID is essential for immunoglobulin V gene conversion in a cultured B-cell line. Curr. Biol. 12, 435–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Arakawa, H., Hauschild, J. & Buerstedde, J. M. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295, 1301–1306 (2002).The finding that immunoglobulin gene conversion in chicken DT40 B cells requires AID (also shown in reference 72 ) revealed that maturing B cells require AID for all antibody-diversification processes.

    Article  CAS  PubMed  Google Scholar 

  74. Pinaud, E. et al. Localization of the 3′ IgH locus elements that affect long-distance regulation of class-switch recombination. Immunity 15, 187–199 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Lee, C. G. et al. Quantitative regulation of class-switch recombination by switch-region transcription. J. Exp. Med. 194, 365–374 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hein, K. et al. Processing of switch transcripts is required for targeting of antibody class-switch recombination. J. Exp. Med. 188, 2369–2374 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).The formation of NBS1- and γ-H2AX-containing foci at immunoglobulin switch sites, which is indicative of double-stranded DNA breaks, is absent in AID-deficient B cells. This indicates that AID functions upstream of break induction in CSR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, X., Kinoshita, K. & Honjo, T. Variable deletion and duplication at recombination junction ends: implication for staggered double-strand cleavage in class-switch recombination. Proc. Natl Acad. Sci. USA 98, 13860–13865 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dunnick, W., Wilson, M. & Stavnezer, J. Mutations, duplication and deletion of recombined switch regions indicate a role for DNA replication in the immunoglobulin heavy-chain switch. Mol. Cell. Biol. 9, 1850–1856 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Casellas, R. et al. Ku80 is required for immunoglobulin isotype switching. EMBO J. 17, 2404–2411 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Manis, J. P. et al. Ku70 is required for late B-cell development and immunoglobulin heavy-chain class switching. J. Exp. Med. 187, 2081–2089 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kenter, A. & Wuerffel, R. Immunoglobulin switch recombination may occur by a DNA end-joining mechanism. Ann. NY Acad. Sci. 870, 206–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Manis, J. P., Dudley, D., Kaylor, L. & Alt, F. W. IgH class-switch recombination to IgG1 in DNA-PKcs-deficient B cells. Immunity 16, 607–617 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Schrader, C. E., Edelmann, W., Kucherlapati, R. & Stavnezer, J. Reduced isotype switching in splenic B cells from mice deficient in mismatch repair enzymes. J. Exp. Med. 190, 323–330 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ehrenstein, M. R. & Neuberger, M. S. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J. 18, 3484–3490 (1999).This paper shows that B cells from mice that are deficient for Msh2 have an tenfold decrease in CSR activity and have switch junctions that occur most frequently in RGYW hotspot motifs, which indicates that MMR might have a similar function in both SHM and CSR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ehrenstein, M. R., Rada, C., Jones, A. M., Milstein, C. & Neuberger, M. S. Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class-switch recombination. Proc. Natl Acad. Sci. USA 98, 14553–14558 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kinoshita, K. & Honjo, T. Linking class-switch recombination with somatic hypermutation. Nature Rev. Mol. Cell. Biol. 2, 493–503 (2001).

    Article  CAS  Google Scholar 

  88. Nagaoka, H., Muramatsu, M., Yamamura, N., Kinoshita, K. & Honjo, T. Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Sμ region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J. Exp. Med. 195, 529–534 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal-center B cells. J. Biol. Chem. 274, 18470–18476 (1999).AID is first reported in this study. AID was cloned by subtraction hybridization from CH12F3-2 B cells that were stimulated to switch to IgA.

    Article  CAS  PubMed  Google Scholar 

  90. Madsen, P. et al. Psoriasis-upregulated phorbolin-1 shares structural but not functional similarity to the mRNA-editing protein apobec-1. J. Invest. Dermatol. 113, 162–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Davidson, N. O. & Shelness, G. S. Apolipoprotein B: mRNA editing, lipoprotein assembly and presecretory degradation. Annu. Rev. Nutr. 20, 169–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Martin, A. et al. Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature 415, 802–806 (2002).This report shows that AID is required for SHM by Ramos cells, and that it is sufficient to activate SHM in hybridoma cells, which indicates that AID is the only germinal-centre-specific factor that is required for SHM.

    Article  CAS  PubMed  Google Scholar 

  94. Gerber, A. P. & Keller, W. RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem. Sci. 26, 376–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Spencer, J., Dunn, M. & Dunn-Walters, D. K. Characteristics of sequences around individual nucleotide substitutions in IgVH genes suggest different GC and AT mutators. J. Immunol. 162, 6596–6601 (1999).

    CAS  PubMed  Google Scholar 

  96. Yamanaka, S., Poksay, K. S., Balestra, M. E., Zeng, G. Q. & Innerarity, T. L. Cloning and mutagenesis of the rabbit ApoB mRNA editing protein. A zinc motif is essential for catalytic activity, and noncatalytic auxiliary factor(s) of the editing complex are widely distributed. J. Biol. Chem. 269, 21725–21734 (1994).

    CAS  PubMed  Google Scholar 

  97. Mehta, A., Kinter, M. T., Sherman, N. E. & Driscoll, D. M. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol. Cell. Biol. 20, 1846–1854 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, H., Lawrence, C. W., Li, G. M. & Hays, J. B. Specific binding of human MSH2. MSH6 mismatch-repair protein heterodimers to DNA incorporating thymine- or uracil-containing UV light photoproducts opposite mismatched bases. J. Biol. Chem. 274, 16894–16900 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Rada, C., Jarvis, J. M. & Milstein, C. AID–GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear localization. Proc. Natl Acad. Sci. USA 99, 7003–7008 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Scharer, O. D. & Jiricny, J. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays 23, 270–281 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Pearl, L. H. Structure and function in the uracil-DNA glycosylase superfamily. Mutat. Res. 460, 165–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Schatz, D. G. & Baltimore, D. Stable expression of immunoglobulin gene V(D)J recombinase activity by gene transfer into 3T3 fibroblasts. Cell 53, 107–115 (1988).

    Article  CAS  PubMed  Google Scholar 

  103. Kolodner, R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 10, 1433–1442 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Harfe, B. D. & Jinks-Robertson, S. DNA mismatch repair and genetic instability. Annu. Rev. Genet. 34, 359–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Modrich, P. & Lahue, R. Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu. Rev. Biochem. 65, 101–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Storb, U., Shen, H. M., Michael, N. & Kim, N. Somatic hypermutation of immunoglobulin and non-immunoglobulin genes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 13–19 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim, N., Bozek, G., Lo, J. C. & Storb, U. Different mismatch repair deficiencies all have the same effects on somatic hypermutation: intact primary mechanism accompanied by secondary modifications. J. Exp. Med. 190, 21–30 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cascalho, M., Wong, J., Steinberg, C. & Wabl, M. Mismatch repair co-opted by hypermutation. Science 279, 1207–1210 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Bemark, M. et al. Somatic hypermutation in the absence of DNA-dependent protein kinase catalytic subunit (DNA-PK(cs)) or recombination-activating gene (RAG)1 activity. J. Exp. Med. 192, 1509–1514 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zheng, B., Han, S., Spanopoulou, E. & Kelsoe, G. Immunoglobulin gene hypermutation in germinal centers is independent of the RAG-1 V(D)J recombinase. Immunol. Rev. 162, 133–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Jacobs, H. et al. Hypermutation of immunoglobulin genes in memory B cells of DNA repair-deficient mice. J. Exp. Med. 187, 1735–1743 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Essers, J. et al. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89, 195–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Bertocci, B. et al. Cutting edge: DNA polymerases μ and λ are dispensable for Ig gene hypermutation. J. Immunol. 168, 3702–3706 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Klein, U., Esposito, G., Baudat, F., Keeney, S. & Jasin, M. Mice deficient for the type II topoisomerase-like DNA transesterase Spo11 show normal immunoglobulin somatic hypermutation and class switching. Eur. J. Immunol. 32, 316–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Winter, D. B. & Gearhart, P. J. Altered spectra of hypermutation in DNA repair-deficient mice. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 5–11 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Esposito, G. et al. Mice reconstituted with DNA-polymerase-β-deficient fetal liver cells are able to mount a T-cell-dependent immune response and mutate their Ig genes normally. Proc. Natl Acad. Sci. USA 97, 1166–1171 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–104 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Goodman, B. Birshtein, M. Sadofsky, P. Bardwell, R. Laskov and W. Edelmann for their critical review of this manuscript. This work was supported by grants from the National Institutes of Health to M.D.S., who is also supported by the Harry Eagle Chair provided by the National Women's Division of the Albert Einstein College of Medicine. A.M. is a recipient of Cancer Research Institute and Harry Eagle Fellowships.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

AID

APOB

APOBEC1

BCL6

CD40L

CD95L

DNA polymerase η

EXO1

GST

H2AX

interleukin-4

MLH1

MLH3

MSH2

MSH3

MSH4

MSH5

MSH6

NBS1

PCNA

phorbolin-1

PMS2

RAD51B

RAD54

Rag1

RAG1

RAG2

XRCC2

XRCC3

<i>Saccharomyces</i> Genome Database

Rad

Glossary

AFFINITY MATURATION

The mutation of antibody variable (V)-region genes followed by selection for higher-affinity variants in the germinal centre leads to an increase in average antibody affinity as an immune response progresses. The selection is thought to be a competitive process in which B cells compete with each other to capture decreasing amounts of antigen.

CENTROBLAST

A stage of B-cell development at which class-switch recombination and somatic hypermutation occur. These cells are rapidly cycling and reside in the dark zone of the germinal centre.

GERMINAL CENTRE

Located in peripheral lymphoid tissues (for example, the spleen), these structures are sites of B-cell proliferation, somatic hypermutation and selection for clones that produce antigen-specific antibodies of higher affinity.

INTRONIC ENHANCER

An 2 kb DNA sequence that lies between the V region and the μ-switch region that regulates the transcription of the heavy-chain antibody gene.

XERODERMA PIGMENTOSUM

(XP). A rare inherited human disorder, in which patients are sensitive to the DNA-damaging effects of sunlight. XP can be caused by disabling any of eight different genes. Seven of the genes, denoted XPAXPG, encode components of the nucleotide-excision repair pathway. The XPV gene encodes DNA polymerase η.

ERROR-PRONE DNA POLYMERASES

Recently identified DNA polymerases that copy templates inaccurately. Some of these — including POLζ, POLη, POLι and POLμ — are candidates for enzymes that introduce base changes during somatic hypermutation.

V(D)J RECOMBINATION

To create a functional antibody variable (V) region, mouse pre-B cells must first recombine one of many V gene segments to one of 15 diversity (D) segments and one of four joining (J) segments.

HOMOLOGOUS RECOMBINATION

Genetic recombination that occurs between DNA strands that have long stretches of homology. Double-stranded breaks can be repaired if a chromosome or chromatid that is homologous to the broken DNA is available in the cell.

HYBRIDOMA

An antibody-secreting B-cell line that is generated by fusing splenic-derived B cells with a plasmacytoma.

DT40 CELLS

A chicken B-cell line that undergoes high rates of homologous recombination and immunoglobulin gene conversion.

STERILE TRANSCRIPTS

These transcripts, which are driven from I promoters located upstream of all switch regions, are not believed to encode proteins, but are spliced to form mature sterile transcripts that contain the constant-region exons and sequences upstream of the switch region.

3′ REGULATORY REGION

Sequences that are located 3′ of the last constant-region genes of the heavy-chain immunoglobulin cluster (that is, Cα in mice) that regulate transcription of the immunoglobulin locus.

NON-HOMOLOGOUS END JOINING

(NHEJ). A pathway that rejoins DNA strand breaks without relying on marked homology. The main known pathway uses the Ku-end-binding complex and is regulated by DNA protein kinase. The pathway is often used in mammalian cells to repair strand breaks that are caused by DNA-damaging agents, and some of the same enzymes are used during the strand-joining steps of V(D)J recombination.

HYPER-IGM SYNDROME

An immunodeficiency in which patients have high levels of serum IgM, but trace amounts of IgG, IgA and IgE, and suffer from opportunistic infections. The most common form, X-linked hyper-IgM, is caused by defects in CD40 ligand (CD154).

RAMOS CELLS

A Burkitt's lymphoma human B-cell line that constitutively undergoes high rates of somatic hypermutation.

RAG PROTEINS

Recombination-activating gene 1 (RAG1) and RAG2 are proteins that mediate V(D)J recombination in pre-B cells and thymocytes, which allows for the production of antibodies and T-cell receptors, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, A., Scharff, M. AID and mismatch repair in antibody diversification. Nat Rev Immunol 2, 605–614 (2002). https://doi.org/10.1038/nri858

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing