Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The unconventional lifestyle of NKT cells

Key Points

  • Vα14i T cells are the main natural killer T (NKT)-cell subset in mice, and a homologous Vα24i T-cell population is present in humans.

  • Vα14i T cells have an invariant T-cell receptor (TCR) α-chain, although the complementarity-determining region 3 (CDR3) of their β-chain is not selected; they have some degree of autoreactivity for CD1d; and they have a memory phenotype.

  • Vα14i T cells almost uniformly recognize the synthetic glycolipid α-galactosyl ceramide (α-GalCer) presented by CD1d. This causes the release of cytokines, which can influence various types of immune cell, including dendritic cells, macrophages and lymphocytes.

  • The ability of Vα14i T cells to rapidly produce quantities of interleukin-4 (IL-4) that can be detected systemically after in vivo stimulation distinguishes them from other lymphocyte populations.

  • Vα14i T cells have unique genetic and cellular requirements for their development in the thymus, including selection by bone-marrow-derived, rather than epithelial, cells. Despite their distinct properties, similar to other T cells, Vα14i T cells originate from a double-positive intermediate.

  • The Vα14i precursor population expands and is instructed to branch off from the mainstream pathway for thymocyte development, with the acquisition of NK1.1 expression being a late maturation event. The factor that is responsible for this branching off is unknown, but unique features of the TCR interaction or selection by bone-marrow-derived cells could be responsible.

  • Vα14i T cells produce large quantities of cytokines rapidly after activation, and then probably undergo activation-induced cell death, without evidence of clonal expansion.

  • Vα14i T cells influence various immune responses, including tumour rejection, the maintenance of self-tolerance, autoimmunity and the response to several infectious agents. In some cases, this requires stimulation with α-GalCer, but a natural role for Vα14i T cells in model systems has been elucidated also.

  • There is no final common pathway for the effects of Vα14i T-cell stimulation. In some instances, the production of IL-4 and/or IL-10 might be crucial, but in others, interferon-γ is most important.

Abstract

Many characteristics distinguish CD1d-reactive natural killer T (NKT) cells that express the invariant Vα14–Jα18 T-cell receptor (known here as Vα14i T cells) from conventional T cells. Because of their apparent self-reactivity, their expression of natural-killer receptors and their capacity to secrete large quantities of cytokines rapidly — including interferon-γ and interleukin-4 — it has been proposed that Vα14i T cells might be important for the initiation and regulation of immune responses. New studies are beginning to shed light on the development, selection, homeostasis and possible function(s) of Vα14i T cells, which are 'non-conformists' compared with the main T-cell populations. These studies might lead to the development of techniques for the controlled manipulation of the Vα14i T-cell response, which could one day form the basis of immune therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aberrant TCR expression in NKT TCR-transgenic mice.
Figure 2: Schematic view of the development of Vα14i T cells in the thymus.
Figure 3: A model for the avidity-based, instructional selection of Vα14i T cells.

Similar content being viewed by others

References

  1. Bendelac, A., Rivera, M. N., Park, S. H. & Roark, J. H. Mouse CD1-specific NK1 T cells: development, specificity and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J. & Baxter, A. G. NKT cells: facts, functions and fallacies. Immunol. Today 21, 573–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Lantz, O. & Bendelac, A. An invariant T-cell receptor α-chain is used by a unique subset of major histocompatibility complex class-I-specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865 (1995).The first demonstration that Vα14 i T cells recognize the non-classical MHC class I molecule CD1d.

    Article  CAS  PubMed  Google Scholar 

  5. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).This study shows that Vα14 i T cells recognize the glycolipid α-galactosyl ceramide (α-GalCer) presented by CD1d.

    Article  CAS  PubMed  Google Scholar 

  6. Burdin, N. et al. Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα14+ NK T lymphocytes. J. Immunol. 161, 3271–3281 (1998).

    CAS  PubMed  Google Scholar 

  7. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsuda, J. L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).The first study of the Vα14 i T-cell response ex vivo using CD1d tetramers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gumperz, J. E. et al. Murine CD1d-restricted T-cell recognition of cellular lipids. Immunity 12, 211–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Gui, M., Li, J., Wen, L. J., Hardy, R. R. & Hayakawa, K. TCR β-chain influences but does not solely control autoreactivity of Vα14Jα281 T cells. J. Immunol. 167, 6239–6246 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spada, F. M., Koezuka, Y. & Porcelli, S. A. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med. 188, 1529–1534 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishihara, S. et al. CD8+NKRP1A+ T cells preferentially accumulate in human liver. Eur. J. Immunol. 29, 2406–2413 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Metelitsa, L. S. et al. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J. Immunol. 167, 3114–3122 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Hammond, K. J. et al. CD1d-restricted NKT cells: an interstrain comparison. J. Immunol. 167, 1164–1173 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Lantz, O., Sharara, L. I., Tilloy, F., Andersson, A. & DiSanto, J. P. Lineage relationships and differentiation of natural killer (NK) T cells: intrathymic selection and interleukin (IL)-4 production in the absence of NKR-P1 and Ly49 molecules. J. Exp. Med. 185, 1395–1401 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gapin, L., Matsuda, J. L., Surh, C. D. & Kronenberg, M. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nature Immunol. 2, 971–978 (2001).A direct demonstration that double-positive thymocytes contain precursors of Vα14 i T cells.

    Article  CAS  Google Scholar 

  18. Pellicci, D. G. et al. NKT cells develop through a thymus-dependent NK1.1-CD4+ CD1d-dependent precursor stage. J. Exp. Med. 195, 835–844 (2002).Evidence that Vα14 i T cells are thymus dependent and that expression of NK1.1 can be acquired after export from the thymus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NKT-cell lineage. Science 296, 553–555 (2002).Identification of the developmental intermediate stages of Vα14 i T cells in the thymus.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, H. & Paul, W. E. A population of CD62LlowNk1.1CD4+ T cells that resembles NK1.1+CD4+ T cells. Eur. J. Immunol. 28, 3172–3182 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Eberl, G. et al. Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J. Immunol. 162, 6410–6419 (1999).

    CAS  PubMed  Google Scholar 

  22. Cardell, S. et al. CD1-restricted CD4+ T cells in major histocompatibility complex class-II-deficient mice. J. Exp. Med. 182, 993–1004 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Behar, S. M., Podrebarac, T. A., Roy, C. J., Wang, C. R. & Brenner, M. B. Diverse TCRs recognize murine CD1. J. Immunol. 162, 161–167 (1999).

    CAS  PubMed  Google Scholar 

  24. Park, S.-H. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T-cell receptor families. J. Exp. Med. 193, 893–904 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Exley, M. A. et al. A major fraction of human bone-marrow lymphocytes are TH2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses. J. Immunol. 167, 5531–5534 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, B., Chun, T. & Wang, C. R. Comparative contribution of CD1 on the development of CD4+ and CD8+ T-cell compartments. J. Immunol. 164, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Hammond, K. J. et al. NKT cells are phenotypically and functionally diverse. Eur. J. Immunol. 29, 3768–3781 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Slifka, M. K., Pagarigan, R. R. & Whitton, J. L. NK markers are expressed on a high percentage of virus-specific CD8+ and CD4+ T cells. J. Immunol. 164, 2009–2015 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Kambayashi, T. et al. Emergence of CD8+ T cells expressing NK-cell receptors in influenza A virus-infected mice. J. Immunol. 165, 4964–4969 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Arase, H., Saito, T., Phillips, J. H. & Lanier, L. L. Cutting edge: the mouse NK-cell-associated antigen recognized by DX5 monoclonal antibody is CD49b (α2 integrin, very late antigen-2). J. Immunol. 167, 1141–1144 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Gonzalez, A., Andre-Schmutz, I., Carnaud, C., Mathis, D. & Benoist, C. Damage control, rather than unresponsiveness, effected by protective DX5+ T cells in autoimmune diabetes. Nature Immunol. 2, 1117–1125 (2001).

    Article  CAS  Google Scholar 

  32. Moodycliffe, A. M., Nghiem, D., Clydesdale, G. & Ullrich, S. E. Immune suppression and skin-cancer development: regulation by NKT cells. Nature Immunol. 1, 521–525 (2000).

    Article  CAS  Google Scholar 

  33. Smiley, S. T., Kaplan, M. H. & Grusby, M. J. Immunoglobulin-E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275, 977–979 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, Y. H., Chiu, N. M., Mandal, M., Wang, N. & Wang, C. R. Impaired NK1+ T-cell development and early IL-4 production in CD1-deficient mice. Immunity 6, 459–467 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Mendiratta, S. K. et al. CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6, 469–477 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Taniguchi, M. & Nakayama, T. Recognition and function of Vα14 NKT cells. Semin. Immunol. 12, 543–550 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Bendelac, A., Killeen, N., Littman, D. R. & Schwartz, R. H. A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263, 1774–1778 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Ohteki, T. & MacDonald, H. R. Major histocompatibility complex class-I-related molecules control the development of CD4+8 and CD48 subsets of natural killer 1.1+ T-cell receptor-α/β+ cells in the liver of mice. J. Exp. Med. 180, 699–704 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Coles, M. C. & Raulet, D. H. NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J. Immunol. 164, 2412–2418 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Sykes, M., Hoyles, K. A., Romick, M. L. & Sachs, D. H. In vitro and in vivo analysis of bone-marrow-derived CD3+, CD4, CD8, NK1.1+ cell lines. Cell. Immunol. 129, 478–493 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Levitsky, H. I., Golumbek, P. T. & Pardoll, D. M. The fate of CD48 T-cell receptor-αβ+ thymocytes. J. Immunol. 146, 1113–1117 (1991).

    CAS  PubMed  Google Scholar 

  42. Makino, Y. et al. Extrathymic development of Vα14+ T cells. J. Exp. Med. 177, 1399–1408 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. MacDonald, H. R. CD1d–glycolipid tetramers: a new tool to monitor natural killer T cells in health and disease. J. Exp. Med. 192, F15–F20 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hammond, K., Cain, W., van Driel, I. & Godfrey, D. Three-day neonatal thymectomy selectively depletes NK1.1+ T cells. Int. Immunol. 10, 1491–1499 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091–2096 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Robey, E. & Fowlkes, B. J. Selective events in T-cell development. Annu. Rev. Immunol. 12, 675–705 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Alberola-Ila, J., Hogquist, K. A., Swan, K. A., Bevan, M. J. & Perlmutter, R. M. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med. 184, 9–18 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Eberl, G., Lowin-Kropf, B. & MacDonald, H. R. Cutting edge: NKT-cell development is selectively impaired in Fyn-deficient mice. J. Immunol. 163, 4091–4094 (1999).

    CAS  PubMed  Google Scholar 

  49. Gadue, P., Morton, N. & Stein, P. L. The Src-family tyrosine kinase Fyn regulates natural killer T-cell development. J. Exp. Med. 190, 1189–1196 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walunas, T. L., Wang, B., Wang, C. R. & Leiden, J. M. Cutting edge: the Ets1 transcription factor is required for the development of NK T cells in mice. J. Immunol. 164, 2857–2860 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Ohteki, T., Ho, S., Suzuki, H., Mak, T. W. & Ohashi, P. S. Role for IL-15/IL-15 receptor β-chain in natural killer 1.1+ T-cell receptor-αβ+ cell development. J. Immunol. 159, 5931–5935 (1997).

    CAS  PubMed  Google Scholar 

  52. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T-cell lineages in interleukin-15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Iizuka, K. et al. Requirement for membrane lymphotoxin in natural killer cell development. Proc. Natl Acad. Sci. USA 96, 6336–6340 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Elewaut, D. et al. Membrane lymphotoxin is required for the development of different subpopulations of NK T cells. J. Immunol. 165, 671–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Shimamura, M., Ohteki, T., Beutner, U. & MacDonald, H. R. Lack of directed Vα14–Jα281 rearrangements in NK1+ T cells. Eur. J. Immunol. 27, 1576–1579 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Iwabuchi, K. et al. Defective development of NK1.1+ T-cell antigen receptor-αβ+ cells in ζ-associated protein 70 null mice with an accumulation of NK1.1+CD3 NK-like cells in the thymus. Blood 97, 1765–1775 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Sato, H. et al. Induction of differentiation of pre-NKT cells to mature Vα14 NKT cells by granulocyte–macrophage colony-stimulating factor. Proc. Natl Acad. Sci. USA 96, 7439–7444 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ballas, Z. K., Rasmussen, W. L., Alber, C. A. & Sandor, M. Ontogeny of thymic NK1.1+ cells. J. Immunol. 159, 1174–1181 (1997).

    CAS  PubMed  Google Scholar 

  60. Matsuda, J. L. et al. Natural killer T cells reactive to a single glycolipid exhibit a highly diverse T-cell receptor-β repertoire and small clone size. Proc. Natl Acad. Sci. USA 98, 12636–12641 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takahama, Y., Kosugi, A. & Singer, A. Phenotype, ontogeny and repertoire of CD4CD8 T-cell receptor-αβ+ thymocytes. Variable influence of self-antigens on T-cell receptor Vβ usage. J. Immunol. 146, 1134–1141 (1991).

    CAS  PubMed  Google Scholar 

  62. Wu, L., Pearse, M., Egerton, M., Petrie, H. & Scollay, R. CD4CD8 thymocytes that express the T-cell receptor may have previously expressed CD8. Int. Immunol. 2, 51–56 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Bendelac, A., Hunziker, R. D. & Lantz, O. Increased interleukin-4 and immunoglobulin-E production in transgenic mice overexpressing NK1 T cells. J. Exp. Med. 184, 1285–1293 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Lehuen, A. et al. Overexpression of natural killer T cells protects Vα14–Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188, 1831–1839 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zerrahn, J. et al. Class I MHC molecules on hematopoietic cells can support intrathymic positive selection of T-cell receptor transgenic T cells. Proc. Natl Acad. Sci. USA 96, 11470–11475 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  67. Leishman, A. et al. Thymic selection of CD8αα+ T cells with MHC class I and class II restricted TCRs is induced by agonist self-peptides. Immunity 16, 355–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Chiu, Y. H. et al. Multiple defects in antigen presentation and T-cell development by mice expressing cytoplasmic tail-truncated CD1d. Nature Immunol. 3, 55–60 (2002).This study shows that the loading of a natural ligand during intracellular CD1d transport is likely to be important for the selection of Vα14 i T cells.

    Article  CAS  Google Scholar 

  69. Legendre, V. et al. Selection of phenotypically distinct NK1.1+ T cells upon antigen expression in the thymus or in the liver. Eur. J. Immunol. 29, 2330–2343 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Ohwatari, R. et al. Developmental and functional analyses of CD8+ NK1.1+ T cells in class-I-restricted TCR-transgenic mice. Cell. Immunol. 213, 24–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Wack, A., Coles, M., Norton, T., Hostert, A. & Kioussis, D. Early onset of CD8 transgene expression inhibits the transition from DN3 to DP thymocytes. J. Immunol. 165, 1236–1242 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Ohteki, T., Maki, C., Koyasu, S., Mak, T. W. & Ohashi, P. S. Cutting edge: LFA-1 is required for liver NK1.1+TCRαβ+ cell development: evidence that liver NK1.1+TCRαβ+ cells originate from multiple pathways. J. Immunol. 162, 3753–3756 (1999).

    CAS  PubMed  Google Scholar 

  73. Emoto, M., Mittrucker, H. W., Schmits, R., Mak, T. W. & Kaufmann, S. H. Critical role of leukocyte function-associated antigen-1 in liver accumulation of CD4+ NKT cells. J. Immunol. 162, 5094–5098 (1999).

    CAS  PubMed  Google Scholar 

  74. Mempel, M. et al. Natural killer T cells restricted by the monomorphic MHC class 1b CD1d1 molecules behave like inflammatory cells. J. Immunol. 168, 365–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Mempel, M. et al. Comparison of the T-cell patterns in leprous and cutaneous sarcoid granulomas. Presence of Vα24-invariant natural killer T cells in T-cell-reactive leprosy together with a highly biased T-cell receptor Vα repertoire. Am. J. Pathol. 157, 509–523 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Faunce, D. E., Sonoda, K. H. & Stein-Streilein, J. MIP-2 recruits NKT cells to the spleen during tolerance induction. J. Immunol. 166, 313–321 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Kawakami, K. et al. Monocyte chemoattractant protein-1-dependent increase of Vα14 NKT cells in lungs and their roles in TH1 response and host defense in cryptococcal infection. J. Immunol. 167, 6525–6532 (2001).This paper, together with related work from this group, shows that Vα14 i T cells localize to the lungs in response to MCP1 and are important for the response to Cryptococcus neoformans.

    Article  CAS  PubMed  Google Scholar 

  78. D'Andrea, A. et al. Neonatal invariant Vα24+ NKT lymphocytes are activated memory cells. Eur. J. Immunol. 30, 1544–1550 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. van Der Vliet, H. J. et al. Human natural killer T cells acquire a memory-activated phenotype before birth. Blood 95, 2440–2442 (2000).

    CAS  PubMed  Google Scholar 

  80. Park, S. H., Benlagha, K., Lee, D., Balish, E. & Bendelac, A. Unaltered phenotype, tissue distribution and function of Vα14+ NKT cells in germ-free mice. Eur. J. Immunol. 30, 620–625 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Ikarashi, Y. et al. Dendritic-cell maturation overrules H-2D-mediated natural killer T (NKT)-cell inhibition. Critical role for B7 in CD1d-dependent NKT-cell interferon-γ production. J. Exp. Med. 194, 1179–1186 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maeda, M., Lohwasser, S., Yamamura, T. & Takei, F. Regulation of NKT cells by Ly49: analysis of primary NKT cells and generation of NKT-cell line. J. Immunol. 167, 4180–4186 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Exley, M., Porcelli, S., Furman, M., Garcia, J. & Balk, S. CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant Vα24 JαQ T-cell receptor α-chains. J. Exp. Med. 188, 867–876 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bousso, P. & Kourilsky, P. A clonal view of αβ T-cell responses. Semin. Immunol. 11, 423–431 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Leite-De-Moraes, M. C. et al. Fas/Fas ligand interactions promote activation-induced cell death of NK T lymphocytes. J. Immunol. 165, 4367–4371 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Osman, Y. et al. Activation of hepatic NKT cells and subsequent liver injury following administration of α-galactosylceramide. Eur. J. Immunol. 30, 1919–1928 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Hayakawa, Y. et al. Critical contribution of IFN-γ and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of α-galactosylceramide. Eur. J. Immunol. 31, 1720–1727 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Eberl, G. & MacDonald, H. R. Rapid death and regeneration of NKT cells in anti-CD3ɛ- or IL-12-treated mice: a major role for bone marrow in NKT-cell homeostasis. Immunity 9, 345–353 (1998).A demonstration that Vα14 i T cells respond quickly then disappear, probably through the activation-induced cell-death process.

    Article  CAS  PubMed  Google Scholar 

  89. Hobbs, J. A. et al. Selective loss of natural killer T cells by apoptosis following infection with lymphocytic choriomeningitis virus. J. Virol. 75, 10746–10754 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. MacDonald, H. R., Lees, R. K. & Held, W. Developmentally regulated extinction of Ly-49 receptor expression permits maturation and selection of NK1.1+ T cells. J. Exp. Med. 187, 2109–2114 (1998).

    Article  CAS  Google Scholar 

  91. Skold, M. & Cardell, S. Differential regulation of Ly49 expression on CD4+ and CD4CD8 (double negative) NK1.1+ T cells. Eur. J. Immunol. 30, 2488–2496 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Kawano, T. et al. Antitumor cytotoxicity mediated by ligand-activated human Vα24 NKT cells. Cancer Res. 59, 5102–5105 (1999).

    CAS  PubMed  Google Scholar 

  93. Carnaud, C. et al. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647–4650 (1999).

    CAS  PubMed  Google Scholar 

  94. Eberl, G. & MacDonald, H. R. Selective induction of NK-cell proliferation and cytotoxicity by activated NKT cells. Eur. J. Immunol. 30, 985–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Singh, N. et al. Cutting edge: activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a TH2 phenotype. J. Immunol. 163, 2373–2377 (1999).

    CAS  PubMed  Google Scholar 

  96. Nishimura, T. et al. The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int. Immunol. 12, 987–994 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Gonzalez-Aseguinolaza, G. et al. Natural killer T-cell ligand α-galactosylceramide enhances protective immunity induced by malaria vaccines. J. Exp. Med. 195, 617–624 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nakagawa, R. et al. Antitumor activity of α-galactosylceramide, KRN7000, in mice with the melanoma B16 hepatic metastasis and immunohistological study of tumor-infiltrating cells. Oncol. Res. 12, 51–58 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Burdin, N., Brossay, L. & Kronenberg, M. Immunization with α-galactosylceramide polarizes CD1-reactive NK T cells towards TH2 cytokine synthesis. Eur. J. Immunol. 29, 2014–2025 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Naumov, Y. N. et al. Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic-cell subsets. Proc. Natl Acad. Sci. USA 98, 13838–13843 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).This paper shows that Vα14 i T cells can be polarized towards a T H 2 phenotype using α-GalCer analogues, and shows the importance of this subset in protection against allergic encephalomyelitis.

    Article  CAS  PubMed  Google Scholar 

  102. Kadowaki, N. et al. Distinct cytokine profiles of neonatal natural killer T cells after expansion with subsets of dendritic cells. J. Exp. Med. 193, 1221–1226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gumperz, J. E., Miyake, S., Yamamura, T. & Brenner, M. B. Functionally distinct subsets of CD1d-restricted NKT cells revealed by CD1d tetramer staining. J. Exp. Med. 195, 625–636 (2002).This paper shows that human CD4+ Vα24 i T cells, but not double-negative T cells, can produce IL-4. See also Reference 104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee, P. T., Benlagha, K., Teyton, L. & Bendelac, A. Distinct functional lineages of human Vαl24 natural killer T cells. J. Exp. Med. 195, 637–641 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hong, S. et al. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nature Med. 7, 1052–1056 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Sharif, S. et al. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nature Med. 7, 1057–1062 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Singh, A. K. et al. Natural killer T-cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1801–1811 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cui, J. et al. Inhibition of T helper cell type 2 cell differentiation and immunoglobulin-E response by ligand-activated Vα14 natural killer T cells. J. Exp. Med. 190, 783–792 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schofield, L. et al. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283, 225–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Molano, A. et al. Cutting edge: the IgG response to the circumsporozoite protein is MHC class-II-dependent and CD1d-independent: exploring the role of GPIs in NK T-cell activation and antimalarial responses. J. Immunol. 164, 5005–5009 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Romero, J. F., Eberl, G., MacDonald, H. R. & Corradin, G. CD1d-restricted NK T cells are dispensable for specific antibody responses and protective immunity against liver-stage malaria infection in mice. Parasite Immunol. 23, 267–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Gonzalez-Aseguinolaza, G. et al. α-galactosylceramide-activated Vα14 natural killer T cells mediate protection against murine malaria. Proc. Natl Acad. Sci. USA 97, 8461–8466 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mannoor, M. K. et al. Resistance to malarial infection is achieved by the cooperation of NK1.1+ and NK1.1 subsets of intermediate TCR cells, which are constituents of innate immunity. Cell. Immunol. 211, 96–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Kakimi, K., Guidotti, L. G., Koezuka, Y. & Chisari, F. V. Natural killer T-cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med. 192, 921–930 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Baron, J. L. et al. Activation of a nonclassical NKT-cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 16, 583–594 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Sumida, T. et al. Selective reduction of T cells bearing invariant Vα24JαQ antigen receptor in patients with systemic sclerosis. J. Exp. Med. 182, 1163–1168 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. van der Vliet, H. J. et al. Circulating Vα24+Vβ11+ NKT-cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin. Immunol. 100, 144–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Illes, Z. et al. Differential expression of NK T cell Vα24JαQ invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J. Immunol. 164, 4375–4381 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Kojo, S., Adachi, Y., Keino, H., Taniguchi, M. & Sumida, T. Dysfunction of T-cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum. 44, 1127–1138 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Bonish, B. et al. Overexpression of CD1d by keratinocytes in psoriasis and CD1d-dependent IFN-γ production by NKT cells. J. Immunol. 165, 4076–4085 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Nagane, Y., Utsugisawa, K., Obara, D. & Tohgi, H. NKT-associated markers and perforin in hyperplastic thymuses from patients with Myasthenia gravis. Muscle Nerve 24, 1359–1364 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Smyth, M. J. et al. NKT cells — conductors of tumor immunity? Curr. Opin. Immunol. 14, 165–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).Stimulation of Vα14 i T cells by α-GalCer or IL-12 induces tumour rejection.

    Article  CAS  PubMed  Google Scholar 

  124. Tomura, M. et al. A novel function of Vα14+CD4+NKT cells: stimulation of IL-12 production by antigen-presenting cells in the innate immune system. J. Immunol. 163, 93–101 (1999).

    CAS  PubMed  Google Scholar 

  125. Kitamura, H. et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med. 189, 1121–1128 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Smyth, M. J. et al. Sequential production of interferon-γ by NK1.1+ T cells and natural killer cells is essential for the antimetastatic effect of γ-galactosylceramide. Blood 99, 1259–1266 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Smyth, M. J. et al. Tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon-γ-dependent natural killer cell protection from tumor metastasis. J. Exp. Med. 193, 661–670 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668 (2000).The first description that Vα14 i T cells have an anti-tumour function in the absence of exogenous stimulation with α-GalCer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Terabe, M. et al. NKT-cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R–STAT6 pathway. Nature Immunol. 1, 515–520 (2000).

    Article  CAS  Google Scholar 

  130. Baxter, A. G., Kinder, S. J., Hammond, K. J., Scollay, R. & Godfrey, D. I. Association between αβTCR+CD4CD8 T-cell deficiency and IDDM in NOD/Lt mice. Diabetes 46, 572–582 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Falcone, M., Yeung, B., Tucker, L., Rodriguez, E. & Sarvetnick, N. A defect in interleukin-12-induced activation and interferon-γ secretion of peripheral natural killer T cells in nonobese diabetic mice suggests new pathogenic mechanisms for insulin-dependent diabetes mellitus. J. Exp. Med. 190, 963–972 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hammond, K. J. L. et al. α/β-T-cell receptor TCR+CD4CD8 (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J. Exp. Med. 187, 1047–1056 (1998).This paper shows that the restoration of a normal Vα14 i T-cell repertoire by the transfer of Vα14 i T cells from non-immune-prone mice into NOD mice confers protection against diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Poulton, L. D. et al. Cytometric and functional analyses of NK- and NKT-cell deficiencies in NOD mice. Int. Immunol. 13, 887–896 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Wilson, S. B. et al. Extreme TH1 bias of invariant Vα24JaQ T cells in type 1 diabetes. Nature 391, 177–181 (1998).This paper provides evidence that diabetic patients have a reduced number of Vα24 i T cells compared with non-diabetic siblings.

    Article  CAS  PubMed  Google Scholar 

  135. Kukreja, A. et al. Multiple immuno-regulatory defects in type-1 diabetes. J. Clin. Invest. 109, 131–140 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shi, F. D. et al. Germ-line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc. Natl Acad. Sci. USA 98, 6777–6782 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, B., Geng, Y. B. & Wang, C. R. CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J. Exp. Med. 194, 313–320 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Jahng, A. W. et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1789–1799 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ishikawa, H. et al. CD4+ Vα14 NKT cells play a crucial role in an early stage of protective immunity against infection with Leishmania major. Int. Immunol. 12, 1267–1274 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Porcelli, S. A. & Modlin, R. L. The CD1 system: antigen-presenting molecules for T-cell recognition of lipids and glycolipids. Annu. Rev. Immunol. 17, 297–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Behar, S. M., Dascher, C. C., Grusby, M. J., Wang, C. R. & Brenner, M. B. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J. Exp. Med. 189, 1973–1980 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Apostolou, I. et al. Murine natural killer T (NKT) cells contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc. Natl Acad. Sci. USA 96, 5141–5146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dieli, F. et al. Resistance of natural killer T-cell-deficient mice to systemic Shwartzman reaction. J. Exp. Med. 192, 1645–1652 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. van der Vliet, H. J. et al. Potent expansion of human natural killer T cells using α-galactosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. J. Immunol. Methods 247, 61–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Ohteki, T. et al. The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T-cell receptor-α/β+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J. Exp. Med. 187, 967–972 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nakagawa, K. et al. Generation of NK1.1+ T-cell antigen receptor α/β+ thymocytes associated with intact thymic structure. Proc. Natl Acad. Sci. USA 94, 2472–2477 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Degermann, S., Sollami, G. & Karjalainen, K. Impaired NK1.1 T-cell development in mice transgenic for a T-cell receptor β-chain lacking the large, solvent-exposed Cβ FG loop. J. Exp. Med. 190, 1357–1362 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Saubermann, L. J. et al. Activation of natural killer T cells by α-galactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterology 119, 119–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Takeda, K. et al. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc. Natl Acad. Sci. USA 97, 5498–5503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kaneko, Y. et al. Augmentation of Vα14 NKT-cell-mediated cytotoxicity by interleukin-4 in an autocrine mechanism resulting in the development of concanavalin-A-induced hepatitis. J. Exp. Med. 191, 105–114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sonoda, K. H. et al. NK T-cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance. J. Immunol. 166, 42–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Seino, K. I. et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc. Natl Acad. Sci. USA 98, 2577–2581 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ikehara, Y. et al. CD4+ Vα14 natural killer T cells are essential for acceptance of rat islet xenografts in mice. J. Clin. Invest. 105, 1761–1767 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ito, K. et al. Involvement of decidual Vα14 NKT cells in abortion. Proc. Natl Acad. Sci. USA 97, 740–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kumar, H., Belperron, A., Barthold, S. W. & Bockenstedt, L. K. Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J. Immunol. 165, 4797–4801 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Kawakami, K. et al. Activation of Vα14+ natural killer T cells by α-galactosylceramide results in development of TH1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect. Immun. 69, 213–220 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kawakami, K. et al. Enhanced γ-interferon production through activation of Vα14+ natural killer T cells by α-galactosylceramide in interleukin-18-deficient mice with systemic cryptococcosis. Infect. Immun. 69, 6643–6650 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Duthie, M. S. et al. During Trypanosoma cruzi infection, CD1d-restricted NK T cells limit parasitemia and augment the antibody response to a glycophosphoinositol-modified surface protein. Infect. Immun. 70, 36–48 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our many colleagues for helpful discussions and sharing of unpublished data; space limitations prevented the citation of many relevant references. M.K. is supported by grants from the National Institutes of Health. L.G. is the recipient of a fellowship from the Cancer Research Institute. This is publication number 474 from the La Jolla Institute for Allergy and Immunology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Kronenberg.

Related links

Related links

DATABASES

LocusLink

β-actin

CD1B

CD1C

CD1D

CD1d

CD2

CD3ɛ

CD8

CD49B

CD95

CD95L

CD161

Ets1

Fyn

γc

IFN-γ

IL-2

IL-4

IL-7

IL-10

IL-12

IL-13

IL-15

LFA1

LT

LTβ receptor

MCP1

Mek

NK1.1

TNF

TRAIL

Zap70

FURTHER INFORMATION

CD1 and NKT Cell Workshop 2002

KIRIN Pharmaceutical Research Corporation

Mitchell Kronenberg

Glossary

α-GALCER–CD1D TETRAMER

A complex of four CD1d molecules loaded with α-GalCer that has sufficient affinity to detect the cell-surface Vα14i T-cell receptor by flow cytometry.

FETAL THYMIC ORGAN CULTURE

Removal of day-16 fetal thymi allows the analysis of antigen-driven positive- and negative-selection events during in vitro culture.

NU/NU MICE

nu/nu or nude mice have a spontaneous mutation that leads to hairlessness and epithelial defects, including the loss of a functional thymus.

HANGING-DROP CULTURE

A method for analysing lymphocyte development in vitro by seeding thymic lobes with defined precursor populations. Lymphoid thymic remnants and precursor populations are added together in a small volume of liquid in a Terasaki plate, and the plate is immediately inverted to form a 'hanging drop'. The hanging drop allows the precursor cells to enter into and seed the thymic lobe.

RAG

Recombination-activating gene. Rag1 and Rag2 are closely linked genes that constitute the catalytic machinery for gene-segment recombination of antigen-receptor genes.

CD4+CD25+ REGULATORY T CELLS

Naturally occurring T cells that have potent regulatory activity, including the ability to inhibit autoimmune diabetes in mice, induce tolerance to alloantigens, impede anti-tumour immunity and regulate the expansion of other peripheral CD4+ T-cell populations.

MYELOID DENDRITIC CELLS

A subset of CD8α dendritic cells that might be important for initiating vigorous immune responses.

T HELPER 1/T HELPER 2

(TH1/TH2). There are two patterns of cytokine production that have been described for CD4+ T cells. The TH1 pattern includes pro-inflammatory cytokines (typified by IFN-γ), whereas the TH2 pattern includes cytokines such as IL-4, IL-5 and IL-13.

NOD MICE

Non-obese diabetic (NOD) mice are a strain of mice that spontaneously develop type I diabetes.

EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS

(EAE). Refers to a set of related animal models for multiple sclerosis. Typically, disease is induced by the injection of components of myelin, which leads to demyelination in the central nervous system.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronenberg, M., Gapin, L. The unconventional lifestyle of NKT cells. Nat Rev Immunol 2, 557–568 (2002). https://doi.org/10.1038/nri854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri854

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing