Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem cell medicine encounters the immune system

Key Points

  • Human embryonic (hES) stem cells are able to divide indefinitely and give rise to both undifferentiated stem cells and all types of fully functional, mature cell. Pluripotent hES-cell lines, derived from early human embryos, can be propagated continuously in vitro, or they can be encouraged to differentiate in vitro into specialized cell types.

  • Human ES cells might become a renewable source of differentiated cells for treating damaged or diseased tissues. For example, embryonic ectoderm-derived nerve cells might be used to treat Parkinson's disease or spinal-cord injuries, endodermal insulin-producing cells might be used to treat diabetes and mesodermal stem-cell derivatives might be used to treat leukaemias and heart disease.

  • Animal models of human diseases treated with ES-cell-derived tissues have shown encouraging results. However, hES-cell therapeutics is in its infancy; there is a long way to go to establish both the safety of transplanting differentiated derivatives of hES cells and the efficacy of conditions for deriving specialized tissues reproducibly from hES cells.

  • Immunological rejection is likely to be an important problem. Little attention has been paid to the immunogenicity of transplanted fetal or ES-cell-derived tissues or to the need for immunosuppression. Overcoming the immune response must have a prominent role in the development of hES-cell therapeutics.

  • Human ES cells express HLA class I, but not class II, molecules, and expression of these molecules increases with differentiation in vitro (to embryoid bodies) and in vivo (to teratomas). It is probable that fully differentiated stem-cell-derived tissues in vivo will express normal and cytokine-inducible levels of HLA class I and class II antigens.

  • In contrast to conventional tissue transplants, transplants derived from hES cells are likely to lack dendritic cells. Consequently, the indirect pathway of allorecognition will have an important role in the immune response.

  • Possible approaches to overcome rejection include 'therapeutic cloning' (nuclear transfer), genotyped hES-cell banking, genetic modification to create a 'universal donor' or a protected phenotype, use of non-specific immunosuppressive drugs, immunomodulation of the recipient and establishment of haematopoietic chimerism in the recipient.

  • Therapeutic cloning would require the creation of an hES-cell line for every patient, whereas hES-cell banking could provide well-matched tissues for most patients.

  • Matching and genetic alteration of hES cells or their derivatives would reduce the immune response, but probably not sufficiently to avoid the need for additional immunosuppression.

  • The induction of haematopoietic chimerism and transplantation of therapeutic tissues from the same hES-cell line offers the possibility of true transplantation tolerance.

Abstract

Recent progress in deriving human embryonic stem (hES) cells and defining their capacity to differentiate has inspired hope that they could become a source of replacement cells for damaged or diseased tissues. We review the immunological barriers to transplanting hES cells and consider several potential solutions, including stem-cell banking, modification of the immunogenicity of donor cells and induction of tolerance to the graft. We evaluate the probable efficacy of these approaches with a view to facilitating the use of hES cells in clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alternative fates for an in vitro-fertilized zygote: intrauterine versus in vitro development.
Figure 2: Protocols for generating specialized tissues from embryonic stem cells and prospects for their therapeutic applications.
Figure 3: Direct and indirect T-cell allorecognition pathways.
Figure 4: Effector mechanisms mediating rejection of hES-cell-derived dendritic-cell-free allografts by T cells with indirect specificity for donor HLA molecules.
Figure 5: Genomic replacement (somatic-cell nuclear transfer) as a way of matching stem-cell-derived tissues with their intended recipient.
Figure 6: Mixed haematopoietic chimerism.

Similar content being viewed by others

References

  1. Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).Multipotent adult progenitor cells can be isolated from non-haematopoietic bone-marrow cells, expanded for more than 80 population doublings and differentiated in vitro , at the single-cell level, to form the products of all three germ layers.

    Article  CAS  PubMed  Google Scholar 

  3. Thomson, J. A. et al. Embryonic stem-cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).A landmark paper describing, for the first time, the derivation of human embryonic stem (hES) cells.

    Article  CAS  PubMed  Google Scholar 

  4. Amit, M. et al. Clonally derived human embryonic stem-cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A. & Bongso, A. Embryonic stem-cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnol. 18, 399–404 (2000).

    Article  CAS  Google Scholar 

  6. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pedersen, R. A. Embryonic stem cells for medicine. Sci. Am. 280, 68–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. McLaren, A. Ethical and social considerations of stem-cell research. Nature 414, 129–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, J. H. et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418, 50–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Bjorklund, L. M. et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci. USA 99, 2344–2349 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McDonald, J. W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature Med. 5, 1410–1412 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Brustle, O. et al. Embryonic stem-cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Soria, B. et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49, 157–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lumelsky, N. et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Chinzei, R. et al. Embryoid body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology 36, 22–29 (2002).

    Article  PubMed  Google Scholar 

  17. Min, J. Y. et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 92, 288–296 (2002).

    Article  PubMed  Google Scholar 

  18. Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O. & Thompson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnol. 19, 1129–1133 (2001).

    Article  CAS  Google Scholar 

  19. Auchincloss, H. & Bonventre, J. V. Transplanting cloned cells into therapeutic promise. Nature Biotechnol. 20, 665–666 (2002).

    Article  CAS  Google Scholar 

  20. Odorico, J. S., Kaufman, D. S. & Thomson, J. A. Multilineage differentiation from human embryonic stem-cell lines. Stem Cells 19, 193–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Clausen, H. & Hakomori, S. ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox. Sang. 56, 1–20 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Ito, N. & Hirota, T. Histochemical and cytochemical localisation of blood-group antigens. Prog. Histochem. Cytochem. 25, 1–85 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Springer, G. F. & Horton, R. E. Blood group isoantibody stimulation in man by feeding blood group-active bacteria. J. Clin. Invest. 48, 1280–1291 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paul, L. C. & Baldwin, W. M. Humoral rejection mechanisms and ABO incompatibility in renal transplantation. Transplant Proc. 19, 4463–4467 (1987).

    CAS  PubMed  Google Scholar 

  25. Cooper, D. K. Clinical survey of heart transplantation between ABO blood-group-incompatible recipients and donors. J. Heart Transplant. 9, 376–381 (1990).

    CAS  PubMed  Google Scholar 

  26. Clayton, H. A., Swift, S. M., James, R. F., Horsburgh, T. & London, N. J. Human islet transplantation — is blood group compatibility important? Transplantation 56, 1538–1540 (1993).

    CAS  PubMed  Google Scholar 

  27. Borderie, V. M., Lopez, M., Vedie, F. & Laroche, L. ABO antigen blood-group compatibility in corneal transplantation. Cornea 16, 1–6 (1997).

    CAS  PubMed  Google Scholar 

  28. Draper, J. S., Pigott, C., Thomson, J. A. & Andrews, P. W. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J. Anat. 200, 249–258 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Drukker, M. et al. Characterisation of MHC protein expression in human embryonic stem cells. Proc. Natl Acad. Sci. 99, 9864–9869 (2002).Human ES cells express low levels of MHC class I molecules and are MHC class II negative, even when cultured with IFN-γ.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simpson, E. et al. Minor H antigens: genes and peptides. Eur. J. Immunogenet. 28, 505–513 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Lechler, R. I. & Batchelor, J. R. Restoration of immunogenicity to passenger-cell-depleted kidney allografts by the addition of donor-strain dendritic cells. J. Exp. Med. 155, 31–34 (1982).

    Article  CAS  PubMed  Google Scholar 

  32. Iwai, H. et al. Acceptance of murine thyroid allografts by pretreatment of anti-Ia antibody or anti-dendritic cell antibody in vitro. Transplantation 47, 45–49 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Bowan, K. M., Andrus, L. & Lafferty, K. J. Successful allotransplantation of mouse pancreatic islets to nonimmunosuppressed recipients. Diabetes 29, 98–104 (1980).

    Article  Google Scholar 

  34. Munsie, M. J. et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic-cell nuclei. Curr. Biol. 10, 989–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Kawase, E., Yamazaki, Y., Yagi, T., Yanagimachi, R. & Pedersen, R. A. Mouse embryonic stem (ES) cell lines established from neuronal-cell-derived cloned blastocysts. Genesis 28, 156–163 (2000).References 34 and 35 established proof of principle of ES-cell derivation from cloned mammalian embryos.

    Article  CAS  PubMed  Google Scholar 

  36. Wakayama, T. et al. Differentiation of embryonic stem-cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Rideout, W. M. 3rd, Hochedlinger, K., Kyba, M., Daley, G. Q. & Jaenisch, R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17–27 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Lanza, R. P. et al. Generation of histocompatible tissues using nuclear transplantation. Nature Biotechnol. 20, 689–696 (2002).

    Article  CAS  Google Scholar 

  40. Cibelli, J. B. et al. Somatic-cell nuclear transfer in humans: pronuclear and early embryonic development. E-biomed. J. Regener. Med. 2, 25–31 (2001).A demonstration of arrested embryonic development after somatic-cell nuclear transfer to human oocytes.

    Article  Google Scholar 

  41. Mitalipov, S. M., Yeoman, R. R., Nusser, K. D. & Wolf, D. P. Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells. Biol. Reprod. 66, 1367–1373 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Opelz, G., Wujciak, T., Dohler, B., Scherer, S. & Mytilineos, J. HLA compatibility and organ transplant survival. Collaborative Transplant Study. Rev. Immunogenet. 1, 334–342 (1999).

    CAS  PubMed  Google Scholar 

  43. Petersdorf, E. W. et al. Major-histocompatibility-complex class I alleles and antigens in hematopoietic-cell transplantation. N. Engl. J. Med. 345, 1794–1800 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Petersdorf, E. W. et al. Association of HLA-C disparity with graft failure after marrow transplantation from unrelated donors. Blood 89, 1818–1823 (1997).

    CAS  PubMed  Google Scholar 

  45. Petersdorf, E. W. et al. Optimising outcome after unrelated marrow transplantation by comprehensive matching of HLA class I and II alleles in the donor and recipient. Blood 92, 3515–3520 (1998).

    CAS  PubMed  Google Scholar 

  46. Baur, M. P., Neugebauer, M. & Albert, E. D. in Histocompatibility Testing (eds Albert, E. D., Baur, M. P. & Mayr, W. R.) 756–757 (Springer Verlag, 1984).

    Google Scholar 

  47. Kollman, C. et al. Non-HLA barriers to unrelated donor stem-cell transplantation. Bone Marrow Transplant. 27, 581–587 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Shaw, B. E., Madrigal, J. A. & Potter, M. Improving the outcome of unrelated donor stem-cell transplantation by molecular matching. Blood Rev. 15, 167–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Patel, R. & Terasaki, P. I. Significance of the positive crossmatch test in kidney transplantaion: N. Engl. J. Med. 280, 735–739 (1969).

    Article  CAS  PubMed  Google Scholar 

  50. Itescu, S. et al. Performed IgG antibodies against major histocompatibility complex class II antigens are major risk factors for high-grade cellular rejection in recipients of heart transplantation. Circulation 98, 786–793 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Kung, L., Gourishankar, S. & Halloran, P. F. Molecular pharmacology of immunosupressive agents in relation to their clinical use. Curr. Opin. Organ Transplant. 5, 268–275 (2000).

    Article  Google Scholar 

  52. Gourishankar, S., Turner, P. & Halloran, P. New developments in immunosuppressive therapy in renal transplantation. Expert Opin. Biol. Ther. 2, 483–501 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Simon, D. M. & Levin, S. Infectious complications of solid organ transplantations. Infect. Dis. Clin. North Am. 15, 521–549 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Penn, I. Post-transplant malignancy: the role of immunosuppression. Drug. Safety 23, 101–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Mayer, A. D. et al. Multicentre randomised trial comparing tacrolimus (FK506) and cyclosporin in the prevention of renal allograft rejection. Transplantation 64, 436–443 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Zijlstra, M. et al. β2-microglobulin-deficient mice lack CD4-8+ cytolytic T cells. Nature 344, 742–746 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Grusby, M. J., Johnson, R. S., Papaioannou, V. E. & Glimcher, L. H. Depletion of CD4+ T cells in major histocompatibility complex class-II-deficient mice. Science 253, 1417–1420 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Vugmeyster, Y. et al. Major histocompatibility complex (MHC) class I KbDb−/− deficient mice possess functional CD8+ T cells and natural killer cells. Proc. Natl Acad. Sci. USA 95, 12492–12497 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grusby, M. J. et al. Mice lacking major histocompatibility complex class I and class II molecules. Proc. Natl Acad. Sci. USA 90, 3913–3917 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, R. S. et al. CD8+ effector cells responding to residual class I antigens, with help from CD4+ cells stimulated indirectly, cause rejection of 'major histocompatibility complex-deficient' skin grafts>. Transplantation 63, 1123–1133 (1997).References 57 and 58 showed that mouse skin grafts deficient in MHC molecules are still rejected rapidly by allogeneic recipients.

    Article  CAS  PubMed  Google Scholar 

  61. van den Elsen, P. J., Gobin, S. J., van Eggermond, M. C. & Peijnenburg, A. Regulation of MHC class I and II gene transcription: differences and similarities. Immunogenetics 48, 208–221 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Gobin, S. J., van Zutphen, M., Westerheide, S. D., Boss, J. M. & van den Elsen, P. J. The MHC-specific enhanceosome and its role in MHC class I and β(2)-microglobulin gene transactivation. J. Immunol. 167, 5175–5184 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Restifo, N. P. et al. Identification of human cancers deficient in antigen processing. J. Exp. Med. 177, 265–272 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Cromme, F. V. et al. Loss of transporter protein, encoded by the TAP1 gene, is highly correlated with loss of HLA expression in cervical carcinomas. J. Exp. Med. 179, 335–340 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, H. L. et al. A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nature Genet. 13, 210–213 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Hicklin, D. J. et al. β2-microglobulin mutations, HLA-class I antigen loss and tumor progression in melanoma. J. Clin. Invest. 101, 2720–2729 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Burgert, H. G. & Kvist, S. An adenovirus type 2 glycoprotein blocks cell-surface expression of human histocompatibility class I antigens. Cell 41, 987–997 (1985).

    Article  CAS  PubMed  Google Scholar 

  68. Früh, K. et al. A viral inhibitor of peptide transporters for antigen presentation. Nature 375, 415–418 (1995).

    Article  PubMed  Google Scholar 

  69. Storkus, W. J., Howell, D. N., Salter, R. D., Dawson, J. R. & Cresswell, P. NK susceptibility varies inversely with target cell class I HLA antigen expression. J. Immunol. 138, 1657–1659 (1987).

    CAS  PubMed  Google Scholar 

  70. Storkus, W. J., Alexander, J., Payne, J. A., Dawson, J. R. & Cresswell, P. Reversal of natural killing susceptibility in target cells expressing transfected class I HLA genes. Proc. Natl Acad. Sci. USA 86, 2361–2364 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zeidler, R. et al. Downregulation of TAP1 in B lymphocytes by cellular and Epstein–Barr virus-encoded interleukin-10. Blood 90, 2390–2397 (1997).

    CAS  PubMed  Google Scholar 

  72. Bellgrau, D. et al. A role for CD95 ligand in preventing graft rejection. Nature 377, 630–632 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Strand, S. et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells — a mechanism of immune evasion? Nature Med. 2, 1361–1366 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Swenson, K. M. et al. Fas ligand gene transfer to renal allografts in rats: effects on allograft survival. Transplantation 65, 155–160 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Matsuda, M. et al. Interleukin-10 pretreatment protects target cells from tumor- and allo-specific cytotoxic T cells and downregulates HLA class I expression. J. Exp. Med. 180, 2371–2376 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Qin, L. et al. Retrovirus-mediated transfer of viral IL-10 gene prolongs murine cardiac allograft survival. J. Immunol. 156, 2316–2323 (1996).

    CAS  PubMed  Google Scholar 

  77. Lewandoski, M. Conditional control of gene expression in the mouse. Nature Rev. Genet. 2, 743–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Grey, S. T., Arvelo, M. B., Hasenkamp, W., Bach, F. H. & Ferran, C. A20 inhibits cytokine-induced apoptosis and nuclear factor-κB-dependent gene activation in islets. J. Exp. Med. 190, 1135–1146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK-cell receptors. Science 296, 1323–1326 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Karim, M., Steger, U., Bushell, A. R. & Wood, K. J. The role of the graft in establishing tolerance. Front. Biosci. 7, e129–e154 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Wood, K. J., Jones, N. D., Bushell, A. R. & Morris, P. J. Alloantigen-induced specific immunological unresponsiveness. Philos. Trans. R. Soc. Lond. B 356, 665–680 (2001).

    Article  CAS  Google Scholar 

  82. Knechtle, S. J., Hamawy, M. M., Hu, H., Fechner, J. H. & Cho, C. S. Tolerance and near-tolerance strategies in monkeys and their application to human renal transplantation. Immunol. Rev. 183, 205–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Fairchild, P. J. & Waldmann, H. Dendritic cells and prospects for transplantation tolerance. Curr. Opin. Immunol. 12, 528–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Coutinho, A., Hori, S., Carvalho, T. & Demengeot, J. Regulatory T cells: the physiology of autoreactivity in dominant tolerance and 'quality control' of immune responses. Immunol. Rev. 182, 89–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Sykes, M. Mixed chimerism and transplant tolerance. Immunity 14, 417–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Millan, M. T. et al. Mixed chimerism and immunosuppressive drug withdrawal after HLA-mismatched kidney and hematopoietic progenitor transplantation. Transplantation 73, 1386–1391 (2002).

    Article  PubMed  Google Scholar 

  87. Kaufman, D. S., Hanson, E. T., Lewis, R. L., Auerbach, R. & Thomson, J. A. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA 98, 10716–10721 (2001).The first demonstration of haematopoietic-cell differentiation from hES cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ilstad, S. T. & Sachs, D. H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307, 168–170 (1984).

    Article  Google Scholar 

  89. Ildstad, S. T., Wren, S., Bluestone, J. A., Barbieri, S. A. & Sachs, D. H. Characterisation of mixed allogeneic chimeras. Immunocompetence, in vitro reactivity and genetic specificity of tolerance. J. Exp. Med. 162, 231–244 (1985).

    Article  CAS  PubMed  Google Scholar 

  90. Tomita, Y., Sachs, D. H. & Sykes, M. Myelosuppressive conditioning is required to achieve engraftment of pluripotent stem cells contained in moderate doses of syngeneic bone marrow. Blood 83, 939–948 (1994).

    CAS  PubMed  Google Scholar 

  91. Nikolic, B., Zhao, G., Swenson, K. & Sykes, M. A novel application of cyclosporin A in nonmyeloablative pretransplant host conditioning for allogeneic BMT. Blood 96, 1166–1172 (2000).

    CAS  PubMed  Google Scholar 

  92. Wekerle, T. et al. Allogeneic bone-marrow transplantation with costimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nature Med. 6, 464–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Durham, M. M. et al. Administration of anti-CD40 ligand and donor bone marrow leads to hemopoietic chimerism and donor-specific tolerance without cytoreductive conditioning. J. Immunol. 165, 1–4 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Fandrich, F. et al. Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nature Med. 8, 171–178 (2002).Injection of pre-implantation-stage rat ES cells into the portal vein of allogeneic recipients leads to haematopoietic chimerism and long-term acceptance of an allogeneic cardiac allograft.

    Article  CAS  PubMed  Google Scholar 

  95. Khan, A., Tomita, Y. & Sykes, M. Thymic dependence of loss of tolerance in mixed allogeneic bone-marrow chimeras after depletion of donor antigen. Peripheral mechanisms do not contribute to maintenance of tolerance. Transplantation 62, 380–387 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Tomita, Y., Khan, A. & Sykes, M. Role of intrathymic clonal deletion and peripheral anergy in transplant tolerance induced by bone-marrow transplantation in mice conditioned with a non-myeloablative regimen. J. Immunol. 153, 1087–1098 (1994).

    CAS  PubMed  Google Scholar 

  97. Manilay, J. O., Pearson, D. A., Sergio, J. J., Swenson, K. G. & Sykes, M. Intrathymic deletion of alloreactive T cells in mixed bone-marrow chimeras prepared with a nonmyeloablative conditioning regimen. Transplantation 66, 96–102 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Wekerle, T. et al. Extrathymic T-cell deletion and allogeneic stem-cell engraftment induced with costimulatory blockade is followed by central T-cell tolerance. J. Exp. Med. 187, 2037–2044 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kyba, M., Perlingeiro, R. C. & Daley, G. Q. HoxB4 confers definitive lymphoid–myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109, 29–37 (2002).The first demonstration of the derivation from mouse ES cells of haematopoietic stem cells with potential for multi-lineage long-term engraftment.

    Article  CAS  PubMed  Google Scholar 

  100. Solter, D. & Knowles, B. B. Immunosurgery of mouse blastocyst. Proc. Natl Acad. Sci. USA 72, 5099–5102 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A. & Bongso, A. Embryonic stem-cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnol. 18, 399–404 (2000).

    Article  CAS  Google Scholar 

  102. Badcock, G., Pigott, C., Goepel, J. & Andrews, P. W. The human embryonal carcinoma marker antigen TRA-1-60 is a sialylated keratan sulfate proteoglycan. Cancer Res. 59, 4715–4719 (1999).

    CAS  PubMed  Google Scholar 

  103. Gould, D. S. & Auchincloss, H. Direct and indirect recognition: the role of MHC antigens in graft rejection. Immunol. Today 20, 77–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Pietra, B. A., Wiseman, A., Bolwerk, A., Rizeq, M. & Gill, R. G. CD4 T-cell-mediated cardiac allograft rejection requires donor but not host MHC class II. J. Clin. Invest. 106, 1003–1010 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Frasca, L. et al. Interferon-γ-treated renal tubular epithelial cells induce allospecific tolerance. Kidney Int. 53, 679–689 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Vella, J. P. et al. Cellular and humoral mechanisms of vascularised allograft rejection induced by indirect recognition of donor MHC allopeptides. Transplantation 67, 1523–1532 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Lee, R. S., Grusby, M. J., Glimcher, L. H., Winn, H. J. & Auchincloss, H. Indirect recognition by helper cells can induce donor-specific cytotoxic T lymphocytes in vivo. J. Exp. Med. 179, 865–872 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Steele, D. J. et al. Two levels of help for B-cell alloantibody production. J. Exp. Med. 183, 699–703 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank C. J. Taylor for helpful discussions. Research in our laboratories is supported by grants from the British Heart Foundation, the Medical Research Council (UK) and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Andrew Bradley.

Related links

Related links

DATABASES

LocusLink

A20

β2-microglobulin

CD2

CD3

CD4

CD8

CD25

CD28

CD40

CD52

CD74

CD80

CD86

CD154

CIITA

FAS

FASL

HoxB4

ICAM1

IFN-α

IFN-β

IFN-γ

IL-10

LFA1

OCT4

RFX5

TAP

tapasin

TNF

FURTHER INFORMATION

NIH Human Embryonic Stem Cell Registry

UK Transplant

United Network for Organ Sharing

Glossary

EMBRYOID BODIES

Cellular aggregates that form in vitro when colonies of cultured embryonic stem (ES) cells are detached from the petri dish in which they are grown. ES cells in the resulting clumps begin the process of differentiation.

TERATOMA

A tumour that comprises disorganized tissues derived from all three embryonic germ layers (ectoderm, mesoderm and endoderm). It might arise spontaneously in the human gonads. Embryonic stem cells form teratomas when injected into an experimental animal, which confirms their pluripotency.

GRAFT-VERSUS-HOST DISEASE

(GVHD). An immune response mounted against the recipient of an allograft by immunocompetent donor T cells derived from the graft. Typically, it is seen in the context of allogeneic bone-marrow transplantation.

MYELOABLATION

Complete or partial elimination of the haematopoietic system of a graft recipient by the use of whole-body irradiation or cytotoxic drugs, before reconstitution with fresh autologous or allogeneic bone marrow or haematopoietic stem cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, J., Bolton, E. & Pedersen, R. Stem cell medicine encounters the immune system. Nat Rev Immunol 2, 859–871 (2002). https://doi.org/10.1038/nri934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri934

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing