Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunology of host defence peptides: beyond antimicrobial activity

This article has been updated

Key Points

  • Host defence peptides (HDPs) display substantial immunomodulatory properties in vitro and in vivo, and these features are becoming increasingly appreciated in the literature.

  • The immune response is a highly complex process, involving multiple interconnected signalling pathways.

  • HDPs influence the entire signalling network of the immune response and, as a result, their effects on biological processes are also complex.

  • The ability of HDPs to influence many different cell types and pathways has implications in various immune-associated diseases.

  • In addition to direct antimicrobial activity and immunomodulatory activities, HDPs may have a role in biological functions such as anticancer activity, wound healing and angiogenesis.

Abstract

Host defence peptides (HDPs) are short, cationic amphipathic peptides with diverse sequences that are produced by various cells and tissues in all complex life forms. HDPs have important roles in the body's response to infection and inflammation. This Review focuses on human HDPs and explores the diverse immunomodulatory effects of HDPs from a systems biology perspective, which highlights the interconnected nature of the effect (or effects) of HDPs on the host. Studies have demonstrated that HDPs are expressed throughout the body and mediate a broad range of activities, which explains their association with various inflammatory diseases and autoimmune disorders. The diverse actions of HDPs, such as their roles in wound healing and in the maintenance of the microbiota, are also explored, in addition to potential therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LL-37 interacts directly and indirectly with a broad range of genes and proteins.
Figure 2: The complex response of KLA-stimulated mouse macrophages to HBD3.
Figure 3: Diversity of HDP activities within the body and relationship with disease states.

Similar content being viewed by others

Change history

  • 28 April 2016

    In the original version of this article, the first subheading of Table 1 was incorrect. It should read Cathelicidin LL-37. This has now been corrected online and for the print version. We apologize for this error.

References

  1. Hancock, R. E. W. & Sahl, H. G. Antimicrobial and host-defence peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Fjell, C. D., Hiss, J. A., Hancock, R. E. W. & Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11, 37–51 (2012).

    Article  CAS  Google Scholar 

  3. Wang, G., Li, X. & Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087–D1093 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Hilchie, A. L., Wuerth, K. & Hancock, R. E. W. Immune modulation by multifaceted cationic host defence (antimicrobial) peptides. Nat. Chem. Biol. 9, 761–768 (2013). This review summarizes many of the immunomodulatory roles of HDPs, with a specific emphasis on animal studies.

    Article  CAS  PubMed  Google Scholar 

  5. Scott, M. G. et al. An anti-infective peptide that selectively modulates the innate immune response. Nat. Biotechnol. 25, 465–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Mansour, S. C., Pena, O. M. & Hancock, R. E. W. Host defence peptides: front-line immunomodulators. Trends Immunol. 35, 443–450 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Breuer, K. et al. InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res. 41, D1228–D1233 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Xia, J., Gill, E. E. & Hancock, R. E. W. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat. Protoc. 10, 823–844 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Hultmark, D., Steiner, H., Rasmuson, T. & Boman, H. G. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106, 7–16 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Gallo, R. L. & Hooper, L. V. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12, 503–516 (2012). This review describes numerous HDPs and human defence proteins, and summarizes their biological role at epithelial surfaces.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ganz, T. Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes. Infect. Immun. 55, 568–571 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ayabe, T. et al. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1, 113–118 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Bowdish, D. M. et al. Impact of LL-37 on anti-infective immunity. J. Leukoc. Biol. 77, 451–459 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Vandamme, D., Landuyt, B., Luyten, W. & Schoofs, L. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell. Immunol. 280, 22–35 (2012). This review provides a thorough summary of the structure, expression and diverse activities of LL-37.

    Article  CAS  PubMed  Google Scholar 

  15. Nijnik, A. & Hancock, R. E. W. The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr. Opin. Hematol. 16, 41–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, T.-T. et al. Cutting edge: 1,25-Dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 173, 2909–2912 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Mily, A. et al. Significant effects of oral phenylbutyrate and vitamin D3 adjunctive therapy in pulmonary tuberculosis: a randomized controlled trial. PLoS ONE 10, e0138340 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mookherjee, N. et al. Systems biology evaluation of immune responses induced by human host defence peptide LL-37 in mononuclear cells. Mol. Biosyst. 5, 483–496 (2009). This article describes a systems analysis of CD14+ monocytes that are exposed to LL-37 and outlines the various genes and pathways that respond to this stimulus; in particular, MAPK signalling proteins and their targets are investigated.

    Article  CAS  PubMed  Google Scholar 

  19. Peyssonnaux, C. et al. Critical role of HIF-1α in keratinocyte defence against bacterial infection. J. Invest. Dermatol. 128, 1964–1968 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, J. et al. Host defence peptide LL-37, in synergy with inflammatory mediator IL-1β, augments immune responses by multiple pathways. J. Immunol. 179, 7684–7691 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Lai, Y. et al. LL37 and cationic peptides enhance TLR3 signaling by viral double-stranded RNAs. PLoS ONE 6, e26632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nijnik, A., Pistolic, J., Filewod, N. C. J. & Hancock, R. E. W. Signaling pathways mediating chemokine induction in keratinocytes by cathelicidin LL-37 and flagellin. J. Innate Immun. 4, 377–386 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hurtado, P. & Peh, C. A. LL-37 promotes rapid sensing of CpG oligodeoxynucleotides by B lymphocytes and plasmacytoid dendritic cells. J. Immunol. 184, 1425–1435 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, X. et al. Human antimicrobial peptide LL-37 modulates proinflammatory responses induced by cytokine milieus and double-stranded RNA in human keratinocytes. Biochem. Biophys. Res. Commun. 433, 532–537 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. van der Does, A. M. et al. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature. J. Immunol. 185, 1442–1449 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Davidson, D. J. et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 172, 1146–1156 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Chamilos, G. et al. Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood 120, 3699–3707 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ries, M. et al. Identification of novel oligonucleotides from mitochondrial DNA that spontaneously induce plasmacytoid dendritic cell activation. J. Leukoc. Biol. 94, 123–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Elssner, A., Duncan, M., Gavrilin, M. & Wewers, M. D. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1β processing and release. J. Immunol. 172, 4987–4994 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Mookherjee, N. et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defence peptide LL-37. J. Immunol. 176, 2455–2464 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Jin, G. et al. An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis. PLoS ONE 5, e10993 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kandler, K. et al. The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. Int. Immunol. 18, 1729–1736 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Di Nardo, A. et al. Cathelicidin antimicrobial peptides block dendritic cell TLR4 activation and allergic contact sensitization. J. Immunol. 178, 1829–1834 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Hazlett, L. & Wu, M. Defensins in innate immunity. Cell Tissue Res. 343, 175–188 (2011). This review outlines the structures, expression patterns and biological activities of defensins.

    Article  CAS  PubMed  Google Scholar 

  36. Semple, F. & Dorin, J. R. β-Defensins: multifunctional modulators of infection, inflammation and more? J. Innate Immun. 4, 337–348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodríguez- García, M. et al. Human immature monocyte-derived dendritic cells produce and secrete α-defensins 1–3. J. Leukoc. Biol. 82, 1143–1146 (2007).

    Article  PubMed  CAS  Google Scholar 

  38. Yamamoto-Furusho, J. K., Barnich, N., Hisamatsu, T. & Podolsky, D. K. MDP-NOD2 stimulation induces HNP-1 secretion, which contributes to NOD2 antibacterial function. Inflamm. Bowel Dis. 16, 736–742 (2010).

    Article  PubMed  Google Scholar 

  39. Negroni, A. et al. Activation of NOD2-mediated intestinal pathway in a pediatric population with Crohn's disease. Inflamm. Bowel Dis. 15, 1145–1154 (2009).

    Article  PubMed  Google Scholar 

  40. Harder, J., Bartels, J., Christophers, E. & Schroder, J. M. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 276, 5707–5713 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. García, J. R. et al. Human β-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 15, 1819–1821 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. Miles, K. et al. Dying and necrotic neutrophils are anti-inflammatory secondary to the release of α-defensins. J. Immunol. 183, 2122–2132 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Soehnlein, O. et al. Neutrophil primary granule proteins HBP and HNP1-3 boost bacterial phagocytosis by human and murine macrophages. J. Clin. Invest. 118, 3491–3502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Niyonsaba, F. et al. Antimicrobial peptides human β-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J. Invest. Dermatol. 127, 594–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Boniotto, M. et al. Human β-defensin 2 induces a vigorous cytokine response in peripheral blood mononuclear cells. Antimicrob. Agents Chemother. 50, 1433–1441 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Funderburg, N. et al. Human β-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc. Natl Acad. Sci. USA 104, 18631–18635 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chaly, Y. V. et al. Neutrophil α-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur. Cytokine Netw. 11, 257–266 (2000).

    CAS  PubMed  Google Scholar 

  48. Tewary, P. et al. β-Defensin 2 and 3 promote the uptake of self or CpG DNA, enhance IFN-α production by human plasmacytoid dendritic cells, and promote inflammation. J. Immunol. 191, 865–874 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Economopoulou, M. et al. Inhibition of pathologic retinal neovascularization by α-defensins. Blood 106, 3831–3838 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chavakis, T. et al. Regulation of neovascularization by human neutrophil peptides (α-defensins): a link between inflammation and angiogenesis. FASEB J. 18, 1306–1308 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Lu, W. & de Leeuw, E. Pro-inflammatory and pro-apoptotic properties of Human Defensin 5. Biochem. Biophys. Res. Commun. 436, 557–562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nagaoka, I., Niyonsaba, F., Tsutsumi-Ishii, Y., Tamura, H. & Hirata, M. Evaluation of the effect of human β-defensins on neutrophil apoptosis. Int. Immunol. 20, 543–553 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Semple, F. et al. Human β-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur. J. Immunol. 40, 1073–1078 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Semple, F. et al. Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF. Eur. J. Immunol. 41, 3291–3300 (2011). This article describes the response of mouse macrophages to HBD3 in combination with TLR4 stimuli. The specific pathways that are modulated by this HDP to achieve its anti-inflammatory effects are outlined.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suarez-Carmona, M. et al. ΔNp63 isoform-mediated β-defensin family up-regulation is associated with (lymph)angiogenesis and poor prognosis in patients with squamous cell carcinoma. Oncotarget 5, 1856–1868 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Baroni, A. et al. Antimicrobial human β-defensin-2 stimulates migration, proliferation and tube formation of human umbilical vein endothelial cells. Peptides 30, 267–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Pena, O. M. et al. Synthetic cationic peptide IDR- 1018 modulates human macrophage differentiation. PLoS ONE 8, e52449 (2013). This paper describes the effects of a synthetic HDP, IDR-1018, on macrophage differentiation; macrophages stimulated with IDR-1018 display a phenotype in-between the classical M1 and M2 states.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mansour, S. C., de la Fuente-Núñez, C. & Hancock, R. E. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J. Pept. Sci. 21, 323–329 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Zhao, A., Lu, W. & de Leeuw, E. Functional synergism of Human Defensin 5 and Human Defensin 6. Biochem. Biophys. Res. Commun. 467, 967–972 (2015). This paper describes one of the first examples of immunomodulatory synergy between two natural HDPs.

    Article  CAS  PubMed  Google Scholar 

  60. Büchau, A. S. et al. The host defence peptide cathelicidin is required for NK cell-mediated suppression of tumor growth. J. Immunol. 184, 369–378 (2010).

    Article  PubMed  CAS  Google Scholar 

  61. Taudien, S. et al. Association studies of the copy-number variable ß-defensin cluster on 8p23.1 in adenocarcinoma and chronic pancreatitis. BMC Res. Notes 5, 629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Han, Q. et al. Human β-defensin-1 suppresses tumor migration and invasion and is an independent predictor for survival of oral squamous cell carcinoma patients. PLoS ONE 9, e91867 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Winter, J. et al. Human β-defensin-1, -2, and -3 exhibit opposite effects on oral squamous cell carcinoma cell proliferation. Cancer Invest. 29, 196–201 (2011).

    Article  PubMed  Google Scholar 

  64. Gunes, M. et al. Plasma human neutrophil proteins-1, -2, and -3 levels in patients with bladder cancer. J. Cancer Res. Clin. Oncol. 139, 195–199 (2012).

    Article  PubMed  CAS  Google Scholar 

  65. Chuang, C.-M., Monie, A., Wu, A., Mao, C.-P. & Hung, C.-F. Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum. Gene Ther. 20, 303–313 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kuroda, K., Okumura, K., Isogai, H. & Isogai, E. The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs. Front. Oncol. 5, 344 (2015).

    Article  Google Scholar 

  67. Gaspar, D., Veiga, A. S. & Castanho, M. A. From antimicrobial to anticancer peptides. A review. Front. Microbiol. 4, 294 (2013). This review summarizes the relationship between HDPs and anticancer peptides.

    Article  PubMed  PubMed Central  Google Scholar 

  68. von Haussen, J. et al. The host defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells. Lung Cancer 59, 12–23 (2008).

    Article  PubMed  Google Scholar 

  69. Sainz, B. et al. Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment. Gut 64, 1921–1935 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Lecaille, F., Lalmanach, G. & Andrault, P.-M. Antimicrobial proteins and peptides in human lung diseases: a friend and foe partnership with host proteases. Biochimie 122, 151–168 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Ratjen, F. & Döring, G. Cystic fibrosis. Lancet 361, 681–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, C. I.-U., Schaller-Bals, S., Paul, K. P., Wahn, U. & Bals, R. β-defensins and LL-37 in bronchoalveolar lavage fluid of patients with cystic fibrosis. J. Cyst. Fibros. 3, 45–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Bergsson, G. et al. LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline. J. Immunol. 183, 543–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Mayer, M. L. et al. Rescue of dysfunctional autophagy attenuates hyperinflammatory responses from cystic fibrosis cells. J. Immunol. 190, 1227–1238 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. de la Fuente-Núñez, C., Reffuveille, F., Haney, E. F., Straus, S. K. & Hancock, R. E. W. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 10, e1004152 (2014). This paper details the mechanism of antibiofilm activity for a synthetic HDP.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Xiao, W., Hsu, Y.-P., Ishizaka, A., Kirikae, T. & Moss, R. B. Sputum cathelicidin, urokinase plasminogen activation system components, and cytokines discriminate cystic fibrosis, COPD, and asthma inflammation. Chest 128, 2316–2326 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Paone, G. et al. Human neutrophil peptides sputum levels in symptomatic smokers and COPD patients. Eur. Rev. Med. Pharmacol. Sci. 15, 556–562 (2011).

    CAS  PubMed  Google Scholar 

  78. Olin, J. T. & Wechsler, M. E. Asthma: pathogenesis and novel drugs for treatment. BMJ 349, g5517 (2014).

    Article  PubMed  Google Scholar 

  79. Sun, J., Dahlén, B., Agerberth, B. & Haeggström, J. Z. The antimicrobial peptide LL-37 induces synthesis and release of cysteinyl leukotrienes from human eosinophils – implications for asthma. Allergy 68, 304–311 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Rohde, G. et al. CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations. Clin. Exp. Allergy 44, 930–939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brauner, H. et al. Markers of innate immune activity in patients with type 1 and type 2 diabetes mellitus and the effect of the anti-oxidant coenzyme Q10 on inflammatory activity. Clin. Exp. Immunol. 177, 478–482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Diana, J. et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat. Med. 19, 65–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Allen, J. S. et al. Plasmacytoid dendritic cells are proportionally expanded at diagnosis of type 1 diabetes and enhance islet autoantigen presentation to T-cells through immune complex capture. Diabetes 58, 138–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sun, J. et al. Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 43, 304–317 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Gonzalez-Curiel, I. et al. Differential expression of antimicrobial peptides in active and latent tuberculosis and its relationship with diabetes mellitus. Hum. Immunol. 72, 656–662 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Rivas-Santiago, B. et al. Expression of antimicrobial peptides in diabetic foot ulcer. J. Dermatol. Sci. 65, 19–26 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Kahlenberg, J. M. & Kaplan, M. J. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J. Immunol. 191, 4895–4901 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Hall, J. C. & Rosen, A. Type I interferons: crucial participants in disease amplification in autoimmunity. Nat. Rev. Rheumatol. 6, 40–49 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Murakami, M. et al. Cathelicidin anti-microbial peptide expression in sweat, an innate defence system for the skin. J. Invest. Dermatol. 119, 1090–1095 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Nardo, A. D., Vitiello, A. & Gallo, R. L. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J. Immunol. 170, 2274–2278 (2003).

    Article  PubMed  Google Scholar 

  91. Frohm, M. et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J. Biol. Chem. 272, 15258–15263 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Clausen, M.-L., Slotved, H.-C., Krogfelt, K. A., Andersen, P. S. & Agner, T. In vivo expression of antimicrobial peptides in atopic dermatitis. Exp. Dermatol. 25, 3–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Nomura, I. et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol. 171, 3262–3269 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Harder, J. et al. Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. J. Invest. Dermatol. 130, 1355–1364 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Ballardini, N. et al. Enhanced expression of the antimicrobial peptide LL-37 in lesional skin of adults with atopic eczema. Br. J. Dermatol. 161, 40–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Kopfnagel, V., Harder, J. & Werfel, T. Expression of antimicrobial peptides in atopic dermatitis and possible immunoregulatory functions. Curr. Opin. Allergy Clin. Immunol. 13, 531–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Ong, P. Y. et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med. 347, 1151–1160 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Lande, R. et al. Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA. Eur. J. Immunol. 45, 203–213 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med. 202, 135–143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Morizane, S. et al. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J. Invest. Dermatol. 132, 135–143 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Lande, R. et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat. Commun. 5, 5621 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Nijnik, A. & Hancock, R. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg. Health Threats J. 2, e1 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gonzalez-Curiel, I. et al. 1,25-dihydroxyvitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: an in vitro model. PLoS ONE 9, e111355 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Raftery, T. et al. Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn's disease: results from a randomised double-blind placebo-controlled study. United European Gastroenterol. J. 3, 294–302 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mily, A. et al. Oral intake of phenylbutyrate with or without vitamin D3 upregulates the cathelicidin LL-37 in human macrophages: a dose finding study for treatment of tuberculosis. BMC Pulm. Med. 13, 23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gambichler, T. et al. Expression of antimicrobial peptides and proteins in etanercept-treated psoriasis patients. Regul. Pept. 167, 163–166 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Heilborn, J. D. et al. The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J. Invest. Dermatol. 120, 379–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Shaykhiev, R. et al. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L842–L848 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Tokumaru, S. et al. Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J. Immunol. 175, 4662–4668 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Niyonsaba, F. et al. Antimicrobial peptides human β-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J. Invest. Dermatol. 127, 594–604 (2006).

    Article  PubMed  CAS  Google Scholar 

  111. Grönberg, A., Mahlapuu, M., Ståhle, M., Whately-Smith, C. & Rollman, O. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen. 22, 613–621 (2014).

    Article  PubMed  Google Scholar 

  112. Hirsch, T. et al. Human β-defensin-3 promotes wound healing in infected diabetic wounds. J. Gene Med. 11, 220–228 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Steinstraesser, L. et al. Innate defence regulator peptide 1018 in wound healing and wound infection. PLoS ONE. 7, e39373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Caterino, J. M. et al. A Prospective, observational pilot study of the use of urinary antimicrobial peptides in diagnosing emergency department patients with positive urine cultures. Acad. Emerg. Med. 22, 1226–1230 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Albrethsen, J., Møller, C. H., Olsen, J., Raskov, H. & Gammeltoft, S. Human neutrophil peptides 1, 2 and 3 are biochemical markers for metastatic colorectal cancer. Eur. J. Cancer 42, 3057–3064 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Kim, D. H. et al. Antimicrobial peptide, lumbricusin, ameliorates motor dysfunction and dopaminergic neurodegeneration in a mouse model of parkinson's disease. J. Microbiol. Biotechnol. 25, 1640–1647 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, Z. & Shively, J. E. Generation of novel bone forming cells (monoosteophils) from the cathelicidin-derived peptide LL-37 treated monocytes. PLoS ONE 5, e13985 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Bevins, C. L. & Salzman, N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 9, 356–368 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Cullen, T. W. et al. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 347, 170–175 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gellatly, S. L., Needham, B., Madera, L., Trent, M. S. & Hancock, R. E. W. The Pseudomonas aeruginosa PhoP-PhoQ two-component regulatory system is induced upon interaction with epithelial cells and controls cytotoxicity and inflammation. Infect. Immun. 80, 3122–3131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jones, E. A., Kananurak, A., Bevins, C. L., Hollox, E. J. & Bakaletz, L. O. Copy number variation of the β defensin gene cluster on chromosome 8p influences the bacterial microbiota within the nasopharynx of otitis-prone children. PLoS ONE 9, e98269 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Guo, L. et al. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc. Natl Acad. Sci. USA 112, 7569–7574 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gardy, J. L., Lynn, D. J., Brinkman, F. S. L. & Hancock, R. E. W. Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol. 30, 249–262 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Haney, E. F., Mansour, S. C., Hilchie, A. L., de la Fuente-Núñez, C. & Hancock, R. E. W. High throughput screening methods for assessing antibiofilm and immunomodulatory activities of synthetic peptides. Peptides 71, 276–285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cherkasov, A. et al. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem. Biol. 4, 65–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 41, D991–D995 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Suarez-Carmona, M., Hubert, P., Delvenne, P. & Herfs, M. Defensins: 'simple' antimicrobial peptides or broad-spectrum molecules? Cytokine Growth Factor Rev. 26, 361–370 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Croft, D. et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 42, D472–D477 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' peptide research has been generously supported by the Canadian Institutes of Health Research (MOP-74493). R.E.W.H. holds a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E.W. Hancock.

Ethics declarations

Competing interests

R.E.W.H. is developing innate defence regulator (IDR) peptides as therapeutics and vaccine adjuvants, and has filed several patents in this area, all of which are assigned to his employer, the University of British Columbia. Two of his IDR peptides have been licensed to Elanco Animal Health Inc., for use in treatment of animals and as vaccine adjuvants, and one has been licensed to the Pan-provincial Vaccine Enterprise, for development as a component of vaccine adjuvant formulations. E.F.H. is a co-inventor on one of these patents. Recently, R.E.W.H. formed a new virtual company, ABT Innovations Inc., to promote commercialization of the University of British Columbia peptide patents. E.E.G. declares no competing interests.

Related links

DATABASES

InnateDB

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

HDP expression patterns and affected cell types and functions. (PDF 195 kb)

Glossary

Host defence peptides

(HDPs). Short (<50 amino acids) cationic amphipathic peptides with immunomodulatory and/or antimicrobial activities.

Antimicrobial peptides

Cationic peptides with an emphasis on their antimicrobial activities; traditional terminology for host defence peptides.

Immunomodulatory

The ability to modulate the immune response, including by influencing the production of chemokines and cytokines.

Innate defence regulator

(IDR). Synthetic immunomodulatory peptide derived from natural host defence peptides.

Pleiotropic

Having more than one effect on the biological system.

Diapedesis

The migration of leukocytes across the endothelium, which occurs by leukocytes squeezing through the junctions between adjacent endothelial cells.

Global transcriptional profiling

Measurement of the entire gene expression profile to obtain an overall picture of the activity of genes in a cell or biological system.

Neurotropic

Localization to nerve tissue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hancock, R., Haney, E. & Gill, E. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol 16, 321–334 (2016). https://doi.org/10.1038/nri.2016.29

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.29

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing