Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic susceptibility to invasive Salmonella disease

An Erratum to this article was published on 28 August 2015

This article has been updated

Key Points

  • Invasive Salmonella disease comprises enteric fever (caused by Salmonella enterica subsp. enterica serovar Typhi and S. enterica serovars Paratyphi A, B and C) and invasive non-typhoidal Salmonella (iNTS) disease (caused by NTS serovars, most notably S. enterica serovar Typhimurium and S. enterica serovar Enteritidis). Both diseases impose a substantial burden of morbidity and mortality globally, for which adequate control measures are lacking.

  • In this Review, we discuss data from population-based studies of enteric fever and primary immunodeficiencies resulting in susceptibility to iNTS disease. These studies are presented in the context of the well-defined mouse model of invasive Salmonella infection.

  • The study of primary immunodeficiencies, in part characterized by iNTS disease, has established the critical role of interferon-γ (IFNγ) production and IFNγ-induced effector mechanisms (in particular oxidative burst) in human immunity to NTS. These studies have helped to define the role of T helper 1 (TH1) cells in mediating the outcome of intracellular NTS infection, and have been complemented by more recent data describing the roles of TH17 lineage CD4+ T cells and neutrophils in human NTS immunity.

  • The recent publication of the first genome-wide association study of invasive Salmonella disease provides robust evidence for a host genetic determinant of enteric fever in human populations. Its identification of an MHC class II allele as a determinant of enteric fever susceptibility is in keeping with our broader understanding of immunity against Salmonella from the mouse model and human primary immunodeficiencies.

  • Our increasing understanding of the host genetic determinants of iNTS disease and enteric fever is improving our understanding of the immunobiology of invasive Salmonella infection and will inform the delivery of novel control strategies.

Abstract

Invasive Salmonella disease, in the form of enteric fever and invasive non-typhoidal Salmonella (iNTS) disease, causes substantial morbidity and mortality in children and adults in the developing world. The study of genetic variations in humans and mice that influence susceptibility of the host to Salmonella infection provides important insights into immunity to Salmonella. In this Review, we discuss data that have helped to elucidate the host genetic determinants of human enteric fever and iNTS disease, alongside data from the mouse model of Salmonella infection. Considered together, these studies provide a detailed picture of the immunobiology of human invasive Salmonella disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The global distribution of invasive Salmonella disease.
Figure 2: TLR signalling in response to Salmonella PAMPs.
Figure 3: IL-12-dependent IFNγ-mediated immunity and IL-23 signalling in response to Salmonella infection.

Similar content being viewed by others

Change history

  • 28 August 2015

    In the original version of this article, the credit line in the legend of Figure 1 was incorrect and should read: “Copyright 2014 from 'Vaccines against invasive Salmonella disease: current status and future directions' by MacLennan, C. A., Martin, L. B. & Micoli, F. Reproduced by permission of Taylor & Francis LLC (http://www.tandfonline.com).”. This has now been corrected online.

References

  1. Wain, J., Hendriksen, R. S., Mikoleit, M. L., Keddy, K. H. & Ochiai, R. L. Typhoid fever. Lancet 385, 1136–1145 (2015).

    PubMed  Google Scholar 

  2. MacLennan, C. A. & Levine, M. M. Invasive nontyphoidal Salmonella disease in Africa: current status. Expert Rev. Anti Infect. Ther. 11, 443–446 (2013).

    CAS  PubMed  Google Scholar 

  3. Crump, J. A., Luby, S. P. & Mintz, E. D. The global burden of typhoid fever. Bull. World Health Organ. 82, 346–353 (2004).

    PubMed  PubMed Central  Google Scholar 

  4. Reddy, E. A., Shaw, A. V. & Crump, J. A. Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect. Dis. 10, 417–432 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. Sørensen, T. I., Nielsen, G. G., Andersen, P. K. & Teasdale, T. W. Genetic and environmental influences on premature death in adult adoptees. N. Engl. J. Med. 318, 727–732 (1988). An adoptee study providing evidence for the heritability of risk of death from infectious diseases.

    PubMed  Google Scholar 

  6. Dunstan, S. J. et al. Variation at HLA-DRB1 is associated with resistance to enteric fever. Nat. Genet. 46, 1333–1336 (2014). The first GWAS of invasive Salmonella disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Malaria Genomic Epidemiology Network. Reappraisal of known malaria resistance loci in a large multicenter study. Nat. Genet. 46, 1197–1204 (2014).

  8. Khor, C. C. et al. CISH and susceptibility to infectious diseases. N. Engl. J. Med. 362, 2092–2101 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Khor, C. C. et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat. Genet. 39, 523–528 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Santos, R. L. et al. Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect. 3, 1335–1344 (2001).

    CAS  PubMed  Google Scholar 

  11. Hormaeche, C. E. Natural resistance to Salmonella typhimurium in different inbred mouse strains. Immunology 37, 311–318 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hormaeche, C. E., Mastroeni, P., Arena, A., Uddin, J. & Joysey, H. S. T cells do not mediate the initial suppression of a Salmonella infection in the RES. Immunology 70, 247–250 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hess, J., Ladel, C., Miko, D. & Kaufmann, S. H. Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-αβ cells and IFNγ in bacterial clearance independent of intracellular location. J. Immunol. 156, 3321–3326 (1996).

    CAS  PubMed  Google Scholar 

  14. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998). This paper identified a missense mutation in Tlr4 as the Salmonella -susceptibility and LPS-hyporesponsiveness risk allele at Lps.

    CAS  PubMed  Google Scholar 

  15. Broz, P. et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490, 288–291 (2013).

    Google Scholar 

  16. Muotiala, A. & Mäkelä, P. H. The role of IFN-γ in murine Salmonella typhimurium infection. Microb. Pathog. 8, 135–141 (1990).

    CAS  PubMed  Google Scholar 

  17. Mastroeni, P. et al. Serum TNFα in mouse typhoid and enhancement of a Salmonella infection by anti-TNFα antibodies. Microb. Pathog. 11, 33–38 (1991).

    CAS  PubMed  Google Scholar 

  18. Mastroeni, P. et al. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J. Exp. Med. 192, 237–248 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vidal, S. et al. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J. Exp. Med. 182, 655–666 (1995). A study identifying Slc11a1 as the Ity Salmonella -susceptibility locus in inbred mice.

    CAS  PubMed  Google Scholar 

  20. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    CAS  PubMed  Google Scholar 

  21. Robson, H. G. & Vas, S. I. Resistance of inbred mice to Salmonella typhimurium. J. Infect. Dis. 126, 378–386 (1972).

    CAS  PubMed  Google Scholar 

  22. Weiss, D. S., Raupach, B., Takeda, K., Akira, S. & Zychlinsky, A. Toll-like receptors are temporally involved in host defense. J. Immunol. 172, 4463–4469 (2004).

    CAS  PubMed  Google Scholar 

  23. Feuillet, V. et al. Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria. Proc. Natl Acad. Sci. USA 103, 12487–12492 (2006).

    CAS  PubMed  Google Scholar 

  24. Arpaia, N. et al. TLR signaling is required for Salmonella typhimurium virulence. Cell 144, 675–688 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sivick, K. E. et al. Toll-like receptor-deficient mice reveal how innate immune signaling influences Salmonella virulence strategies. Cell Host Microbe 15, 203–213 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanson, E. P. et al. Hypomorphic nuclear factor-κB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J. Allergy Clin. Immunol. 122, 1169–1193 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Janssen, R. et al. The same IκBα mutation in two related individuals leads to completely different clinical syndromes. J. Exp. Med. 200, 559–568 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Filipe-Santos, O. et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J. Exp. Med. 203, 1745–1759 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Picard, C., Casanova, J. L. & Puel, A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin. Microbiol. Rev. 24, 490–497 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferwerda, B. et al. Functional and genetic evidence that the Mal/TIRAP allele variant 180L has been selected by providing protection against septic shock. Proc. Natl Acad. Sci. USA 106, 10272–10277 (2009).

    CAS  PubMed  Google Scholar 

  31. Bhuvanendran, S. et al. Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms and typhoid susceptibility in Asian Malay population in Malaysia. Microbes Infect. 13, 844–851 (2011).

    CAS  PubMed  Google Scholar 

  32. Hue, N. T. et al. Toll-like receptor 4 (TLR4) and typhoid fever in vietnam. PLoS ONE 4, e4800 (2009).

    PubMed Central  Google Scholar 

  33. Dunstan, S. J. et al. Host susceptibility and clinical outcomes in toll-like receptor 5-deficient patients with typhoid fever in Vietnam. J. Infect. Dis. 191, 1068–1071 (2005).

    CAS  PubMed  Google Scholar 

  34. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    CAS  PubMed  Google Scholar 

  36. Franchi, L., Warner, N., Viani, K. & Núñez, G. Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev. 227, 106–128 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Raupach, B., Peuschel, S. K., Monack, D. M. & Zychlinsky, A. Caspase-1-mediated activation of interleukin-1β (IL-1β) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect. Immun. 74, 4922–4926 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ali, S. et al. Polymorphisms in proinflammatory genes and susceptibility to typhoid fever and paratyphoid fever. J. Interferon Cytokine Res. 27, 271–280 (2007).

    CAS  PubMed  Google Scholar 

  39. Conlan, J. W. Neutrophils prevent extracellular colonization of the liver microvasculature by Salmonella typhimurium. Infect. Immun. 64, 1043–1047 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cunnington, A. J., de Souza, J. B., Walther, M. & Riley, E. M. Malaria impairs resistance to Salmonella through heme- and heme oxygenase-dependent dysfunctional granulocyte mobilization. Nat. Med. 18, 120–127 (2012).

    CAS  Google Scholar 

  41. Cunnington, A. J. et al. Prolonged neutrophil dysfunction after Plasmodium falciparum malaria is related to hemolysis and heme oxygenase-1 induction. J. Immunol. 189, 5336–5346 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    CAS  PubMed  Google Scholar 

  43. Mastroeni, P., Harrison, J. A., Chabalgoity, J. A. & Hormaeche, C. E. Effect of interleukin 12 neutralization on host resistance and γ interferon production in mouse typhoid. Infect. Immun. 64, 189–196 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mastroeni, P. et al. Interleukin-12 is required for control of the growth of attenuated aromatic-compound-dependent salmonellae in BALB/c mice: role of gamma interferon and macrophage activation. Infect. Immun. 66, 4767–4776 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kupz, A. et al. Contribution of Thy1+ NK cells to protective IFN-γ production during Salmonella typhimurium infections. Proc. Natl Acad. Sci. USA 110, 2252–2257 (2013).

    CAS  PubMed  Google Scholar 

  46. Newport, M. J. et al. A mutation in the interferon-γ-receptor gene and susceptibility to mycobacterial infection. N. Engl. J. Med. 335, 1941–1949 (1996).

    CAS  PubMed  Google Scholar 

  47. Dorman, S. E. et al. Clinical features of dominant and recessive interferon γ receptor 1 deficiencies. Lancet 364, 2113–2121 (2004).

    CAS  PubMed  Google Scholar 

  48. Prando, C. et al. Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds. Medicine (Baltimore) 92, 109–122 (2013).

    CAS  Google Scholar 

  49. de Beaucoudrey, L. et al. Revisiting human IL-12Rβ1 deficiency. Medicine (Baltimore) 89, 381–402 (2010). References 47–49 are large international studies defining the clinical spectrum of IFNγR1, IL-12p40 and IL-12Rβ1 deficiencies.

    CAS  Google Scholar 

  50. Averbuch, D., Chapgier, A., Boisson-Dupuis, S., Casanova, J.-L. & Engelhard, D. The clinical spectrum of patients with deficiency of signal transducer and activator of transcription-1. Pediatr. Infect. Dis. J. 30, 352–355 (2011).

    PubMed  Google Scholar 

  51. Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745–755 (2006).

    CAS  PubMed  Google Scholar 

  52. Browne, S. K. et al. Adult-onset immunodeficiency in Thailand and Taiwan. N. Engl. J. Med. 367, 725–734 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jong, R. D. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280, 1435–1438 (1998).

    PubMed  Google Scholar 

  54. Jouanguy, E. et al. In a novel form of IFN-γ receptor 1 deficiency, cell surface receptors fail to bind IFN-γ. J. Clin. Invest. 105, 1429–1436 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ohmori, Y., Schreiber, R. D. & Hamilton, T. A. Synergy between interferon-γ and tumor necrosis factor-α in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor κB. J. Biol. Chem. 272, 14899–14907 (1997).

    CAS  PubMed  Google Scholar 

  56. Everest, P., Roberts, M. & Dougan, G. Susceptibility to Salmonella typhimurium infection and effectiveness of vaccination in mice deficient in the tumor necrosis factor α p55 receptor. Infect. Immun. 66, 3355–3364 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Peña-Sagredo, J. L. et al. Non-typhi Salmonella infection in patients with rheumatic diseases on TNF-α antagonist therapy. Clin. Exp. Rheumatol. 27, 920–925 (2009).

    PubMed  Google Scholar 

  58. Bassetti, M., Nicco, E., Delfino, E. & Viscoli, C. Disseminated Salmonella paratyphi infection in a rheumatoid arthritis patient treated with infliximab. Clin. Microbiol. Infect. 16, 84–85 (2010).

    CAS  PubMed  Google Scholar 

  59. Dunstan, S. J. et al. A TNF region haplotype offers protection from typhoid fever in Vietnamese patients. Hum. Genet. 122, 51–61 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. MacMicking, J. D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat. Rev. Immunol. 12, 367–382 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kagaya, K., Watanabe, K. & Fukazawa, Y. Capacity of recombinant gamma interferon to activate macrophages for Salmonella-killing activity. Infect. Immun. 57, 609–615 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Khan, R. T., Yuki, K. E. & Malo, D. Fine-mapping and phenotypic analysis of the Ity3 Salmonella susceptibility locus identify a complex genetic structure. PLoS ONE 9, e88009 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Segal, B. H., Leto, T. L., Gallin, J. I., Malech, H. L. & Holland, S. M. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 79, 170–200 (2000).

    CAS  Google Scholar 

  64. Winkelstein, J. A. et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79, 155–169 (2000).

    CAS  Google Scholar 

  65. Williams, T. N. et al. Bacteraemia in Kenyan children with sickle-cell anaemia: a retrospective cohort and case-control study. Lancet 374, 1364–1370 (2009).

    PubMed  PubMed Central  Google Scholar 

  66. Mabey, D. C., Brown, A. & Greenwood, B. M. Plasmodium falciparum malaria and Salmonella infections in Gambian children. J. Infect. Dis. 155, 1319–1321 (1987).

    CAS  PubMed  Google Scholar 

  67. Wanachiwanawin, W. Infections in E-β thalassemia. J. Pediatr. Hematol. Oncol. 22, 581–587 (2000).

    CAS  PubMed  Google Scholar 

  68. Roy, M.-F. et al. Pyruvate kinase deficiency confers susceptibility to Salmonella typhimurium infection in mice. J. Exp. Med. 204, 2949–2961 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ampel, N. M., Van Wyck, D. B., Aguirre, M. L., Willis, D. G. & Popp, R. A. Resistance to infection in murine β-thalassemia. Infect. Immun. 57, 1011–1017 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yuki, K. E. et al. Suppression of hepcidin expression and iron overload mediate Salmonella susceptibility in ankyrin 1 ENU-induced mutant. PLoS ONE 8, e55331 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hooke, W., Kaye, D. & Gill, F. A. Factors influencing host resistance to Salmonella infection. The effects of hemolysis and erythrophagocytosis. Trans. Am. Clin. Climatol. Assoc. 78, 230–241 (1967).

    Google Scholar 

  72. Govoni, G., Gauthier, S., Billia, F., Iscove, N. N. & Gros, P. Cell-specific and inducible Nramp1 gene expression in mouse macrophages in vitro and in vivo. J. Leukoc. Biol. 62, 277–286 (1997).

    CAS  PubMed  Google Scholar 

  73. Jabado, N. et al. Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J. Exp. Med. 192, 1237–1248 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fritsche, G., Nairz, M., Libby, S. J., Fang, F. C. & Weiss, G. Slc11a1 (Nramp1) impairs growth of Salmonella enterica serovar Typhimurium in macrophages via stimulation of lipocalin-2 expression. J. Leukoc. Biol. 92, 353–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nairz, M. et al. Absence of functional Hfe protects mice from invasive Salmonella enterica serovar Typhimurium infection via induction of lipocalin-2. Blood 114, 3642–3651 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cairo, G. et al. Inappropriately high iron regulatory protein activity in monocytes of patients with genetic hemochromatosis. Blood 89, 2546–2553 (1997).

    CAS  PubMed  Google Scholar 

  77. Dunstan, S. J. et al. Typhoid fever and genetic polymorphisms at the natural resistance-associated macrophage protein 1. J. Infect. Dis. 183, 1156–1160 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Birmingham, C. L., Smith, A. C., Bakowski, M. A., Yoshimori, T. & Brumell, J. H. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281, 11374–11383 (2006).

    CAS  PubMed  Google Scholar 

  79. Conway, K. L. et al. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology 145, 1347–1357 (2013).

    CAS  PubMed  Google Scholar 

  80. Ali, S. et al. PARK2/PACRG polymorphisms and susceptibility to typhoid and paratyphoid fever. Clin. Exp. Immunol. 144, 425–431 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Liang-Takasaki, C. J., Saxén, H., Mäkelä, P. H. & Leive, L. Complement activation by polysaccharide of lipopolysaccharide: an important virulence determinant of salmonellae. Infect. Immun. 41, 563–569 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Warren, J. et al. Increased susceptibility of C1q-deficient mice to Salmonella enterica serovar Typhimurium infection. Infect. Immun. 70, 551–557 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Johnston, R. B., Newman, S. L. & Struth, A. G. An abnormality of the alternate pathway of complement activation in sickle-cell disease. N. Engl. J. Med. 288, 803–808 (1973).

    PubMed  Google Scholar 

  84. Ross, S. C. & Densen, P. Complement deficiency states and infection: epidemiology, pathogenesis and consequences of neisserial and other infections in an immune deficiency. Medicine (Baltimore) 63, 243–273 (1984).

    CAS  Google Scholar 

  85. MacLennan, C. A. et al. The neglected role of antibody in protection against bacteremia caused by nontyphoidal strains of Salmonella in African children. J. Clin. Invest. 118, 1553–1562 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sinha, K., Mastroeni, P., Harrison, J., de Hormaeche, R. D. & Hormaeche, C. E. Salmonella typhimurium aroA, htrA, and aroD htrA mutants cause progressive infections in athymic (nu/nu) BALB/c mice. Infect. Immun. 65, 1566–1569 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee, S.-J., Dunmire, S. & McSorley, S. J. MHC class-I-restricted CD8 T cells play a protective role during primary Salmonella infection. Immunol. Lett. 148, 138–143 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mastroeni, P., Villarreal-Ramos, B. & Hormaeche, C. E. Role of T cells, TNFα and IFNγ in recall of immunity to oral challenge with virulent salmonellae in mice vaccinated with live attenuated aro Salmonella vaccines. Microb. Pathog. 13, 477–491 (1992).

    CAS  PubMed  Google Scholar 

  89. Mastroeni, P., Simmons, C., Fowler, R., Hormaeche, C. E. & Dougan, G. Igh-6−/− (B-cell-deficient) mice fail to mount solid acquired resistance to oral challenge with virulent Salmonella enterica serovar Typhimurium and show impaired Th1 T-cell responses to Salmonella antigens. Infect. Immun. 68, 46–53 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. MacLennan, C. et al. Interleukin (IL)-12 and IL-23 are key cytokines for immunity against Salmonella in humans. J. Infect. Dis. 190, 1755–1757 (2004).

    CAS  PubMed  Google Scholar 

  91. de Beaucoudrey, L. et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J. Exp. Med. 205, 1543–1550 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Raffatellu, M. et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat. Med. 14, 421–428 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Peck, A. & Mellins, E. D. Precarious balance: Th17 cells in host defense. Infect. Immun. 78, 32–38 (2010).

    CAS  PubMed  Google Scholar 

  94. Ahmad, D. S., Esmadi, M. & Steinmann, W. C. Idiopathic CD4 lymphocytopenia: spectrum of opportunistic infections, malignancies, and autoimmune diseases. Avicenna J. Med. 3, 37–47 (2013).

    PubMed  PubMed Central  Google Scholar 

  95. Hormaeche, C. E., Harrington, K. A. & Joysey, H. S. Natural resistance to salmonellae in mice: control by genes within the major histocompatibility complex. J. Infect. Dis. 152, 1050–1056 (1985).

    CAS  PubMed  Google Scholar 

  96. Klein, C., Lisowska-Grospierre, B., LeDeist, F., Fischer, A. & Griscelli, C. Major histocompatibility complex class II deficiency: clinical manifestations, immunologic features, and outcome. J. Pediatr. 123, 921–928 (1993).

    CAS  PubMed  Google Scholar 

  97. Dharmana, E. et al. HLA-DRB1*12 is associated with protection against complicated typhoid fever, independent of tumour necrosis factor α. Eur. J. Immunogenet. 29, 297–300 (2002).

    CAS  PubMed  Google Scholar 

  98. Dunstan, S. J. et al. Genes of the class II and class III major histocompatibility complex are associated with typhoid fever in Vietnam. J. Infect. Dis. 183, 261–268 (2001).

    CAS  PubMed  Google Scholar 

  99. Cummings, L. A., Barrett, S. L. R., Wilkerson, W. D., Fellnerova, I. & Cookson, B. T. FliC-specific CD4+ T cell responses are restricted by bacterial regulation of antigen expression. J. Immunol. 174, 7929–7938 (2005).

    CAS  PubMed  Google Scholar 

  100. Lee, S.-J. et al. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development. PLoS Pathog. 8, e1002499 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mastroeni, P., Villarreal-Ramos, B. & Hormaeche, C. E. Adoptive transfer of immunity to oral challenge with virulent salmonellae in innately susceptible BALB/c mice requires both immune serum and T cells. Infect. Immun. 61, 3981–3984 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Nanton, M. R., Way, S. S., Shlomchik, M. J. & McSorley, S. J. Cutting edge: B cells are essential for protective immunity against Salmonella independent of antibody secretion. J. Immunol. 189, 5503–5507 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hermaszewski, R. A. & Webster, A. D. Primary hypogammaglobulinaemia: a survey of clinical manifestations and complications. Q. J. Med. 86, 31–42 (1993).

    CAS  PubMed  Google Scholar 

  104. Winkelstein, J. A. et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine (Baltimore) 85, 193–202 (2006).

    Google Scholar 

  105. Levy, J., Espanol-Boren, T., Thomas, C. & Fischer, A. Clinical spectrum of X-linked hyper-IgM syndrome. J. Pediatr. 131, 47–54 (1997).

    CAS  PubMed  Google Scholar 

  106. Fraser, A., Paul, M., Goldberg, E., Acosta, C. J. & Leibovici, L. Typhoid fever vaccines: systematic review and meta-analysis of randomised controlled trials. Vaccine 25, 7848–7857 (2007).

    CAS  PubMed  Google Scholar 

  107. Feasey, N. A., Dougan, G., Kingsley, R. A., Heyderman, R. S. & Gordon, M. A. Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. Lancet 379, 2489–2499 (2012).

    PubMed  PubMed Central  Google Scholar 

  108. Geldmacher, C. et al. Early depletion of Mycobacterium tuberculosis-specific T helper 1 cell responses after HIV-1 infection. J. Infect. Dis. 198, 1590–1598 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. Dandekar, S., George, M. D. & Bäumler, A. J. Th17 cells, HIV and the gut mucosal barrier. Curr. Opin. HIV AIDS 5, 173–178 (2010).

    PubMed  Google Scholar 

  110. MacLennan, C. A. et al. Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-infected African adults. Science 328, 508–512 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Mastroeni, P., Grant, A., Restif, O. & Maskell, D. A dynamic view of the spread and intracellular distribution of Salmonella enterica. Nat. Rev. Microbiol. 7, 73–80 (2009).

    CAS  PubMed  Google Scholar 

  112. Crump, J. A., Ram, P. K., Gupta, S. K., Miller, M. A. & Mintz, E. D. Part I. Analysis of data gaps pertaining to Salmonella enterica serotype Typhi infections in low and medium human development index countries, 1984–2005. Epidemiol. Infect. 136, 436–448 (2008).

    CAS  PubMed  Google Scholar 

  113. Gordon, M. A. et al. Epidemics of invasive Salmonella enterica serovar Enteritidis and S. enterica serovar Typhimurium infection associated with multidrug resistance among adults and children in Malawi. Clin. Infect. Dis. 46, 963–969 (2008).

    PubMed  Google Scholar 

  114. Crump, J. A. & Mintz, E. D. Global trends in typhoid and paratyphoid fever. Clin. Infect. Dis. 50, 241–246 (2010).

    PubMed  PubMed Central  Google Scholar 

  115. MacLennan, C. A., Martin, L. B. & Micoli, F. Vaccines against invasive Salmonella disease: current status and future directions. Hum. Vaccin. Immunother. 10, 1478–1493 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Pier, G. B. et al. Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393, 79–82 (1998).

    CAS  PubMed  Google Scholar 

  117. van de Vosse, E. et al. Distribution of CFTR variations in an Indonesian enteric fever cohort. Clin. Infect. Dis. 50, 1231–1237 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. Mastroeni and D. Holden for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James J. Gilchrist, Calman A. MacLennan or Adrian V. S. Hill.

Ethics declarations

Competing interests

C.A.M. is the recipient of a clinical research fellowship from GlaxoSmithKline. J.J.G. and A.V.S.H. declare no competing interests.

Supplementary information

Supplementary information S1 (table)

Genetic variation resulting in invasive Salmonella susceptibility in humans and mice (PDF 356 kb)

PowerPoint slides

Glossary

Genome-wide association study

(GWAS). Hypothesis-free genetic association study that tests for associations between a trait of interest and variation at millions of single nucleotide polymorphisms across the genome.

Candidate gene studies

Genetic case-control studies in which the exposure of interest is variation at a genetic locus chosen according to a prior biological hypothesis.

Hypomorphic mutations

Mutations resulting in decreased function of the encoded protein.

Ectodermal dysplasia

A genetically and phenotypically heterogeneous group of congenital disorders characterized by abnormal hair and teeth, and reduced perspiration.

Hypermorphic mutations

Mutations that lead to increased function of the encoded protein.

Missense mutation

Mutation resulting in an amino acid change in the encoded protein product.

Nonsense mutation

Mutation resulting in a premature stop codon in the encoded transcript.

Inflammasome

Cytosolic multi-protein complex composed of an innate pattern-recognition receptor, an adaptor molecule and a pro-inflammatory effector caspase.

Pyroptosis

Pro-inflammatory programmed cell death, with cell lysis alongside pro-inflammatory cytokine release.

Autophagy

Cellular process targeting cytoplasmic contents, including cytoplasmic pathogens, for lysosomal degradation via the formation of double-membraned, intracellular autophagosomes.

Haematocrit

The proportion, by volume, of blood that is composed of red blood cells.

Siderophores

High-affinity iron-binding molecules that facilitate the sequestration of iron by microorganisms.

Hereditary haemochromatosis

Common autosomal recessive disorder characterized by iron overload and secondary organ dysfunction, most frequently caused by mutations in the HFE gene.

Severe combined immunodeficiency

A group of congenital immunodeficiencies defined by deficient T cell, B cell and/or natural killer cell lineages.

DiGeorge syndrome

Syndrome of hypoplastic thymus and parathyroid glands and congenital cardiac disease, caused by a 22q11.2 deletion.

Imputation

Statistical estimation of genotype information not directly assayed, by inference from surrounding genotype data and densely genotyped reference panels.

X-linked agammaglobulinaemia

Primary immunodeficiency secondary to mutations in Bruton's tyrosine kinase (BTK) resulting in defective B cell development with hypogammaglobulinaemia and reduced circulating B cells.

X-linked hyper IgM syndrome

Primary immunodeficiency secondary to mutations in the CD4+ T cell surface-expressed molecule CD40 ligand (CD40LG; also known as CD154), resulting in defective B cell activation and isotype switching.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilchrist, J., MacLennan, C. & Hill, A. Genetic susceptibility to invasive Salmonella disease. Nat Rev Immunol 15, 452–463 (2015). https://doi.org/10.1038/nri3858

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing