Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Type 2 inflammation in asthma — present in most, absent in many

A Corrigendum to this article was published on 19 January 2015

This article has been updated

Abstract

Asthma is one of the most common chronic immunological diseases in humans, affecting people from childhood to old age. Progress in treating asthma has been relatively slow and treatment guidelines have mostly recommended empirical approaches on the basis of clinical measures of disease severity rather than on the basis of the underlying mechanisms of pathogenesis. An important molecular mechanism of asthma is type 2 inflammation, which occurs in many but not all patients. In this Opinion article, I explore the role of type 2 inflammation in asthma, including lessons learnt from clinical trials of inhibitors of type 2 inflammation. I consider how dichotomizing asthma according to levels of type 2 inflammation — into 'T helper 2 (TH2)-high' and 'TH2-low' subtypes (endotypes) — has shaped our thinking about the pathobiology of asthma and has generated new interest in understanding the mechanisms of disease that are independent of type 2 inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Type 2 immune responses in asthma.
Figure 2: Airway pathology in asthma.
Figure 3: Asthma can be divided into TH2-low and TH2-high subgroups.
Figure 4: Asthma as a core disease of smooth muscle that is modified by inflammation.

Similar content being viewed by others

Change history

  • 19 January 2015

    In the version of this article that was originally published, the targeted epitope of lebrikizumab was listed as "IL‑4Rα" in Table 1 but this should be "IL‑13 (IL‑4Rα‑binding epitope)”. Also, for the main effects of lebrikizumab in human asthma trials, the citation of reference 44 should be reference 48. The author apologizes for these errors, which have now been corrected online.

References

  1. Spellberg, B. & Edwards, J. E. Jr. Type 1/type 2 immunity in infectious diseases. Clin. Infect. Dis. 32, 76–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Voehringer, D., Reese, T. A., Huang, X., Shinkai, K. & Locksley, R. M. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J. Exp. Med. 203, 1435–1446 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Locksley, R. M. Asthma and allergic inflammation. Cell 140, 777–783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beigelman, A., Weinstock, G. M. & Bacharier, L. B. The relationships between environmental bacterial exposure, airway bacterial colonization, and asthma. Curr. Opin. Allergy Clin. Immunol. 14, 137–142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Begin, P. & Nadeau, K. C. Epigenetic regulation of asthma and allergic disease. Allergy Asthma Clin. Immunol. 10, 27 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Croisant, S. Epidemiology of asthma: prevalence and burden of disease. Adv. Exp. Med. Biol. 795, 17–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. National Asthma Education and Prevention Program, National Heart, Lung and Blood Institute. Expert Panel Report 3: Guidelines for the Diagnosis & Management of Asthma. http://www.ncbi.nlm.nih.gov/books/NBK7232/ (2007).

  8. Haldar, P. et al. Cluster analysis and clinical asthma phenotypes. Am. J. Respir. Crit. Care Med. 178, 218–224 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moore, W. C. et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 181, 315–323 (2010).

    Article  PubMed  Google Scholar 

  10. McArdle, M. A., Finucane, O. M., Connaughton, R. M., McMorrow, A. M. & Roche, H. M. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front. Endocrinol. 4, 52 (2013).

    Article  Google Scholar 

  11. Anderson, G. P. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372, 1107–1119 (2008).

    Article  PubMed  Google Scholar 

  12. Corren, J. Asthma phenotypes and endotypes: an evolving paradigm for classification. Discov. Med. 15, 243–249 (2013).

    PubMed  Google Scholar 

  13. Agache, I. O. From phenotypes to endotypes to asthma treatment. Curr. Opin. Allergy Clin. Immunol. 13, 249–256 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Green, R. H. et al. Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 57, 875–879 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wenzel, S. E. et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am. J. Respir. Crit. Care Med. 160, 1001–1008 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Berry, M. et al. Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax 62, 1043–1049 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. McGrath, K. W. et al. A large subgroup of mild-to-moderate asthma is persistently noneosinophilic. Am. J. Respir. Crit. Care Med. 185, 612–619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Woodruff, P. G. et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc. Natl Acad. Sci. USA 104, 15858–15863 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Woodruff, P. G. et al. T helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 180, 388–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D'Silva, L. et al. Heterogeneity of bronchitis in airway diseases in tertiary care clinical practice. Can. Respir. J. 18, 144–148 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shaw, D. E. et al. Association between neutrophilic airway inflammation and airflow limitation in adults with asthma. Chest 132, 1871–1875 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. van Veen, I. H. et al. Consistency of sputum eosinophilia in difficult-to-treat asthma: a 5-year follow-up study. J. Allergy Clin. Immunol. 124, 615–617.e2 (2009).

    Article  PubMed  Google Scholar 

  23. Dougherty, R. H. et al. Accumulation of intraepithelial mast cells with a unique protease phenotype in TH2-high asthma. J. Allergy Clin. Immunol. 125, 1046–1053.e8 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sidhu, S. S. et al. Roles of epithelial cell-derived periostin in TGF-β activation, collagen production, and collagen gel elasticity in asthma. Proc. Natl Acad. Sci. USA 107, 14170–14175 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Jia, G. et al. Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J. Allergy Clin. Immunol. 130, 647–654.e10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Corren, J. et al. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 365, 1088–1098 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Nair, P. et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 360, 985–993 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Haldar, P. et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 360, 973–984 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pavord, I. D. et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 380, 651–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Wenzel, S. et al. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med. 368, 2455–2466 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Randhawa, I. & Klaustermeyer, W. B. Oral corticosteroid-dependent asthma: a 30-year review. Ann. Allergy Asthma Immunol. 99, 291–302 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Fahy, J. V. et al. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am. J. Respir. Crit. Care Med. 155, 1828–1834 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Boulet, L. P. et al. Inhibitory effects of an anti-IgE antibody E25 on allergen-induced early asthmatic response. Am. J. Respir. Crit. Care Med. 155, 1835–1840 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Djukanovic, R. et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am. J. Respir. Crit. Care Med. 170, 583–593 (2004).

    Article  PubMed  Google Scholar 

  35. Milgrom, H. et al. Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb-E25 study group. N. Engl. J. Med. 341, 1966–1973 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Soler, M. et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur. Respir. J. 18, 254–261 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Busse, W. et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J. Allergy Clin. Immunol. 108, 184–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Tsabouri, S., Tseretopoulou, X., Priftis, K. & Ntzani, E. E. Omalizumab for the treatment of inadequately controlled allergic rhinitis: a systematic review and meta-analysis of randomized clinical trials. J. Allergy Clin. Immunol. Pract. 2, 332–340.e1 (2014).

    Article  PubMed  Google Scholar 

  39. Cooper, P. J. et al. Geohelminth infections: a review of the role of IgE and assessment of potential risks of anti-IgE treatment. Allergy 63, 409–417 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Long, A. et al. Incidence of malignancy in patients with moderate-to-severe asthma treated with or without omalizumab. J. Allergy Clin. Immunol. 134, 560–567.e4 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Egan, R. W. et al. Effect of Sch 55700, a humanized monoclonal antibody to human interleukin-5, on eosinophilic responses and bronchial hyperreactivity. Arzneimittelforschung 49, 779–790 (1999).

    CAS  PubMed  Google Scholar 

  42. Flood-Page, P. et al. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am. J. Respir. Crit. Care Med. 176, 1062–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Bel, E. H. et al. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N. Engl. J. Med. 371, 1189–1197 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Ortega, H. G. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 371, 1198–1207 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Castro, M. et al. Benralizumab reduces exacerbations and improves lung function in adults with uncontrolled eosinophilic asthma. Am. Thorac. Soc. Abstr. B101, abstr. A3699 (2014).

    Google Scholar 

  46. Castro, M. et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am. J. Respir. Crit. Care Med. 184, 1125–1132 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Noonan, M. et al. Dose-ranging study of lebrikizumab in asthmatic patients not receiving inhaled steroids. J. Allergy Clin. Immunol. 132, 567–574.e12 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Hanania, N. A. et al. Efficacy and safety of lebrikizumab in severe uncontrolled asthma: results from the Lute and Verse Phase II randomized, double-blind, placebo-controlled trials. J. Allergy Clin. Immunol. 133, abstr. AB402 (2014).

    Article  Google Scholar 

  49. De Boever, E. H. et al. Efficacy and safety of an anti-IL-13 mAb in patients with severe asthma: a randomized trial. J. Allergy Clin. Immunol. 133, 989–996 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Corren, J. et al. Safety and tolerability of omalizumab. Clin. Exp. Allergy 39, 788–797 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Sorkness, C. A. et al. Reassessment of omalizumab-dosing strategies and pharmacodynamics in inner-city children and adolescents. J. Allergy Clin. Immunol. Pract. 1, 163–171 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gill, M. A. et al. Counterregulation between the FcεRI pathway and antiviral responses in human plasmacytoid dendritic cells. J. Immunol. 184, 5999–6006 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Busse, W. W., Lemanske, R. F. Jr & Gern, J. E. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 376, 826–834 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Davoine, F. et al. Virus-induced eosinophil mediator release requires antigen-presenting and CD4+ T cells. J. Allergy Clin. Immunol. 122, 69–77.e2 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, Y., Zhang, S., Li, D. W. & Jiang, S. J. Efficacy of anti-interleukin-5 therapy with mepolizumab in patients with asthma: a meta-analysis of randomized placebo-controlled trials. PLoS ONE 8, e59872 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ying, S. et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of TH2-attracting chemokines and disease severity. J. Immunol. 174, 8183–8190 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Beale, J. et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci. Transl. Med. 6, 256ra134 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nagarkar, D. R. et al. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. J. Allergy Clin. Immunol. 132, 593–600.e12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ferreira, M. A. et al. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J. Allergy Clin. Immunol. 133, 1564–1571 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Mjosberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Gauvreau, G. M. et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N. Engl. J. Med. 370, 2102–2110 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Siracusa, M. C. et al. Thymic stromal lymphopoietin-mediated extramedullary hematopoiesis promotes allergic inflammation. Immunity 39, 1158–1170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dougherty, R. H. & Fahy, J. V. Acute exacerbations of asthma: epidemiology, biology and the exacerbation-prone phenotype. Clin. Exp. Allergy 39, 193–202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Karjalainen, E. M. et al. Airway inflammation and basement membrane tenascin in newly diagnosed atopic and nonatopic asthma. Respir. Med. 97, 1045–1051 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Beasley, R., Roche, W. & Holgate, S. T. Inflammatory processes in bronchial asthma. Drugs 37 (Suppl. 1), 117–122 (1989).

    Article  PubMed  Google Scholar 

  67. Brewster, C. E. et al. Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am. J. Respir. Cell. Mol. Biol. 3, 507–511 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Woodruff, P. G. et al. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am. J. Respir. Crit. Care Med. 169, 1001–1006 (2004).

    Article  PubMed  Google Scholar 

  69. Bara, I., Ozier, A., Tunon de Lara, J. M., Marthan, R. & Berger, P. Pathophysiology of bronchial smooth muscle remodelling in asthma. Eur. Respir. J. 36, 1174–1184 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Wadsworth, S., Sin, D. & Dorscheid, D. Clinical update on the use of biomarkers of airway inflammation in the management of asthma. J. Asthma Allergy 4, 77–86 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Siddiqui, S. et al. Vascular remodeling is a feature of asthma and nonasthmatic eosinophilic bronchitis. J. Allergy Clin. Immunol. 120, 813–819 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Reddy, A. P. & Gupta, M. R. Management of asthma: the current US and European guidelines. Adv. Exp. Med. Biol. 795, 81–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Fahy, J. V. Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies. Proc. Am. Thorac Soc. 6, 256–259 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Barnes, P. J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 131, 636–645 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Woodruff, P. G. & Fahy, J. V. Airway remodeling in asthma. Semin. Respir. Crit. Care Med. 23, 361–367 (2002).

    Article  PubMed  Google Scholar 

  76. Peters, M. C. et al. Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J. Allergy Clin. Immunol. 133, 388–394 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Bhakta, N. R. et al. A qPCR-based metric of TH2 airway inflammation in asthma. Clin. Transl. Allergy 3, 24 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Meng, Y. G., Singh, N. & Wong, W. L. Binding of cynomolgus monkey IgE to a humanized anti-human IgE antibody and human high affinity IgE receptor. Mol. Immunol. 33, 635–642 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Ultsch, M. et al. Structural basis of signaling blockade by anti-IL-13 antibody lebrikizumab. J. Mol. Biol. 425, 1330–1339 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Hodsman, P. et al. A Phase I, randomized, placebo-controlled, dose-escalation study of an anti-IL-13 monoclonal antibody in healthy subjects and mild asthmatics. Br. J. Clin. Pharmacol. 75, 118–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. May, R. D. et al. Preclinical development of CAT-354, an IL-13 neutralizing antibody, for the treatment of severe uncontrolled asthma. Br. J. Pharmacol. 166, 177–193 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank the following colleagues and collaborators who have contributed to his understanding of type 2 inflammation in asthma: P. Woodruff, M. Peters, E. Gordon, N. Bhakta, S. Christenson, H. Boushey, S. Lazarus, R. Locksley and M. Ansel (all at the University of California, San Francisco, USA), and M. Seibold (National Jewish Health, Denver, Colorado, USA) and J. Arron (Genentech Inc., South San Francisco, California, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John V. Fahy.

Ethics declarations

Competing interests

The author is a named inventor on a patent application for periostin as a biomarker in asthma. He has consulted for Amgen, Merck, Regeneron, Boehringer Ingelheim and MedImmune.

PowerPoint slides

Glossary

Asthma control questionnaire

A tool for measuring quality of life and symptoms in patients with asthma. It assesses whether an individual wakes in the mornings with symptoms, the limitations of daily activities, shortness of breath and wheeze.

Atopy

A tendency to develop IgE-mediated allergic disease, such as asthma, eczema (atopic dermatitis), allergic rhinitis (hay fever) or allergic conjunctivitis.

Bronchial hyperresponsiveness

(BHR). A state in which the airways are hyperreactive to various bronchoconstrictor stimuli, including methacholine, histamine, hypertonic saline, distilled water, exercise or eucapnic hyperventilation. Hyperresponsiveness in this context means a bronchoconstrictor response at 'doses' that normally have no bronchoconstrictor effect.

FEV1

(Forced expired volume in 1 second). A measure of airflow. Decreases in FEV1 are characteristic of asthma and are one metric of asthma severity.

Glucocorticoids

Steroid hormones that are produced in the adrenal glands. Synthetic analogues are available as anti-inflammatory drugs that are particularly effective in suppressing type 2 immune responses.

Group 2 innate lymphoid cells

(ILC2s). ILC2s are a subtype of innate lymphoid cells, which are a novel family of haematopoietic effector cells with heterogeneous location, cytokine production and effector functions. ILC2s specifically produce type 2 cytokines and depend on GATA-binding protein 3 and retinoic acid receptor-related orphan receptor-α for their development and function.

SARP

(Severe Asthma Research Program). A network of seven asthma research centres and one data coordination centre in the United States. SARP aims to improve understanding of the heterogeneity of asthma, including asthma endotypes, with the ultimate goal of better treatments. It is funded by the US National Heart, Lung and Blood Institute.

U-BIOPRED

(Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes). A European-wide project that aims to uncover biomarkers of asthma and to identify mechanisms of disease subtypes to improve the treatment of asthma. It is funded by the Innovative Medicine Initiative (IMI) and the European Federation of Pharmaceutical Industries and Associations (EFPIA).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahy, J. Type 2 inflammation in asthma — present in most, absent in many. Nat Rev Immunol 15, 57–65 (2015). https://doi.org/10.1038/nri3786

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3786

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing