Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mast cell secretory granules: armed for battle

Subjects

Key Points

  • Mast cell secretory granules are lysosome-like organelles that contain a large panel of preformed bioactive constituents, including lysosomal hydrolases, amines, cytokines, proteases and proteoglycans.

  • Mast cell granule biogenesis is initiated in the trans-Golgi and is followed by extensive maturation processes, which are strongly dependent on proteoglycans of the serglycin type.

  • When mast cells are activated — for example, in the context of an allergic reaction — degranulation occurs, whereby the bioactive granule compounds are expelled to the cell exterior and can cause a powerful inflammatory reaction.

  • Mast cell degranulation is a highly complex process that involves a large number of kinases, adaptor molecules and second messengers, as well as extensive membrane fusion events, which are mediated by numerous factors.

  • Mast cells are implicated in many pathological conditions and their effects in such settings are often mediated by the compounds that are secreted from the mast cell granules.

  • Recent research has indicated that the mast cell-specific proteases — chymases, tryptases and carboxypeptidase A3 — account for many of the functions that are ascribed to mast cells.

Abstract

Mast cells are important effector cells of the immune system and recent studies show that they have immunomodulatory roles in diverse processes in both health and disease. Mast cells are distinguished by their high content of electron-dense secretory granules, which are filled with large amounts of preformed and pre-activated immunomodulatory compounds. When appropriately activated, mast cells undergo degranulation, a process by which these preformed granule compounds are rapidly released into the surroundings. In many cases, the effects that mast cells have on an immune response are closely associated with the biological actions of the granule compounds that they release, as exemplified by the recent studies showing that mast cell granule proteases account for many of the protective and detrimental effects of mast cells in various inflammatory settings. In this Review, we discuss the current knowledge of mast cell secretory granules.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mast cell granule morphology.
Figure 2: A highly simplified scheme for mast cell granule biogenesis, maturation and degranulation.
Figure 3: Biological effects of mast cell granule components.

Similar content being viewed by others

References

  1. Metcalfe, D. D., Baram, D. & Mekori, Y. A. Mast cells. Physiol. Rev. 77, 1033–1079 (1997).

    CAS  PubMed  Google Scholar 

  2. Gurish, M. F. & Austen, K. F. Developmental origin and functional specialization of mast cell subsets. Immunity 37, 25–33 (2012).

    CAS  PubMed  Google Scholar 

  3. Galli, S. J., Nakae, S. & Tsai, M. Mast cells in the development of adaptive immune responses. Nature Immunol. 6, 135–142 (2005).

    CAS  Google Scholar 

  4. Marshall, J. S. Mast-cell responses to pathogens. Nature Rev. Immunol. 4, 787–799 (2004).

    CAS  Google Scholar 

  5. St John, A. L. & Abraham, S. N. Innate immunity and its regulation by mast cells. J. Immunol. 190, 4458–4463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Galli, S. J. et al. Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol. 23, 749–786 (2005).

    CAS  PubMed  Google Scholar 

  7. Feyerabend, T. B. et al. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity 35, 832–844 (2011).

    CAS  PubMed  Google Scholar 

  8. Dudeck, A. et al. Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity 34, 973–984 (2011).

    CAS  PubMed  Google Scholar 

  9. Rodewald, H. R. & Feyerabend, T. B. Widespread immunological functions of mast cells: fact or fiction? Immunity 37, 13–24 (2012).

    CAS  PubMed  Google Scholar 

  10. Reber, L. L., Marichal, T. & Galli, S. J. New models for analyzing mast cell functions in vivo. Trends Immunol. 33, 613–625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Arvan, P. & Castle, D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem. J. 332, 593–610 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Blott, E. J. & Griffiths, G. M. Secretory lysosomes. Nature Rev. Mol. Cell Biol. 3, 122–131 (2002).

    CAS  Google Scholar 

  13. Pejler, G., Åbrink, M., Ringvall, M. & Wernersson, S. Mast cell proteases. Adv. Immunol. 95, 167–255 (2007).

    CAS  PubMed  Google Scholar 

  14. Rönnberg, E., Melo, F. R. & Pejler, G. Mast cell proteoglycans. J. Histochem. Cytochem. 60, 950–962 (2012).

    PubMed  PubMed Central  Google Scholar 

  15. Puri, N. & Roche, P. A. Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proc. Natl Acad. Sci. USA 105, 2580–2585 (2008).

    CAS  PubMed  Google Scholar 

  16. Theoharides, T. C., Bondy, P. K., Tsakalos, N. D. & Askenase, P. W. Differential release of serotonin and histamine from mast cells. Nature 297, 229–231 (1982).

    CAS  PubMed  Google Scholar 

  17. Kanerva, K. et al. Expression of antizyme inhibitor 2 in mast cells and role of polyamines as selective regulators of serotonin secretion. PLoS ONE 4, e6858 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Baram, D. et al. Synaptotagmin II negatively regulates Ca2+-triggered exocytosis of lysosomes in mast cells. J. Exp. Med. 189, 1649–1658 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dvorak, A. M. Ultrastructural studies of human basophils and mast cells. J. Histochem. Cytochem. 53, 1043–1070 (2005).

    CAS  PubMed  Google Scholar 

  20. Whitaker-Menezes, D., Schechter, N. M. & Murphy, G. F. Serine proteinases are regionally segregated within mast cell granules. Lab Invest. 72, 34–41 (1995).

    CAS  PubMed  Google Scholar 

  21. Hammel, I. et al. Differences in the volume distributions of human lung mast cell granules and lipid bodies: evidence that the size of these organelles is regulated by distinct mechanisms. J. Cell Biol. 100, 1488–1492 (1985).

    CAS  PubMed  Google Scholar 

  22. Combs, J. W. Maturation of rat mast cells. An electron microscope study. J. Cell Biol. 31, 563–575 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hammel, I., Lagunoff, D. & Galli, S. J. Regulation of secretory granule size by the precise generation and fusion of unit granules. J. Cell. Mol. Med. 14, 1904–1916 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Prasad, P., Yanagihara, A. A., Small-Howard, A. L., Turner, H. & Stokes, A. J. Secretogranin III directs secretory vesicle biogenesis in mast cells in a manner dependent upon interaction with chromogranin A. J. Immunol. 181, 5024–5034 (2008).

    CAS  PubMed  Google Scholar 

  25. Azouz, N. P. et al. Rab5 is a novel regulator of mast cell secretory granules: impact on size, cargo, and exocytosis. J. Immunol. 192, 4043–4053 (2014).

    CAS  PubMed  Google Scholar 

  26. Dvorak, A. M., Hammel, I. & Galli, S. J. Beige mouse mast cells generated in vitro: ultrastructural analysis of maturation induced by sodium butyrate and of IgE-mediated, antigen-dependent degranulation. Int. Arch. Allergy Appl. Immunol. 82, 261–268 (1987).

    CAS  PubMed  Google Scholar 

  27. Hammel, I., Dvorak, A. M. & Galli, S. J. Defective cytoplasmic granule formation. I. Abnormalities affecting tissue mast cells and pancreatic acinar cells of beige mice. Lab Invest. 56, 321–328 (1987).

    CAS  PubMed  Google Scholar 

  28. Grimberg, E., Peng, Z., Hammel, I. & Sagi-Eisenberg, R. Synaptotagmin III is a critical factor for the formation of the perinuclear endocytic recycling compartment and determination of secretory granules size. J. Cell Sci. 116, 145–154 (2003).

    CAS  PubMed  Google Scholar 

  29. Olszewski, M. B., Trzaska, D., Knol, E. F., Adamczewska, V. & Dastych, J. Efficient sorting of TNF-alpha to rodent mast cell granules is dependent on N-linked glycosylation. Eur. J. Immunol. 36, 997–1008 (2006).

    CAS  PubMed  Google Scholar 

  30. Henningsson, F., Hergeth, S., Cortelius, R., Åbrink, M. & Pejler, G. A role for serglycin proteoglycan in granular retention and processing of mast cell secretory granule components. FEBS J. 273, 4901–4912 (2006).

    CAS  PubMed  Google Scholar 

  31. Haberman, Y. et al. Synaptotagmin (Syt) IX is an essential determinant for protein sorting to secretory granules in mast cells. Blood 109, 3385–3392 (2007).

    CAS  PubMed  Google Scholar 

  32. Merickel, A. & Edwards, R. H. Transport of histamine by vesicular monoamine transporter-2. Neuropharmacology 34, 1543–1547 (1995).

    CAS  PubMed  Google Scholar 

  33. Kruger, P. G. & Lagunoff, D. Effect of age on mast cell granules. Int. Arch. Allergy Appl. Immunol. 65, 291–299 (1981).

    CAS  PubMed  Google Scholar 

  34. Hammel, I., Lagunoff, D. & Kruger, P. G. Studies on the growth of mast cells in rats. Changes in granule size between 1 and 6 months. Lab Invest. 59, 549–554 (1988).

    CAS  PubMed  Google Scholar 

  35. Hammel, I., Lagunoff, D. & Kruger, P. G. Recovery of rat mast cells after secretion: a morphometric study. Exp. Cell Res. 184, 518–523 (1989).

    CAS  PubMed  Google Scholar 

  36. Kruger, P. G. & Lagunoff, D. Mast cell restoration. A study of the rat peritoneal mast cells after depletion with polymyxin B. Int. Arch. Allergy Appl. Immunol. 65, 278–290 (1981).

    CAS  PubMed  Google Scholar 

  37. Ringvall, M. et al. Serotonin and histamine storage in mast cell secretory granules is dependent on serglycin proteoglycan. J. Allergy Clin. Immunol. 121, 1020–1026 (2008).

    CAS  PubMed  Google Scholar 

  38. Gurish, M. F. et al. Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand. J. Exp. Med. 175, 1003–1012 (1992).

    CAS  PubMed  Google Scholar 

  39. Duelli, A. et al. Mast cell differentiation and activation is closely linked to expression of genes coding for the serglycin proteoglycan core protein and a distinct set of chondroitin sulfate and heparin sulfotransferases. J. Immunol. 183, 7073–7083 (2009).

    CAS  PubMed  Google Scholar 

  40. Butterfield, J. H., Weiler, D., Peterson, E. A., Gleich, G. J. & Leiferman, K. M. Sequestration of eosinophil major basic protein in human mast cells. Lab Invest. 62, 77–86 (1990).

    CAS  PubMed  Google Scholar 

  41. Ohtsu, H. et al. Plasma extravasation induced by dietary supplemented histamine in histamine-free mice. Eur. J. Immunol. 32, 1698–1708 (2002).

    CAS  PubMed  Google Scholar 

  42. Rundquist, I., Allenmark, S. & Enerbäck, L. Uptake and turnover of dopamine in rat mast cells studied by cytofluorometry and high performance liquid chromatography. Histochem. J. 14, 429–443 (1982).

    CAS  PubMed  Google Scholar 

  43. Rickard, A. & Lagunoff, D. Eosinophil peroxidase accounts for most if not all of the peroxidase activity associated with isolated rat peritoneal mast cells. Int. Arch. Allergy Immunol. 103, 365–369 (1994).

    CAS  PubMed  Google Scholar 

  44. Olszewski, M. B., Groot, A. J., Dastych, J. & Knol, E. F. TNF trafficking to human mast cell granules: mature chain-dependent endocytosis. J. Immunol. 178, 5701–5709 (2007).

    CAS  PubMed  Google Scholar 

  45. Braga, T. et al. Serglycin proteoglycan is required for secretory granule integrity in mucosal mast cells. Biochem. J. 403, 49–57 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Åbrink, M., Grujic, M. & Pejler, G. Serglycin is essential for maturation of mast cell secretory granule. J. Biol. Chem. 279, 40897–40905 (2004).

    PubMed  Google Scholar 

  47. Forsberg, E. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773–776 (1999).

    CAS  PubMed  Google Scholar 

  48. Humphries, D. E. et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400, 769–772 (1999). References 47 and 48 show for the first time that proteoglycans are crucial for promoting the storage of diverse compounds (in particular, proteases) in mast cell granules.

    CAS  PubMed  Google Scholar 

  49. Wang, B. et al. Heparanase affects secretory granule homeostasis of murine mast cells through degrading heparin. J. Allergy Clin. Immunol. 128, 1310–1317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ohtake-Niimi, S. et al. Mice deficient in N-acetylgalactosamine 4-sulfate 6-o-sulfotransferase are unable to synthesize chondroitin/dermatan sulfate containing N-acetylgalactosamine 4,6-bissulfate residues and exhibit decreased protease activity in bone marrow-derived mast cells. J. Biol. Chem. 285, 20793–20805 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Skokos, D. et al. Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J. Immunol. 166, 868–876 (2001).

    CAS  PubMed  Google Scholar 

  52. Ohtsu, H. et al. Mice lacking histidine decarboxylase exhibit abnormal mast cells. FEBS Lett. 502, 53–56 (2001).

    CAS  PubMed  Google Scholar 

  53. Nakazawa, S. et al. Histamine synthesis is required for granule maturation in murine mast cells. Eur. J. Immunol. 44, 204–214 (2013).

    PubMed  Google Scholar 

  54. Csaba, G., Kovacs, P., Buzas, E., Mazan, M. & Pallinger, E. Serotonin content is elevated in the immune cells of histidine decarboxylase gene knock-out (HDCKO) mice. Focus on mast cells. Inflamm. Res. 56, 89–92 (2007).

    CAS  PubMed  Google Scholar 

  55. Garcia-Faroldi, G. et al. Polyamines are present in mast cell secretory granules and are important for granule homeostasis. PLoS ONE 5, e15071 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Grujic, M. et al. Distorted secretory granule composition in mast cells with multiple protease deficiency. J. Immunol. 191, 3931–3938 (2013).

    CAS  PubMed  Google Scholar 

  57. Feyerabend, T. B. et al. Loss of histochemical identity in mast cells lacking carboxypeptidase A. Mol. Cell. Biol. 25, 6199–6210 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Younan, G. et al. The inflammatory response after an epidermal burn depends on the activities of mouse mast cell proteases 4 and 5. J. Immunol. 185, 7681–7690 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Stevens, R. L. et al. Transgenic mice that possess a disrupted mast cell protease 5 (mMCP-5) gene can not store carboxypeptidase A (mMC-CPA) protein in their granules. FASEB J. 10, 17772 (1996).

    Google Scholar 

  60. Wolters, P. J., Pham, C. T., Muilenburg, D. J., Ley, T. J. & Caughey, G. H. Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J. Biol. Chem. 276, 18551–18556 (2001).

    CAS  PubMed  Google Scholar 

  61. Henningsson, F. et al. A role for cathepsin E in the processing of mast-cell carboxypeptidase A. J. Cell Sci. 118, 2035–2042 (2005).

    CAS  PubMed  Google Scholar 

  62. Springman, E. B., Dikov, M. M. & Serafin, W. E. Mast cell procarboxypeptidase A. Molecular modeling and biochemical characterization of its processing within secretory granules. J. Biol. Chem. 270, 1300–1307 (1995).

    CAS  PubMed  Google Scholar 

  63. Le, Q. T. et al. Processing of human protryptase in mast cells involves cathepsins L, B, and C. J. Immunol. 187, 1912–1918 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rath-Wolfson, L. An immunocytochemical approach to the demonstration of intracellular processing of mast cell carboxypeptidase. Appl. Immunohistochem. Mol. Morphol. 9, 81–85 (2001).

    CAS  PubMed  Google Scholar 

  65. Rivera, J., Fierro, N. A., Olivera, A. & Suzuki, R. New insights on mast cell activation via the high affinity receptor for IgE. Adv. Immunol. 98, 85–120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kraft, S. & Kinet, J. P. New developments in FcɛRI regulation, function and inhibition. Nature Rev. Immunol. 7, 365–378 (2007).

    CAS  Google Scholar 

  67. Lorentz, A., Baumann, A., Vitte, J. & Blank, U. The SNARE machinery in mast cell secretion. Front. Immunol. 3, 143 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. Tiwari, N. et al. VAMP-8 segregates mast cell-preformed mediator exocytosis from cytokine trafficking pathways. Blood 111, 3665–3674 (2008). This elegant study identifies a crucial role for VAMP8 in mast cell degranulation.

    CAS  PubMed  Google Scholar 

  69. Sander, L. E. et al. Vesicle associated membrane protein (VAMP)-7 and VAMP-8, but not VAMP-2 or VAMP-3, are required for activation-induced degranulation of mature human mast cells. Eur. J. Immunol. 38, 855–863 (2008).

    CAS  PubMed  Google Scholar 

  70. Brochetta, C. et al. Munc18-2 and syntaxin 3 control distinct essential steps in mast cell degranulation. J. Immunol. 192, 41–51 (2014).

    CAS  PubMed  Google Scholar 

  71. Paumet, F. et al. Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment. J. Immunol. 164, 5850–5857 (2000).

    CAS  PubMed  Google Scholar 

  72. Guo, Z., Turner, C. & Castle, D. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell 94, 537–548 (1998).

    CAS  PubMed  Google Scholar 

  73. Tadokoro, S., Nakanishi, M. & Hirashima, N. Complexin II facilitates exocytotic release in mast cells by enhancing Ca2+ sensitivity of the fusion process. J. Cell Sci. 118, 2239–2246 (2005).

    CAS  PubMed  Google Scholar 

  74. Mizuno, K. et al. Rab27b regulates mast cell granule dynamics and secretion. Traffic 8, 883–892 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Melicoff, E. et al. Synaptotagmin-2 controls regulated exocytosis but not other secretory responses of mast cells. J. Biol. Chem. 284, 19445–19451 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kraft, S. et al. The tetraspanin CD63 is required for efficient IgE-mediated mast cell degranulation and anaphylaxis. J. Immunol. 191, 2871–2878 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Neeft, M. et al. Munc13-4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells. Mol. Biol. Cell 16, 731–741 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nishida, K. et al. FcɛRI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J. Cell Biol. 170, 115–126 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Deng, Z. et al. Impact of actin rearrangement and degranulation on the membrane structure of primary mast cells: a combined atomic force and laser scanning confocal microscopy investigation. Biophys. J. 96, 1629–1639 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Foger, N. et al. Differential regulation of mast cell degranulation versus cytokine secretion by the actin regulatory proteins Coronin1a and Coronin1b. J. Exp. Med. 208, 1777–1787 (2011).

    PubMed  PubMed Central  Google Scholar 

  81. Dvorak, A. M. Piecemeal degranulation of basophils and mast cells is effected by vesicular transport of stored secretory granule contents. Chem. Immunol. Allergy 85, 135–184 (2005).

    PubMed  Google Scholar 

  82. Palm, N. W., Rosenstein, R. K. & Medzhitov, R. Allergic host defences. Nature 484, 465–472 (2012).

    CAS  PubMed  Google Scholar 

  83. Wastling, J. M. et al. Histochemical and ultrastructural modification of mucosal mast cell granules in parasitized mice lacking the β-chymase, mouse mast cell protease-1. Am. J. Pathol. 153, 491–504 (1998). This is the first study to report a knockout of a mast cell-specific granule compound.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tchougounova, E., Pejler, G. & Åbrink, M. The chymase, mouse mast cell protease 4, constitutes the major chymotrypsin-like activity in peritoneum and ear tissue. A role for mouse mast cell protease 4 in thrombin regulation and fibronectin turnover. J. Exp. Med. 198, 423–431 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shin, K. et al. Mouse mast cell tryptase mMCP-6 is a critical link between adaptive and innate immunity in the chronic phase of Trichinella spiralis infection. J. Immunol. 180, 4885–4891 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Thakurdas, S. M. et al. The mast cell-restricted tryptase mMCP-6 has a critical immunoprotective role in bacterial infections. J. Biol. Chem. 282, 20809–20815 (2007). This is the first study to prove a role for a mast cell granule-specific compound in antibacterial defence.

    CAS  PubMed  Google Scholar 

  87. Scholten, J. et al. Mast cell-specific Cre/loxP-mediated recombination in vivo. Transgen. Res. 17, 307–315 (2008).

    CAS  Google Scholar 

  88. Ohtsu, H. Pathophysiologic role of histamine: evidence clarified by histidine decarboxylase gene knockout mice. Int. Arch. Allergy Immunol. 158 (Suppl. 1), 2–6 (2012).

    CAS  PubMed  Google Scholar 

  89. Molinari, J. F. et al. Inhaled tryptase causes bronchoconstriction in sheep via histamine release. Am. J. Respir. Crit. Care Med. 154, 649–653 (1996).

    CAS  PubMed  Google Scholar 

  90. He, S. & Walls, A. F. Human mast cell chymase induces the accumulation of neutrophils, eosinophils and other inflammatory cells in vivo. Br. J. Pharmacol. 125, 1491–1500 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang, C. et al. Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J. Immunol. 160, 1910–1919 (1998). References 89–91 establish that purified mast cell granule proteases are pro-inflammatory.

    CAS  PubMed  Google Scholar 

  92. Clark, J. M. et al. Tryptase inhibitors block allergen-induced airway and inflammatory responses in allergic sheep. Am. J. Respir. Crit. Care Med. 152, 2076–2083 (1995).

    CAS  PubMed  Google Scholar 

  93. Watanabe, N., Miura, K. & Fukuda, Y. Chymase inhibitor ameliorates eosinophilia in mice infected with Nippostrongylus brasiliensis. Int. Arch. Allergy Immunol. 128, 235–239 (2002).

    CAS  PubMed  Google Scholar 

  94. Bankova, L. G. et al. Mouse mast cell proteases 4 and 5 mediate epidermal injury through disruption of tight junctions. J Immunol. 192, 2812–2820 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sun, J. et al. Critical role of mast cell chymase in mouse abdominal aortic aneurysm formation. Circulation 120, 973–982 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Reber, L. L., Daubeuf, F., Pejler, G., Abrink, M. & Frossard, N. Mast cells contribute to bleomycin-induced lung inflammation and injury in mice through a chymase/mast cell protease 4-dependent mechanism. J. Immunol. 192, 1847–1854 (2014).

    CAS  PubMed  Google Scholar 

  97. Hamilton, M. J. et al. Essential role for mast cell tryptase in acute experimental colitis. Proc. Natl Acad. Sci. USA 108, 290–295 (2011).

    CAS  PubMed  Google Scholar 

  98. Hellman, L. & Thorpe, M. Granule proteases of hematopoietic cells, a family of versatile inflammatory mediators — an update on their cleavage specificity, in vivo substrates, and evolution. Biol. Chem. 395, 15–49 (2014).

    CAS  PubMed  Google Scholar 

  99. Mirza, H., Schmidt, V. A., Derian, C. K., Jesty, J. & Bahou, W. F. Mitogenic responses mediated through the proteinase-activated receptor-2 are induced by expressed forms of mast cell alpha- or beta-tryptases. Blood 90, 3914–3922 (1997).

    CAS  PubMed  Google Scholar 

  100. Molino, M. et al. Interactions of mast cell tryptase with thrombin receptors and PAR-2. J. Biol. Chem. 272, 4043–4049 (1997).

    CAS  PubMed  Google Scholar 

  101. Prieto-Garcia, A. et al. Mast cell restricted mouse and human tryptase.heparin complexes hinder thrombin-induced coagulation of plasma and the generation of fibrin by proteolytically destroying fibrinogen. J. Biol. Chem. 287, 7834–7844 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. McDermott, J. R. et al. Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc. Natl Acad. Sci. USA 100, 7761–7766 (2003). This study provides mechanistic insight into the protective role of mast cells during parasite infection by showing that mast cell proteases can promote epithelial permeability by degrading tight junction proteins.

    CAS  PubMed  Google Scholar 

  103. Groschwitz, K. R., Wu, D., Osterfeld, H., Ahrens, R. & Hogan, S. P. Chymase-mediated intestinal epithelial permeability is regulated by a protease-activating receptor/matrix metalloproteinase-2-dependent mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G479–489 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lin, L. et al. Dual targets for mouse mast cell protease-4 in mediating tissue damage in experimental bullous pemphigoid. J. Biol. Chem. 286, 37358–37367 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Urata, H., Kinoshita, A., Misono, K. S., Bumpus, F. M. & Husain, A. Identification of a highly specific chymase as the major angiotensin II- forming enzyme in the human heart. J. Biol. Chem. 265, 22348–22357 (1990).

    CAS  PubMed  Google Scholar 

  106. Houde, M. et al. Pivotal role of mouse mast cell protease 4 in the conversion and pressor properties of big-endothelin-1. J. Pharmacol. Exp. Ther. 346, 31–37 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mizutani, H., Schechter, N., Lazarus, G., Black, R. A. & Kupper, T. S. Rapid and specific conversion of precursor interleukin 1β (IL-1β) to an active IL-1 species by human mast cell chymase. J. Exp. Med. 174, 821–825 (1991).

    CAS  PubMed  Google Scholar 

  108. Omoto, Y. et al. Human mast cell chymase cleaves pro-IL-18 and generates a novel and biologically active IL-18 fragment. J. Immunol. 177, 8315–8319 (2006).

    CAS  PubMed  Google Scholar 

  109. Schiemann, F. et al. Mast cells and neutrophils proteolytically activate chemokine precursor CTAP-III and are subject to counterregulation by PF-4 through inhibition of chymase and cathepsin G. Blood 107, 2234–2242 (2006).

    CAS  PubMed  Google Scholar 

  110. Berahovich, R. D. et al. Proteolytic activation of alternative CCR1 ligands in inflammation. J. Immunol. 174, 7341–7351 (2005).

    CAS  PubMed  Google Scholar 

  111. Oschatz, C. et al. Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity 34, 258–268 (2011).

    CAS  PubMed  Google Scholar 

  112. Lagunoff, D. & Rickard, A. Mast cell granule heparin proteoglycan induces lacunae in confluent endothelial cell monolayers. Am. J. Pathol. 154, 1591–1600 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Waern, I. et al. Mouse mast cell protease 4 is the major chymase in murine airways and has a protective role in allergic airway inflammation. J. Immunol. 183, 6369–6376 (2009).

    CAS  PubMed  Google Scholar 

  114. Waern, I., Lundequist, A., Pejler, G. & Wernersson, S. Mast cell chymase modulates IL-33 levels and controls allergic sensitization in dust-mite induced airway inflammation. Mucosal Immunol. 6, 911–920 (2013).

    CAS  PubMed  Google Scholar 

  115. Yu, M. et al. Mast cells can promote the development of multiple features of chronic asthma in mice. J. Clin. Invest. 116, 1633–1641 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Williams, C. M. & Galli, S. J. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J. Exp. Med. 192, 455–462 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Nakae, S. et al. Mast cell-derived TNF contributes to airway hyperreactivity, inflammation, and TH2 cytokine production in an asthma model in mice. J. Allergy Clin. Immunol. 120, 48–55 (2007).

    CAS  PubMed  Google Scholar 

  118. Hendrix, S. et al. Mast cells protect from post-traumatic brain inflammation by the mast cell-specific chymase mouse mast cell protease-4. FASEB J. 27, 920–929 (2013).

    CAS  PubMed  Google Scholar 

  119. Nelissen, S. et al. Mast cells protect from post-traumatic spinal cord damage in mice by degrading inflammation-associated cytokines via mouse mast cell protease 4. Neurobiol Dis 62, 260–272 (2013).

    PubMed  Google Scholar 

  120. Zhao, W., Oskeritzian, C. A., Pozez, A. L. & Schwartz, L. B. Cytokine production by skin-derived mast cells: endogenous proteases are responsible for degradation of cytokines. J. Immunol. 175, 2635–2642 (2005).

    CAS  PubMed  Google Scholar 

  121. Waern, I. et al. Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis. Biol. Chem. 393, 1555–1567 (2012).

    CAS  PubMed  Google Scholar 

  122. Roy, A. et al. Mast cell chymase degrades the alarmins heat shock protein 70, biglycan, HMGB1, and interleukin-33 (IL-33) and limits danger-induced inflammation. J. Biol. Chem. 289, 237–250 (2014).

    CAS  PubMed  Google Scholar 

  123. Maurer, M. et al. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature 432, 512–516 (2004).

    CAS  PubMed  Google Scholar 

  124. Metz, M. et al. Mast cells can enhance resistance to snake and honeybee venoms. Science 313, 526–530 (2006). This is a hallmark study identifying an essential role for CPA3 — a mast cell granule compound — in host defence against toxins.

    CAS  PubMed  Google Scholar 

  125. Akahoshi, M. et al. Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice. J. Clin. Invest. 121, 4180–4191 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Schneider, L. A., Schlenner, S. M., Feyerabend, T. B., Wunderlin, M. & Rodewald, H. R. Molecular mechanism of mast cell mediated innate defense against endothelin and snake venom sarafotoxin. J. Exp. Med. 204, 2629–2639 (2007). In this study, the authors confirm by using an elegant approach that CPA3 is essential for protection against snake toxins and endothelin 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Malaviya, R., Ikeda, T., Ross, E. & Abraham, S. N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNFα. Nature 381, 77–80 (1996).

    CAS  PubMed  Google Scholar 

  128. Echtenacher, B., Mannel, D. N. & Hultner, L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381, 75–77 (1996).

    CAS  PubMed  Google Scholar 

  129. Piliponsky, A. M. et al. The chymase mouse mast cell protease 4 degrades TNF, limits inflammation, and promotes survival in a model of sepsis. Am. J. Pathol. 181, 875–886 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Orinska, Z. et al. IL-15 constrains mast cell-dependent antibacterial defenses by suppressing chymase activities. Nature Med. 13, 927–934 (2007).

    CAS  PubMed  Google Scholar 

  131. Niemann, C. U. et al. Neutrophil elastase depends on serglycin proteoglycan for localization in granules. Blood 109, 4478–4486 (2007).

    CAS  PubMed  Google Scholar 

  132. Hori, Y. et al. Accelerated clearance of Escherichia coli in experimental peritonitis of histamine-deficient mice. J. Immunol. 169, 1978–1983 (2002).

    CAS  PubMed  Google Scholar 

  133. Knight, P. A., Wright, S. H., Lawrence, C. E., Paterson, Y. Y. & Miller, H. R. Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J. Exp. Med. 192, 1849–1856 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen, R. et al. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J. Clin. Invest. 108, 1151–1158 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Lee, D. M. et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297, 1689–1692 (2002).

    CAS  PubMed  Google Scholar 

  136. Secor, V. H., Secor, W. E., Gutekunst, C. A. & Brown, M. A. Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J. Exp. Med. 191, 813–822 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Magnusson, S. E., Pejler, G., Kleinau, S. & Abrink, M. Mast cell chymase contributes to the antibody response and the severity of autoimmune arthritis. FASEB J. 23, 875–882 (2009).

    CAS  PubMed  Google Scholar 

  138. McNeil, H. P. et al. The mouse mast cell-restricted tetramer-forming tryptases mouse mast cell protease 6 and mouse mast cell protease 7 are critical mediators in inflammatory arthritis. Arthritis Rheum. 58, 2338–2346 (2008).

    PubMed  Google Scholar 

  139. Shin, K. et al. Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J. Immunol. 182, 647–656 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Rajasekaran, N. et al. Histidine decarboxylase but not histamine receptor 1 or 2 deficiency protects from K/BxN serum-induced arthritis. Int. Immunol. 21, 1263–1268 (2009).

    CAS  PubMed  Google Scholar 

  141. Saarinen, J., Kalkkinen, N., Welgus, H. G. & Kovanen, P. T. Activation of human interstitial procollagenase through direct cleavage of the Leu83–Thr84 bond by mast cell chymase. J. Biol. Chem. 269, 18134–18140 (1994).

    CAS  PubMed  Google Scholar 

  142. Fang, K. C., Raymond, W. W., Lazarus, S. C. & Caughey, G. H. Dog mastocytoma cells secrete a 92-kD gelatinase activated extracellularly by mast cell chymase. J. Clin. Invest. 97, 1589–1596 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Tchougounova, E. et al. A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J. Biol. Chem. 280, 9291–9296 (2005).

    CAS  PubMed  Google Scholar 

  144. Magarinos, N. J. et al. Mast cell-restricted, tetramer-forming tryptases induce aggrecanolysis in articular cartilage by activating matrix metalloproteinase-3 and -13 zymogens. J. Immunol. 191, 1404–1412 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Beghdadi, W. et al. Mast cell chymase protects against renal fibrosis in murine unilateral ureteral obstruction. Kidney Int. 84, 317–326 (2013).

    CAS  PubMed  Google Scholar 

  146. Fajardo, I. & Pejler, G. Human mast cell β-tryptase is a gelatinase. J. Immunol. 171, 1493–1499 (2003).

    CAS  PubMed  Google Scholar 

  147. Scandiuzzi, L. et al. Mouse mast cell protease-4 deteriorates renal function by contributing to inflammation and fibrosis in immune complex-mediated glomerulonephritis. J. Immunol. 185, 624–633 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Algermissen, B., Hermes, B., Feldmann-Boeddeker, I., Bauer, F. & Henz, B. M. Mast cell chymase and tryptase during tissue turnover: analysis on in vitro mitogenesis of fibroblasts and keratinocytes and alterations in cutaneous scars. Exp. Dermatol. 8, 193–198 (1999).

    CAS  PubMed  Google Scholar 

  149. Masubuchi, S. et al. Chymase inhibitor ameliorates hepatic steatosis and fibrosis on established non-alcoholic steatohepatitis in hamsters fed a methionine- and choline-deficient diet. Hepatol Res. 43, 970–978 (2013).

    CAS  PubMed  Google Scholar 

  150. Kunder, C. A. et al. Mast cell-derived particles deliver peripheral signals to remote lymph nodes. J. Exp. Med. 206, 2455–2467 (2009). This study introduces the concept of granules acting as entities, mediating the transport of bioactive compounds from tissue mast cells to lymph nodes.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. St John, A. L., Chan, C. Y., Staats, H. F., Leong, K. W. & Abraham, S. N. Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes. Nature Mater. 11, 250–257 (2012).

    CAS  Google Scholar 

  152. Wilhelm, M., Silver, R. & Silverman, A. J. Central nervous system neurons acquire mast cell products via transgranulation. Eur. J. Neurosci. 22, 2238–2248 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Dougherty, R.H. et al. Accumulation of intraepithelial mast cells with a unique protease phenotype in TH2-high asthma. J. Allergy Clin. Immunol. 125, 1046–1053 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lundequist, A. & Pejler, G. Biological implications of preformed mast cell mediators. Cell. Mol. Life Sci. 68, 965–975 (2011).

    CAS  PubMed  Google Scholar 

  155. Schwartz, L. B. & Austen, K. F. Enzymes of the mast cell granule. J. Invest. Dermatol. 74, 349–353 (1980).

    CAS  PubMed  Google Scholar 

  156. Schwartz, L. B., Lewis, R. A., Seldin, D. & Austen, K. F. Acid hydrolases and tryptase from secretory granules of dispersed human lung mast cells. J. Immunol. 126, 1290–1294 (1981).

    CAS  PubMed  Google Scholar 

  157. Schwartz, L. B., Austen, K. F. & Wasserman, S. I. Immunologic release of β-hexosaminidase and β-glucuronidase from purified rat serosal mast cells. J. Immunol. 123, 1445–1450 (1979).

    CAS  PubMed  Google Scholar 

  158. Dragonetti, A. et al. The lysosomal protease cathepsin D is efficiently sorted to and secreted from regulated secretory compartments in the rat basophilic/mast cell line RBL. J. Cell Sci. 113, 3289–3298 (2000).

    CAS  PubMed  Google Scholar 

  159. Wolters, P. J., Laig-Webster, M. & Caughey, G. H. Dipeptidyl peptidase I cleaves matrix-associated proteins and is expressed mainly by mast cells in normal dog airways. Am. J. Respir. Cell. Mol. Biol. 22, 183–190 (2000).

    CAS  PubMed  Google Scholar 

  160. Riley, J. F. Histamine in tissue mast cells. Science 118, 332 (1953).

    CAS  PubMed  Google Scholar 

  161. Sjoerdsma, A., Waalkes, T. P. & Weissbach, H. Serotonin and histamine in mast cells. Science 125, 1202–1203 (1957).

    CAS  PubMed  Google Scholar 

  162. Benditt, E. P., Wong, R. L., Arase, M. & Roeper, E. 5-Hydroxytryptamine in mast cells. Proc. Soc. Exp. Biol. Med. 90, 303–304 (1955).

    CAS  PubMed  Google Scholar 

  163. Kushnir-Sukhov, N. M., Brown, J. M., Wu, Y., Kirshenbaum, A. & Metcalfe, D. D. Human mast cells are capable of serotonin synthesis and release. J. Allergy Clin. Immunol. 119, 498–499 (2007).

    CAS  PubMed  Google Scholar 

  164. Freeman, J. G. et al. Catecholamines in murine bone marrow derived mast cells. J. Neuroimmunol. 119, 231–238 (2001).

    CAS  PubMed  Google Scholar 

  165. Gordon, J. R. & Galli, S. J. Mast cells as a source of both preformed and immunologically inducible TNFα/cachectin. Nature 346, 274–276 (1990). This is the first study in which mast cell granules were shown to contain preformed stored cytokines.

    CAS  PubMed  Google Scholar 

  166. Bradding, P. et al. Interleukin 4 is localized to and released by human mast cells. J. Exp. Med. 176, 1381–1386 (1992).

    CAS  PubMed  Google Scholar 

  167. Reed, J. A., Albino, A. P. & McNutt, N. S. Human cutaneous mast cells express basic fibroblast growth factor. Lab Invest. 72, 215–222 (1995).

    CAS  PubMed  Google Scholar 

  168. Grutzkau, A. et al. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol. Biol. Cell 9, 875–884 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Boesiger, J. et al. Mast cells can secrete vascular permeability factor/ vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of Fcɛ receptor I expression. J. Exp. Med. 188, 1135–1145 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Lindstedt, K. A. et al. Activation of paracrine TGF-β1 signaling upon stimulation and degranulation of rat serosal mast cells: a novel function for chymase. FASEB J. 15, 1377–1388 (2001).

    CAS  PubMed  Google Scholar 

  171. Leon, A. et al. Mast cells synthesize, store, and release nerve growth factor. Proc. Natl Acad. Sci. USA 91, 3739–3743 (1994).

    CAS  PubMed  Google Scholar 

  172. Bradding, P. et al. Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J. Immunol. 151, 3853–3865 (1993).

    CAS  PubMed  Google Scholar 

  173. Zhang, S. et al. Human mast cells express stem cell factor. J. Pathol. 186, 59–66 (1998).

    CAS  PubMed  Google Scholar 

  174. Glenner, G. G. & Cohen, L. A. Histochemical demonstration of a species-specific trypsin-like enzyme in mast cells. Nature 185, 846–847 (1960).

    CAS  PubMed  Google Scholar 

  175. Benditt, E. P. & Arase, M. An enzyme in mast cells with properties like chymotrypsin. J. Exp. Med. 110, 451–460 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Haas, R., Heinrich, P. C. & Sasse, D. Proteolytic enzymes of rat liver mitochondria. Evidence for a mast cell origin. FEBS Lett. 103, 168–171 (1979).

    CAS  PubMed  Google Scholar 

  177. Schechter, N. M. et al. Identification of a cathepsin G-like proteinase in the MCTC type of human mast cell. J. Immunol. 145, 2652–2661 (1990).

    CAS  PubMed  Google Scholar 

  178. Baram, D. et al. Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-α. J. Immunol. 167, 4008–4016 (2001).

    CAS  PubMed  Google Scholar 

  179. Garcia-Faroldi, G., Melo, F. R., Ronnberg, E., Grujic, M. & Pejler, G. Active caspase-3 is stored within secretory compartments of viable mast cells. J. Immunol. 191, 1445–1452 (2013).

    CAS  PubMed  Google Scholar 

  180. Zorn, C. N. et al. Secretory lysosomes of mouse mast cells store and exocytose active caspase-3 in a strictly granzyme B dependent manner. Eur. J. Immunol. 43, 3209–3218 (2013).

    CAS  PubMed  Google Scholar 

  181. Garcia-Faroldi, G. et al. ADAMTS: novel proteases expressed by activated mast cells. Biol. Chem. 394, 291–305 (2013).

    CAS  PubMed  Google Scholar 

  182. Pardo, J. et al. Granzyme B is expressed in mouse mast cells in vivo and in vitro and causes delayed cell death independent of perforin. Cell Death Differ. 14, 1768–1779 (2007).

    CAS  PubMed  Google Scholar 

  183. Silver, R. B. et al. Mast cells: a unique source of renin. Proc. Natl Acad. Sci. USA 101, 13607–13612 (2004).

    CAS  PubMed  Google Scholar 

  184. Frank, S. P., Thon, K. P., Bischoff, S. C. & Lorentz, A. SNAP-23 and syntaxin-3 are required for chemokine release by mature human mast cells. Mol. Immunol. 49, 353–358 (2011).

    CAS  PubMed  Google Scholar 

  185. Hibi, T., Hirashima, N. & Nakanishi, M. Rat basophilic leukemia cells express syntaxin-3 and VAMP-7 in granule membranes. Biochem. Biophys. Res. Commun. 271, 36–41 (2000).

    CAS  PubMed  Google Scholar 

  186. Martin-Verdeaux, S. et al. Evidence of a role for Munc18-2 and microtubules in mast cell granule exocytosis. J. Cell Sci. 116, 325–334 (2003).

    CAS  PubMed  Google Scholar 

  187. Castle, J. D., Guo, Z. & Liu, L. Function of the t-SNARE SNAP-23 and secretory carrier membrane proteins (SCAMPs) in exocytosis in mast cells. Mol. Immunol. 38, 1337–1340 (2002).

    CAS  PubMed  Google Scholar 

  188. Schafer, T., Starkl, P., Allard, C., Wolf, R. M. & Schweighoffer, T. A granular variant of CD63 is a regulator of repeated human mast cell degranulation. Allergy 65, 1242–1255 (2010).

    CAS  PubMed  Google Scholar 

  189. Tuvim, M. J. et al. Rab3D, a small GTPase, is localized on mast cell secretory granules and translocates to the plasma membrane upon exocytosis. Am. J. Respir. Cell. Mol. Biol. 20, 79–89 (1999).

    CAS  PubMed  Google Scholar 

  190. Azouz, N. P., Matsui, T., Fukuda, M. & Sagi-Eisenberg, R. Decoding the regulation of mast cell exocytosis by networks of Rab GTPases. J. Immunol. 189, 2169–2180 (2012).

    CAS  PubMed  Google Scholar 

  191. Ushio, H. et al. Crucial role for autophagy in degranulation of mast cells. J. Allergy Clin. Immunol. 127, 1267–1276 e1266 (2011).

    CAS  PubMed  Google Scholar 

  192. Raposo, G. et al. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol. Biol. Cell 8, 2631–2645 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Bashkin, P., Razin, E., Eldor, A. & Vlodavsky, I. Degranulating mast cells secrete an endoglycosidase that degrades heparan sulfate in subendothelial extracellular matrix. Blood 75, 2204–2212 (1990).

    CAS  PubMed  Google Scholar 

  194. Di Nardo, A., Yamasaki, K., Dorschner, R. A., Lai, Y. & Gallo, R. L. Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. J. Immunol. 180, 7565–7573 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Hunt, J. E. et al. Natural disruption of the mouse mast cell protease 7 gene in the C57BL/6 mouse. J. Biol. Chem. 271, 2851–2855 (1996).

    CAS  PubMed  Google Scholar 

  196. Chen, L. Y. et al. Transgenic study of the function of chymase in heart remodeling. J. Hypertens. 20, 2047–2055 (2002).

    CAS  PubMed  Google Scholar 

  197. Walther, D. J. et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76 (2003).

    CAS  PubMed  Google Scholar 

  198. Kozma, G. T. et al. Histamine deficiency in gene-targeted mice strongly reduces antigen-induced airway hyper-responsiveness, eosinophilia and allergen-specific IgE. Int. Immunol. 15, 963–973 (2003).

    CAS  PubMed  Google Scholar 

  199. Musio, S. et al. A key regulatory role for histamine in experimental autoimmune encephalomyelitis: disease exacerbation in histidine decarboxylase-deficient mice. J. Immunol. 176, 17–26 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from The Swedish Research Council (G.P. and S.W.), The Swedish Cancer Foundation (G.P.), The Swedish Heart and Lung Foundation (G.P.) and Formas, Sweden (G.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Pejler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Tryptases

Serine proteases that have trypsin-like cleavage specificities — that is, they cleave peptide bonds on the carboxy-terminal side of arginine or lysine residues.

Chymases

Serine proteases that have chymotrypsin-like cleavage specificities — that is, they cleave peptide bonds on the carboxy-terminal side of aromatic amino acid residues.

Beige mice

A strain of mice with beige hair and a mutation in the gene that encodes lysosomal trafficking regulator (Lyst). These mice have an autosomal recessive disorder that is characterized by hypopigmentation and immune cell dysfunction. The phenotype of beige mice results from aberrant lysosomal trafficking and is similar to that of patients with Chediak–Higashi syndrome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wernersson, S., Pejler, G. Mast cell secretory granules: armed for battle. Nat Rev Immunol 14, 478–494 (2014). https://doi.org/10.1038/nri3690

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3690

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing