Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNA-mediated regulation of T helper cell differentiation and plasticity

Key Points

  • T helper (TH) cells are a central component of the adaptive immune system. They coordinate cellular and humoral responses by producing cytokines and growth factors. Several TH cell subsets have been described, including TH1, TH2, TH9, TH17 and TH22 cells, regulatory T (TReg) cells and T follicular helper (TFH) cells.

  • MicroRNAs are small evolutionarily conserved nucleotide sequences that regulate gene expression by interfering with mRNA translation and stability.

  • MicroRNA-deficient CD4+ T cells show impaired survival and proliferation, but also have an increased sensitivity to signals that induce effector TH cell differentiation and cytokine production.

  • An increasing number of individual microRNAs and co-expressed microRNA clusters have been shown to have marked effects on TH cell fate decisions and immune functions.

  • MicroRNAs are crucial for the proper regulation of TReg cell development, homeostasis and plasticity, and for the maintenance of immune tolerance.

  • Research on microRNA function can be used as a tool for the discovery of novel pathways that regulate TH cell biology and might identify novel targets for the treatment of conditions in which TH cell functions are impaired or exaggerated.

Abstract

CD4+ T helper (TH) cells regulate appropriate cellular and humoral immune responses to a wide range of pathogens and are central to the success of vaccines. However, their dysregulation can cause allergies and autoimmune diseases. The CD4+ T cell population is characterized not only by a range of distinct cell subsets, such as TH1, TH2 and TH17 cells, regulatory T cells and T follicular helper cells — each with specific functions and gene expression programmes — but also by plasticity between the different TH cell subsets. In this Review, we discuss recent advances and emerging ideas about how microRNAs — small endogenously expressed oligonucleotides that modulate gene expression — are involved in the regulatory networks that determine TH cell fate decisions and that regulate their effector functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miRNA-mediated regulation of T helper cell activation.
Figure 2: miRNA-mediated regulation of IFNγ production.
Figure 3: miRNA-mediated regulation of TReg cell function and plasticity.

Similar content being viewed by others

References

  1. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  2. Zhou, L., Chong, M. M. & Littman, D. R. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Locksley, R. M. Nine lives: plasticity among T helper cell subsets. J. Exp. Med. 206, 1643–1646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murphy, K. M. & Stockinger, B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nature Immunol. 11, 674–680 (2010).

    Article  CAS  Google Scholar 

  5. O'Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wilson, C. B., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nature Rev. Immunol. 9, 91–105 (2009).

    Article  CAS  Google Scholar 

  7. Ansel, K. M., Djuretic, I., Tanasa, B. & Rao, A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol. 24, 607–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Kanno, Y., Vahedi, G., Hirahara, K., Singleton, K. & O'Shea, J. J. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30, 707–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu, J., Yamane, H. & Paul, W. E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ansel, K. M., Lee, D. U. & Rao, A. An epigenetic view of helper T cell differentiation. Nature Immunol. 4, 616–623 (2003).

    Article  CAS  Google Scholar 

  11. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nature Rev. Genet. 11, 597–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Mendell, J. T. & Olson, E. N. MicroRNAs in stress signaling and human disease. Cell 148, 1172–1187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoefig, K. P. & Heissmeyer, V. MicroRNAs grow up in the immune system. Curr. Opin. Immunol. 20, 281–287 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Ceribelli, A., Satoh, M. & Chan, E. K. MicroRNAs and autoimmunity. Curr. Opin. Immunol. 24, 686–691 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O'Connell, R. M., Rao, D. S., Chaudhuri, A. A. & Baltimore, D. Physiological and pathological roles for microRNAs in the immune system. Nature Rev. Immunol. 10, 111–122 (2010).

    Article  CAS  Google Scholar 

  18. Nakayamada, S., Takahashi, H., Kanno, Y. & O'Shea, J. J. Helper T cell diversity and plasticity. Curr. Opin. Immunol. 24, 297–302 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xiao, C. & Rajewsky, K. MicroRNA control in the immune system: basic principles. Cell 136, 26–36 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Belver, L., Papavasiliou, F. N. & Ramiro, A. R. MicroRNA control of lymphocyte differentiation and function. Curr. Opin. Immunol. 23, 368–373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeker, L. T. & Bluestone, J. A. Small RNA regulators of T cell-mediated autoimmunity. J. Clin. Immunol. 30, 347–357 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Monticelli, S. et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol. 6, R71 (2005). This study was the first to systematically profile miRNA expression in the mouse haematopoietic system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barski, A. et al. Chromatin poises miRNA- and protein-coding genes for expression. Genome Res. 19, 1742–1751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rossi, R. L. et al. Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nature Immunol. 12, 796–803 (2011). This study uses high-throughput miRNA profiling to establish miRNA expression in human lymphocyte subsets.

    Article  CAS  Google Scholar 

  26. Kuchen, S. et al. Regulation of microRNA expression and abundance during lymphopoiesis. Immunity 32, 828–839 (2010). In this paper, high-throughput sequencing technology is used to comprehensively characterize the miRNome in many immune cell types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muljo, S. A. et al. Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202, 261–269 (2005). This study provides the first evidence that miRNAs are important regulators of T H cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cobb, B. S. et al. A role for Dicer in immune regulation. J. Exp. Med. 203, 2519–2527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tian, L. et al. Loss of T cell microRNA provides systemic protection against autoimmune pathology in mice. J. Autoimmun. 38, 39–48 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Chong, M. M., Rasmussen, J. P., Rudensky, A. Y. & Littman, D. R. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J. Exp. Med. 205, 2005–2017 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Steiner, D. F. et al. MicroRNA-29 regulates T-box transcription factors and interferon-γ production in helper T cells. Immunity 35, 169–181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bronevetsky, Y. et al. T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. J. Exp. Med. 210, 417–432 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. B. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma, F. et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nature Immunol. 12, 861–869 (2011).

    Article  CAS  Google Scholar 

  35. Smith, K. M. et al. miR-29ab1 deficiency identifies a negative feedback loop controlling Th1 bias that is dysregulated in multiple sclerosis. J. Immunol. 189, 1567–1576 (2012). References 31, 34 and 35 show that miR-29 is an important regulator of IFNγ production in T H 1 cells.

    Article  CAS  PubMed  Google Scholar 

  36. Li, Q. J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Ebert, P. J., Jiang, S., Xie, J., Li, Q. J. & Davis, M. M. An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. Nature Immunol. 10, 1162–1169 (2009).

    Article  CAS  Google Scholar 

  38. Henao-Mejia, J. et al. The MicroRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. Immunity 38, 984–997 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fragoso, R. et al. Modulating the strength and threshold of NOTCH oncogenic signals by mir-181a-1/b-1. PLoS Genet. 8, e1002855 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zietara, N. et al. Critical role for miR-181a/b-1 in agonist selection of invariant natural killer T cells. Proc. Natl Acad. Sci. USA 110, 7407–7412 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li, G. et al. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nature Med. 18, 1518–1524 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Palin, A. C., Ramachandran, V., Acharya, S. & Lewis, D. B. Human neonatal naive CD4+ T cells have enhanced activation-dependent signaling regulated by the MicroRNA miR-181a. J. Immunol. 190, 2682–2691 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Rusca, N. et al. miR-146a and NF-κB1 regulate mast cell survival and T lymphocyte differentiation. Mol. Cell. Biol. 32, 4432–4444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Curtale, G. et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood 115, 265–273 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, J. L. et al. NF-κB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc. Natl Acad. Sci. USA 108, 9184–9189 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang, L. et al. miR-146a controls the resolution of T cell responses in mice. J. Exp. Med. 209, 1655–1670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, T. et al. Temporal expression of microRNA cluster miR-17-92 regulates effector and memory CD8+ T-cell differentiation. Proc. Natl Acad. Sci. USA 109, 9965–9970 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunol. 9, 405–414 (2008). This paper shows that the overexpression of the miR-1792 cluster in lymphocytes leads to lymphoproliferative disease and autoimmunity.

    Article  CAS  Google Scholar 

  49. Loeb, G. B. et al. Transcriptome-wide miR-155 binding map reveals widespread noncanonical MicroRNA targeting. Mol. Cell 48, 760–770 (2012). This study is a transcriptome-wide analysis of miRNA-binding sites that shows an unexpectedly high frequency of functional non-canonical target sites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iliopoulos, D., Jaeger, S. A., Hirsch, H. A., Bulyk, M. L. & Struhl, K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol. Cell 39, 493–506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huffaker, T. B. et al. Epistasis between microRNAs 155 and 146a during T cell-mediated antitumor immunity. Cell Rep. 2, 1697–1709 (2012). This paper shows epistasis between miR-155 and miR-146a in T cell-mediated antitumour immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Banerjee, A., Schambach, F., DeJong, C. S., Hammond, S. M. & Reiner, S. L. Micro-RNA-155 inhibits IFN-γ signaling in CD4+ T cells. Eur. J. Immunol. 40, 225–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007). References 53 and 54 were the first to show that genetic disruption of a single miRNA in vivo can have adverse effects on immune cell homeostasis and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. O'Connell, R. M. et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607–619 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oertli, M. et al. MicroRNA-155 is essential for the T cell-mediated control of Helicobacter pylori infection and for the induction of chronic Gastritis and Colitis. J. Immunol. 187, 3578–3586 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Liao, W., Lin, J. X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thiele, S., Wittmann, J., Jack, H. M. & Pahl, A. miR-9 enhances IL-2 production in activated human CD4+ T cells by repressing Blimp-1. Eur. J. Immunol. 42, 2100–2108 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Seddiki, N. et al. The microRNA-9/B-lymphocyte-induced maturation protein-1/IL-2 axis is differentially regulated in progressive HIV infection. Eur. J. Immunol. 43, 510–520 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Martins, G. A., Cimmino, L., Liao, J., Magnusdottir, E. & Calame, K. Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. J. Exp. Med. 205, 1959–1965 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stittrich, A. B. et al. The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nature Immunol. 11, 1057–1062 (2010).

    Article  CAS  Google Scholar 

  62. Lu, L. F. et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142, 914–929 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lu, L. F. et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30, 80–91 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiang, S. et al. Molecular dissection of the miR-17-92 cluster's critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood 118, 5487–5497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lazarevic, V. & Glimcher, L. H. T-bet in disease. Nature Immunol. 12, 597–606 (2011).

    Article  CAS  Google Scholar 

  66. Lu, T. X., Munitz, A. & Rothenberg, M. E. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J. Immunol. 182, 4994–5002 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Lu, T. X. et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-γ pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J. Immunol. 187, 3362–3373 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Jeker, L. T. & Bluestone, J. A. MicroRNA regulation of T-cell differentiation and function. Immunol. Rev. 253, 65–81 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Beaulieu, A. M. et al. MicroRNA function in NK-cell biology. Immunol. Rev. 253, 40–52 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Allen, J. E. & Maizels, R. M. Diversity and dialogue in immunity to helminths. Nature Rev. Immunol. 11, 375–388 (2011).

    Article  CAS  Google Scholar 

  71. Locksley, R. M. Asthma and allergic inflammation. Cell 140, 777–783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paul, W. E. & Zhu, J. How are TH2-type immune responses initiated and amplified? Nature Rev. Immunol. 10, 225–235 (2010).

    Article  CAS  Google Scholar 

  73. Sawant, D. V., Wu, H., Kaplan, M. H. & Dent, A. L. The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway. Mol. Immunol. 54, 435–442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guerau-de-Arellano, M. et al. Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity. Brain 134, 3578–3589 (2011).

    Article  PubMed  Google Scholar 

  75. Seumois, G. et al. An integrated nano-scale approach to profile miRNAs in limited clinical samples. Am. J. Clin. Exp. Immunol. 1, 70–89 (2012).

    PubMed  PubMed Central  Google Scholar 

  76. Solberg, O. D. et al. Airway epithelial miRNA expression is altered in asthma. Am. J. Respir. Crit. Care Med. 186, 965–974 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mattes, J., Collison, A., Plank, M., Phipps, S. & Foster, P. S. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc. Natl Acad. Sci. USA 106, 18704–18709 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Collison, A. et al. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulm. Med. 11, 29 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Collison, A., Mattes, J., Plank, M. & Foster, P. S. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J. Allergy Clin. Immunol. 128, 160–167.e4 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Polikepahad, S. et al. Proinflammatory role for let-7 microRNAs in experimental asthma. J. Biol. Chem. 285, 30139–30149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kumar, M. et al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J. Allergy Clin. Immunol. 128, 1077–1085.e10 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Swaminathan, S. et al. Differential regulation of the Let-7 family of microRNAs in CD4+ T cells alters IL-10 expression. J. Immunol. 188, 6238–6246 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Weaver, C. T., Elson, C. O., Fouser, L. A. & Kolls, J. K. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu. Rev. Pathol. 8, 477–512 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Thamilarasan, M., Koczan, D., Hecker, M., Paap, B. & Zettl, U. K. MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis. Autoimmun. Rev. 11, 174–179 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Du, C. et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nature Immunol. 10, 1252–1259 (2009).

    Article  CAS  Google Scholar 

  87. Takahashi, H. et al. TGF-β and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nature Immunol. 13, 587–595 (2012).

    Article  CAS  Google Scholar 

  88. Oestreich, K. J., Huang, A. C. & Weinmann, A. S. The lineage-defining factors T-bet and Bcl-6 collaborate to regulate Th1 gene expression patterns. J. Exp. Med. 208, 1001–1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Lazarevic, V. et al. T-bet represses TH17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt. Nature Immunol. 12, 96–104 (2011).

    Article  CAS  Google Scholar 

  92. Murugaiyan, G., Beynon, V., Mittal, A., Joller, N. & Weiner, H. L. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J. Immunol. 187, 2213–2221 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Mycko, M. P. et al. MicroRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination. Proc. Natl Acad. Sci. USA 109, e1248–e1257 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Basu, R., Hatton, R. D. & Weaver, C. T. The Th17 family: flexibility follows function. Immunol. Rev. 252, 89–103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ansel, K. M., McHeyzer-Williams, L. J., Ngo, V. N., McHeyzer-Williams, M. G. & Cyster, J. G. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Craft, J. E. Follicular helper T cells in immunity and systemic autoimmunity. Nature Rev. Rheumatol. 8, 337–347 (2012).

    Article  CAS  Google Scholar 

  100. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Choi, Y. S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Baumjohann, D., Okada, T. & Ansel, K. M. Cutting edge: distinct waves of BCL6 expression during T follicular helper cell development. J. Immunol. 187, 2089–2092 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Haynes, N. M. et al. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179, 5099–5108 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Deenick, E. K. et al. Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. Immunity 33, 241–253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Baumjohann, D. et al. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 38, 596–605 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Baumjohann, D. et al. The microRNA cluster miR-1792 promotes TFH cell differentiation and represses subset-inappropriate gene expression. Nature Immunol. 14, 840–848 (2013).

    Article  CAS  Google Scholar 

  107. Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Yu, D. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450, 299–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Glasmacher, E. et al. Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nature Immunol. 11, 725–733 (2010).

    Article  CAS  Google Scholar 

  110. Kang, S. G. et al. MicroRNAs of the miR-1792 family are critical regulators of TFH differentiation. Nature Immunol. 14, 849–857 (2013).

    Article  CAS  Google Scholar 

  111. Pepper, M., Pagan, A. J., Igyarto, B. Z., Taylor, J. J. & Jenkins, M. K. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35, 583–595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nakayamada, S. et al. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 35, 919–931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Oestreich, K. J., Mohn, S. E. & Weinmann, A. S. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nature Immunol. 13, 405–411 (2012).

    Article  CAS  Google Scholar 

  114. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nature Immunol. 11, 7–13 (2010).

    Article  CAS  Google Scholar 

  116. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhou, X. et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J. Exp. Med. 205, 1983–1991 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liston, A., Lu, L. F., O'Carroll, D., Tarakhovsky, A. & Rudensky, A. Y. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J. Exp. Med. 205, 1993–2004 (2008). References 30, 117 and 118 describe that miRNA expression in T Reg cells is required to prevent autoimmunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. de Kouchkovsky, D. et al. miR-1792 regulates interleukin-10 production by Tregs and control of experimental autoimmune encephalomyelitis. J. Immunol. http://dx.doi.org/10.4049/jimmunol.1203567 (2013).

  122. Jeker, L. T. et al. MicroRNA 10a marks regulatory T cells. PLoS ONE 7, e36684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science 323, 1488–1492 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Ansel, K. M. RNA regulation of the immune system. Immunol. Rev. 253, 5–11 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pagani, M. et al. Role of microRNAs and long-non-coding RNAs in CD4+ T-cell differentiation. Immunol. Rev. 253, 82–96 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Dooley, J., Linterman, M. A. & Liston, A. MicroRNA regulation of T-cell development. Immunol. Rev. 253, 53–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Petrocca, F. & Lieberman, J. Promise and challenge of RNA interference-based therapy for cancer. J. Clin. Oncol. 29, 747–754 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Janssen, H. L. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Peer, D. A daunting task: manipulating leukocyte function with RNAi. Immunol. Rev. 253, 185–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Fabian, M. R. & Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nature Struct. Mol. Biol. 19, 586–593 (2012).

    Article  CAS  Google Scholar 

  131. Leshkowitz, D., Horn-Saban, S., Parmet, Y. & Feldmesser, E. Differences in microRNA detection levels are technology and sequence dependent. RNA 19, 527–538 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hsu, S. D. et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 39, D163–D169 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Prosser, H. M., Koike-Yusa, H., Cooper, J. D., Law, F. C. & Bradley, A. A resource of vectors and ES cells for targeted deletion of microRNAs in mice. Nature Biotech. 29, 840–845 (2011).

    Article  CAS  Google Scholar 

  136. Park, C. Y. et al. A resource for the conditional ablation of microRNAs in the mouse. Cell Rep. 1, 385–391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Brown, B. D. & Naldini, L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nature Rev. Genet. 10, 578–585 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Thomas, M., Lieberman, J. & Lal, A. Desperately seeking microRNA targets. Nature Struct. Mol. Biol. 17, 1169–1174 (2010).

    Article  CAS  Google Scholar 

  139. Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460, 479–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (grants HL109102 and HL107202), by a Scholar Award from the Leukemia & Lymphoma Society (to K.M.A.) and by the Swiss Foundation for Grants in Biology and Medicine (D.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mark Ansel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

miRBase

TargetScan

miRTarBase

PowerPoint slides

Glossary

T helper cells

(TH cells). Effector T cells that develop from naive CD4+ T cells. Following their activation, TH cells produce cytokines that regulate cellular and humoral immunity.

miRNA-induced silencing complex

(miRISC). The microRNA-induced silencing complex consists of a microRNA (miRNA) bound to an Argonaute protein. The miRNA provides sequence specificity for the function of the complex in translational repression and in decreasing target mRNA stability.

miRNomes

All of the microRNAs expressed in cells or organisms.

Positive selection

The process by which immature T cells are selected in the thymus for the expression of a functional T cell receptor.

Negative selection

The process by which immature T cells that have a high affinity for self antigens are deleted in the thymus to prevent the egress of autoreactive T cells into the circulation.

miRNA family

MicroRNAs (miRNAs) are classified into families that share the same seed sequence and are therefore predicted to share many of the same target mRNAs; for example, the polycistronic miR-1792 cluster comprises six miRNAs representing four separate miRNA families — the miR-17 family (miR-17 and miR-20a), the miR-18 family (miR-18a), the miR-19 family (miR-19a and miR-19b) and the miR-25 family (miR-92a).

miRNA clusters

MicroRNAs (miRNAs) are often found in clusters in the genome and these clusters are typically transcribed together to form primary miRNA transcripts that are processed to yield multiple mature miRNAs.

Seed recognition sequences

Sequences on mRNA targets that are recognized by the seed sequence of a microRNA; that is, by the nucleotides in positions 2–8 of the microRNA 5′ end.

miRNA sponge

A genetically engineered construct containing several microRNA-binding sites that compete with endogenous microRNA-binding sites; this decreases specific microRNA availability and function.

miRNA mimics

Small transfectable synthetic RNAs that mimic endogenous microRNAs; they are used to study the effects of microRNA overexpression.

Antagomir

A small synthetic nucleic acid oligonucleotide that binds to endogenous microRNAs (miRNAs) and inhibits their function. Antagomirs are often chemically modified to promote their stability and/or their entry into target cells. Also known as anti-miR, miRNA inhibitor or miRNA antagonist.

Locked nucleic acid

(LNA). An RNA oligonucleotide bearing a modification of the ribose moiety in its backbone that 'locks' it in a favourable conformation for base pairing, which increases its binding affinity. LNAs are used in various applications for microRNA detection and in microRNA inhibitors for experimental and therapeutic use.

Experimental autoimmune encephalomyelitis

(EAE). An animal model of multiple sclerosis, which is a chronic demyelinating disease in humans. In animals, EAE can be induced by the injection of several different antigens that are derived from the myelin sheath, including myelin basic protein, proteolipid protein or myelin oligodendrocyte glycoprotein, together with a potent adjuvant.

Germinal centres

Specialized anatomical structures in secondary lymphoid organs in which T follicular helper cells provide help to B cells to generate high-affinity antibodies, memory B cells and long-lived plasma cells.

Secondary lymphoid organs

Organized lymphoid structures in which adaptive immune responses are induced; for example, the spleen and the lymph nodes.

Processing bodies

(P-bodies). Molecular structures in the cytoplasm that are major sites of mRNA turnover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumjohann, D., Ansel, K. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol 13, 666–678 (2013). https://doi.org/10.1038/nri3494

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing