Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of innate and adaptive immunity by Notch

Key Points

  • Notch signalling has several important roles in driving both the development and function of cells of the immune system.

  • During lymphocyte development, different Notch ligand and receptor pairs promote commitment to specific cell lineages. Delta-like ligand 4 (DLL4) interacts with Notch 1 to specify thymic T cell commitment, whereas DLL1–Notch 2 signalling promotes lineage commitment in splenic marginal zone B cells. The development of certain subsets of dendritic cells in the spleen and in the lamina propria of the intestine is also dependent on canonical Notch 2 signalling.

  • Notch signalling influences the development and expansion of certain populations of innate lymphoid cells (ILCs), which are a recently described class of innate-like immune cells.

  • Notch signalling is involved in T helper (TH) cell differentiation and function. DLL-mediated Notch signalling favours the development and effector functions of interferon-γ-secreting TH1 cells, whereas Jagged ligands induce the development of TH2 and regulatory T cells.

  • Genetic, pharmacological or antibody-mediated blockade of Notch signalling can reduce the clinical severity of several mouse models of autoimmune disease.

  • Blockade of Notch signalling in allogeneic bone marrow transplantation models inhibits pathological graft-versus-host disease while preserving beneficial graft-versus-tumour effects.This suggest that modulation of Notch signalling could be used to target immune cells during pathological conditions.

Abstract

Coordinated function of the innate and adaptive arms of the immune system in vertebrates is essential to promote protective immunity and to avoid immunopathology. The Notch signalling pathway, which was originally identified as a pleiotropic mediator of cell fate in invertebrates, has recently emerged as an important regulator of immune cell development and function. Notch was initially shown to be a key determinant of cell-lineage commitment in developing lymphocytes, but it is now known to control the homeostasis of several innate cell populations. Moreover, the roles of Notch in adaptive immunity have expanded to include the regulation of T cell differentiation and function. The aim of this Review is to summarize the current status of immune regulation by Notch. A better understanding of Notch function in both innate and adaptive immunity will hopefully provide multiple avenues for therapeutic intervention in disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notch signalling in immune cell development.
Figure 2: The role of Notch signalling in the development of innate lymphoid cells.
Figure 3: Role of Notch in T helper 1 and T helper 2 cell differentiation and function.

Similar content being viewed by others

References

  1. Morgan, T. H. The theory of the gene. Am. Nat. 51, 513–544 (1917).

    Google Scholar 

  2. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678–689 (2006).

    CAS  Google Scholar 

  3. Kopan, R. & Ilagan, M. X. G. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Poellinger, L. & Lendahl, U. Modulating Notch signaling by pathway-intrinsic and pathway-extrinsic mechanisms. Curr. Opin. Genet. Dev. 18, 449–454 (2008).

    CAS  PubMed  Google Scholar 

  5. Samon, J. B. et al. Notch1 and TGFβ1 cooperatively regulate Foxp3 expression and the maintenance of peripheral regulatory T cells. Blood 112, 1813–1821 (2008). This study shows that Notch 1 and TGFβ cooperate in the regulation of T Reg cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Heitzler, P. Biodiversity and noncanonical Notch signaling. Curr. Top. Dev. Biol. 92, 457–481 (2010).

    CAS  PubMed  Google Scholar 

  7. Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl Acad. Sci. USA 103, 18261–18266 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Weng, A. P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Iso, T., Kedes, L. & Hamamori, Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell. Physiol. 194, 237–255 (2003).

    CAS  PubMed  Google Scholar 

  10. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    CAS  PubMed  Google Scholar 

  11. Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol. 14, 637–645 (2002).

    CAS  PubMed  Google Scholar 

  12. Pui, J. C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999). References 10–12 are the first genetic loss-of-function and reciprocal gain-of-function studies demonstrating that canonical Notch 1 signalling is essential for T cell lineage commitment.

    CAS  PubMed  Google Scholar 

  13. Koch, U. et al. Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch-1. Immunity 15, 225–236 (2001).

    CAS  PubMed  Google Scholar 

  14. Izon, D. J. et al. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity 16, 231–243 (2002).

    CAS  PubMed  Google Scholar 

  15. Yun, T. J. & Bevan, M. J. Notch-regulated ankyrin-repeat protein inhibits Notch1 signaling: multiple Notch1 signaling pathways involved in T cell development. J. Immunol. 170, 5834–5841 (2003).

    CAS  PubMed  Google Scholar 

  16. Maillard, I. et al. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104, 1696–1702 (2004).

    CAS  PubMed  Google Scholar 

  17. Wilson, A., MacDonald, H. R. & Radtke, F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J. Exp. Med. 194, 1003–1012 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bell, J. J. & Bhandoola, A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 452, 764–767 (2008).

    CAS  PubMed  Google Scholar 

  19. Wada, H. et al. Adult T-cell progenitors retain myeloid potential. Nature 452, 768–772 (2008).

    CAS  PubMed  Google Scholar 

  20. Feyerabend, T. B. et al. Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms. Immunity 30, 67–79 (2009).

    CAS  PubMed  Google Scholar 

  21. Wendorff, A. A. et al. Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. Immunity 33, 671–684 (2010).

    CAS  PubMed  Google Scholar 

  22. Jaleco, A. C. et al. Differential effects of Notch ligands δ-1 and Jagged-1 in human lymphoid differentiation. J. Exp. Med. 194, 991–1002 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmitt, T. M. & Zuniga-Pflucker, J. C. Induction of T cell development from hematopoietic progenitor cells by δ-like-1 in vitro. Immunity 17, 749–756 (2002). References 22 and 23 are the first studies showing that T cells can be generated in vitro from haematopoietic progenitors when grown on feeder cells expressing DLL1.

    CAS  PubMed  Google Scholar 

  24. Hozumi, K. et al. δ-like 4 is indispensable in thymic environment specific for T cell development. J. Exp. Med. 205, 2507–2513 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Koch, U. et al. δ-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J. Exp. Med. 205, 2515–2523 (2008). References 24 and 25 identified DLL4 as the physiological ligand for T cell lineage commitment.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mohtashami, M. et al. Direct comparison of Dll1- and Dll4-mediated Notch activation levels shows differential lymphomyeloid lineage commitment outcomes. J. Immunol. 185, 867–876 (2010).

    CAS  PubMed  Google Scholar 

  27. Taghon, T., Yui, M. A., Pant, R., Diamond, R. A. & Rothenberg, E. V. Developmental and molecular characterization of emerging β- and γδ-selected pre-T cells in the adult mouse thymus. Immunity 24, 53–64 (2006).

    CAS  PubMed  Google Scholar 

  28. Van de Walle, I. et al. An early decrease in Notch activation is required for human TCR-αβ lineage differentiation at the expense of TCR-γδ T cells. Blood 113, 2988–2998 (2009).

    CAS  PubMed  Google Scholar 

  29. Taghon, T. et al. Notch signaling is required for proliferation but not for differentiation at a well-defined β-selection checkpoint during human T-cell development. Blood 113, 3254–3263 (2009).

    CAS  PubMed  Google Scholar 

  30. Yashiro-Ohtani, Y. et al. Pre-TCR signaling inactivates Notch1 transcription by antagonizing E2A. Genes Dev. 23, 1665–1676 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pillai, S. & Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nature Rev. Immunol. 9, 767–777 (2009).

    CAS  Google Scholar 

  32. Balazs, M., Martin, F., Zhou, T. & Kearney, J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 17, 341–352 (2002).

    CAS  PubMed  Google Scholar 

  33. Hozumi, K. et al. δ-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nature Immunol. 5, 638–644 (2004).

    CAS  Google Scholar 

  34. Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18, 675–685 (2003).

    CAS  PubMed  Google Scholar 

  35. Tanigaki, K. et al. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nature Immunol. 3, 443–450 (2002). References 33–35 are genetic loss-of-function studies demonstrating that canonical DLL1-mediated Notch 2 signalling is essential for the generation of MZB cells.

    CAS  Google Scholar 

  36. Oyama, T. et al. Mastermind-1 is required for Notch signal-dependent steps in lymphocyte development in vivo. Proc. Natl Acad. Sci. USA 104, 9764–9769 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, L., Maillard, I., Nakamura, M., Pear, W. S. & Griffin, J. D. The transcriptional coactivator Maml1 is required for Notch2-mediated marginal zone B-cell development. Blood 110, 3618–3623 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Song, R. et al. Mind bomb 1 in the lymphopoietic niches is essential for T and marginal zone B cell development. J. Exp. Med. 205, 2525–2536 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gibb, D. R. et al. ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo. J. Exp. Med. 207, 623–635 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuroda, K. et al. Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity 18, 301–312 (2003).

    CAS  PubMed  Google Scholar 

  41. Tan, J. et al. Lunatic and manic fringe cooperatively enhance marginal zone B cell precursor competition for δ-like 1 in splenic endothelial niches. Immunity 30, 254–263 (2009).

    PubMed  Google Scholar 

  42. Caton, M. L., Smith-Raska, M. R. & Reizis, B. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J. Exp. Med. 204, 1653–1664 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lewis, K. L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780–791 (2011). References 42 and 43 are genetic loss-of function studies that show that RBPJ-mediated Notch 2 signalling controls the homeostasis of subsets of DCs in the spleen and intestine.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Radtke, F. et al. Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells. J. Exp. Med. 191, 1085–1094 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferrero, I. et al. Mouse CD11c+ B220+ Gr1+ plasmacytoid dendritic cells develop independently of the T-cell lineage. Blood 100, 2852–2857 (2002).

    CAS  PubMed  Google Scholar 

  46. Spits, H. & Cupedo, T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30, 647–675 (2012).

    CAS  PubMed  Google Scholar 

  47. Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nature Rev. Immunol. 13, 145–149 (2013).

    CAS  Google Scholar 

  48. Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nature Immunol. 12, 21–27 (2011).

    CAS  Google Scholar 

  49. Cherrier, M., Sawa, S. & Eberl, G. Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J. Exp. Med. 209, 729–740 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    CAS  PubMed  Google Scholar 

  51. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med. 14, 282–289 (2008).

    CAS  PubMed  Google Scholar 

  52. Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    CAS  PubMed  Google Scholar 

  53. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    CAS  PubMed  Google Scholar 

  54. Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nature Immunol. 13, 144–151 (2012). This study showed that the development and/or expansion of NKp46+ ILCs in certain microenvironments is mediated by AHR-induced Notch signalling.

    CAS  Google Scholar 

  55. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wong, S. H. et al. Transcription factor RORα is critical for nuocyte development. Nature Immunol. 13, 229–236 (2012).

    CAS  Google Scholar 

  59. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  60. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 6, 1123–1132 (2005).

    CAS  Google Scholar 

  61. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    CAS  PubMed  Google Scholar 

  62. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Veldhoen, M. et al. Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nature Immunol. 9, 1341–1346 (2008).

    CAS  Google Scholar 

  64. Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3 effector T cells. Nature Immunol. 9, 1347–1355 (2008).

    CAS  Google Scholar 

  65. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. O'Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Oestreich, K. J. & Weinmann, A. S. Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nature Rev. Immunol. 12, 799–804 (2012).

    CAS  Google Scholar 

  69. Amsen, D., Spilianakis, C. & Flavell, R. How are TH1 and TH2 effector cells made? Curr. Opin. Immunol. 21, 153–160 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Radtke, F., Fasnacht, N. & Macdonald, H. R. Notch signaling in the immune system. Immunity 32, 14–27 (2010).

    CAS  PubMed  Google Scholar 

  71. Auderset, F., Coutaz, M. & Tacchini-Cottier, F. The role of Notch in the differentiation of CD4+ T helper cells. Curr. Top. Microbiol. Immunol. 360, 115–134 (2012).

    CAS  PubMed  Google Scholar 

  72. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004). This is the first study demonstrating that the stimulation of different Notch ligands triggers the differentiation of distinct T H cell subsets.

    CAS  PubMed  Google Scholar 

  73. Amsen, D., Antov, A. & Flavell, R. A. The different faces of Notch in T-helper-cell differentiation. Nature Rev. Immunol. 9, 116–124 (2009).

    CAS  Google Scholar 

  74. Minter, L. M. et al. Inhibitors of γ-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nature Immunol. 6, 680–688 (2005).

    CAS  Google Scholar 

  75. Jurynczyk, M., Jurewicz, A., Raine, C. S. & Selmaj, K. Notch3 inhibition in myelin-reactive T cells down-regulates protein kinase C theta and attenuates experimental autoimmune encephalomyelitis. J. Immunol. 180, 2634–2640 (2008).

    CAS  PubMed  Google Scholar 

  76. Fang, T. C. et al. Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity 27, 100–110 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tu, L. et al. Notch signaling is an important regulator of type 2 immunity. J. Exp. Med. 202, 1037–1042 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Auderset, F. et al. Redundant Notch1 and Notch2 signaling is necessary for IFNγ secretion by T helper 1 cells during infection with Leishmania major. PLoS Pathog. 8, e1002560 (2012). This study shows that Notch regulates the function of T H 1 cells but, together with reference 77, it shows that this does not involve RBPJ-dependent Notch signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Palaga, T., Miele, L., Golde, T. E. & Osborne, B. A. TCR-mediated notch signaling regulates proliferation and IFN-γ production in peripheral T cells. J. Immunol. 171, 3019–3024 (2003).

    CAS  PubMed  Google Scholar 

  80. Shin, H. M. et al. Notch1 augments NF-κB activity by facilitating its nuclear retention. EMBO J. 25, 129–138 (2006).

    CAS  PubMed  Google Scholar 

  81. Amsen, D. et al. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27, 89–99 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tanaka, S. et al. The interleukin-4 enhancer CNS-2 is regulated by Notch signals and controls initial expression in NKT cells and memory-type CD4 T cells. Immunity 24, 689–701 (2006).

    CAS  PubMed  Google Scholar 

  83. Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997). Together with reference 76, these studies [Au: Which studies?] show that Notch can regulate GATA3, one of the master regulators of T H 2 cell differentiation.

    CAS  PubMed  Google Scholar 

  84. Elyaman, W. et al. Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells. Immunity 36, 623–634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Becher, B. & Segal, B. M. TH17 cytokines in autoimmune neuro-inflammation. Curr. Opin. Immunol. 23, 707–712 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Campbell, D. J. & Koch, M. A. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nature Rev. Immunol. 11, 119–130 (2011).

    CAS  Google Scholar 

  87. Anastasi, E. et al. Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimmune diabetes. J. Immunol. 171, 4504–4511 (2003).

    CAS  PubMed  Google Scholar 

  88. Campese, A. F. et al. Notch3 and pTα/pre-TCR sustain the in vivo function of naturally occurring regulatory T cells. Int. Immunol. 21, 727–743 (2009).

    CAS  PubMed  Google Scholar 

  89. Barbarulo, A. et al. Notch3 and canonical NF-κB signaling pathways cooperatively regulate Foxp3 transcription. J. Immunol. 186, 6199–6206 (2011).

    CAS  PubMed  Google Scholar 

  90. Kared, H. et al. Jagged2-expressing hematopoietic progenitors promote regulatory T cell expansion in the periphery through notch signaling. Immunity 25, 823–834 (2006). This study reveals that the expression of Jagged 2 on haematopoietic precursor cells promotes the differentiation of T Reg cells in the periphery.

    CAS  PubMed  Google Scholar 

  91. Bassil, R. et al. Notch ligand δ-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development. J. Immunol. 187, 2322–2328 (2011).

    CAS  PubMed  Google Scholar 

  92. Elyaman, W. et al. JAGGED1 and δ1 differentially regulate the outcome of experimental autoimmune encephalomyelitis. J. Immunol. 179, 5990–5998 (2007).

    CAS  PubMed  Google Scholar 

  93. Billiard, F. et al. Dll4-Notch signaling in Flt3-independent dendritic cell development and autoimmunity in mice. J. Exp. Med. 209, 1011–1028 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Rao, P. E., Petrone, A. L. & Ponath, P. D. Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGF-β. J. Immunol. 174, 1446–1455 (2005).

    CAS  PubMed  Google Scholar 

  95. Hoyne, G. F. et al. Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4+ T cells. Int. Immunol. 12, 177–185 (2000).

    CAS  PubMed  Google Scholar 

  96. Vigouroux, S. et al. Induction of antigen-specific regulatory T cells following overexpression of a Notch ligand by human B lymphocytes. J. Virol. 77, 10872–10880 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Asano, N., Watanabe, T., Kitani, A., Fuss, I. J. & Strober, W. Notch1 signaling and regulatory T cell function. J. Immunol. 180, 2796–2804 (2008).

    CAS  PubMed  Google Scholar 

  98. Del Papa, B. et al. Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. Eur. J. Immunol. 43, 182–187 (2012).

    PubMed  Google Scholar 

  99. Haque, R. et al. Programming of regulatory T cells from pluripotent stem cells and prevention of autoimmunity. J. Immunol. 189, 1228–1236 (2012).

    CAS  PubMed  Google Scholar 

  100. Wong, K. et al. Notch ligation by δ1 inhibits peripheral immune responses to transplantation antigens by a CD8+ cell-dependent mechanism. J. Clin. Invest. 112, 1741–1750 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Maekawa, Y. et al. Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nature Immunol. 9, 1140–1147 (2008).

    CAS  Google Scholar 

  102. Riella, L. V. et al. Blockade of Notch ligand δ1 promotes allograft survival by inhibiting alloreactive Th1 cells and cytotoxic T cell generation. J. Immunol. 187, 4629–4638 (2011).

    CAS  PubMed  Google Scholar 

  103. Sugimoto, K. et al. Notch2 signaling is required for potent antitumor immunity in vivo. J. Immunol. 184, 4673–4678 (2010).

    CAS  PubMed  Google Scholar 

  104. Cho, O. H. et al. Notch regulates cytolytic effector function in CD8+ T cells. J. Immunol. 182, 3380–3389 (2009).

    CAS  PubMed  Google Scholar 

  105. Kuijk, L. M. et al. Notch controls generation and function of human effector CD8+ T cells. Blood 121, 2638–2646 (2013).

    CAS  PubMed  Google Scholar 

  106. Welniak, L. A., Blazar, B. R. & Murphy, W. J. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu. Rev. Immunol. 25, 139–170 (2007).

    CAS  PubMed  Google Scholar 

  107. Zhang, Y. et al. Notch signaling is a critical regulator of allogeneic CD4+ T-cell responses mediating graft-versus-host disease. Blood 117, 299–308 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tran, I. T. et al. Blockade of individual Notch ligands and receptors controls graft-versus-host disease. J. Clin. Invest. 123, 1590–1604 (2013). This study shows that blocking Notch signalling in donor T cells significantly reduces GVHD in mouse models of allo-BMT while preserving GVT activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Toubai, T. et al. Ikaros-Notch axis in host hematopoietic cells regulates experimental graft-versus-host disease. Blood 118, 192–204 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Dumortier, A. et al. Notch activation is an early and critical event during T-cell leukemogenesis in Ikaros-deficient mice. Mol. Cell. Biol. 26, 209–220 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gomez-del Arco, P. et al. Alternative promoter usage at the Notch1 locus supports ligand-independent signaling in T cell development and leukemogenesis. Immunity 33, 685–698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wolfe, M. S. γ-secretase inhibitors as molecular probes of presenilin function. J. Mol. Neurosci. 17, 199–204 (2001).

    CAS  PubMed  Google Scholar 

  113. Haltiwanger, R. S. & Stanley, P. Modulation of receptor signaling by glycosylation: fringe is an O-fucose-β1,3-N-acetylglucosaminyltransferase. Biochim. Biophys. Acta 1573, 328–335 (2002).

    CAS  PubMed  Google Scholar 

  114. Bruckner, K., Perez, L., Clausen, H. & Cohen, S. Glycosyltransferase activity of Fringe modulates Notch-δ interactions. Nature 406, 411–415 (2000).

    CAS  PubMed  Google Scholar 

  115. Yang, L. T. et al. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by δ1 and Jagged1. Mol. Biol. Cell 16, 927–942 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Besseyrias, V. et al. Hierarchy of Notch-δ interactions promoting T cell lineage commitment and maturation. J. Exp. Med. 204, 331–343 (2007).

    PubMed  PubMed Central  Google Scholar 

  117. Baxter, A. G. The origin and application of experimental autoimmune encephalomyelitis. Nature Rev. Immunol. 7, 904–912 (2007).

    CAS  Google Scholar 

  118. Takeichi, N. et al. Ameliorating effects of anti-Dll4 mAb on Theiler's murine encephalomyelitis virus-induced demyelinating disease. Int. Immunol. 22, 729–738 (2010).

    CAS  PubMed  Google Scholar 

  119. Reynolds, N. D., Lukacs, N. W., Long, N. & Karpus, W. J. δ-like ligand 4 regulates central nervous system T cell accumulation during experimental autoimmune encephalomyelitis. J. Immunol. 187, 2803–2813 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the authors' laboratory is supported in part by the Swiss National Science foundation, the Swiss Cancer League and OptiStem.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Freddy Radtke, H. Robson MacDonald or Fabienne Tacchini-Cottier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

RBPJ transcriptional mediator complex

This is the assembly of proteins including RBPJ (known as CSL in humans), the Notch intracellular domain (NICD) and transcriptional co-activators such as Mastermind-like proteins (MAMLs), histone acetyltransferases and the mediator complex in order to generate an active transcriptional complex on target promoters.

β-selection

During development, immature double-negative 3 thymocytes have to pass a critical checkpoint known as β-selection, or the pre-T cell receptor (pre-TCR) checkpoint, at which they have to signal via the pre-TCR to continue their development.

Pre-T cell receptor

(Pre-TCR). The pre-TCR consists of a productively re-arranged TCRβ chain associated with CD3 components and an invariant pre-TCRα chain.

Invariant natural killer T cells

These are a specialized subset of innate-like lymphocytes that share properties of both natural killer (NK) cells and T cells. They express NK-related molecules and T cell receptors (TCRs), and their TCRs recognize self and foreign lipids presented on CD1d molecules.

γ-secretase inhibitors

These are small-molecule inhibitors that block the S3 cleavage of Notch receptors, thereby inhibiting the liberation of the Notch intracellular domain (NICD) and the activation of the Notch signalling cascade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radtke, F., MacDonald, H. & Tacchini-Cottier, F. Regulation of innate and adaptive immunity by Notch. Nat Rev Immunol 13, 427–437 (2013). https://doi.org/10.1038/nri3445

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing