Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of complement in the early immune response to transplantation

Key Points

  • The complement system is primarily a host defence mechanism, but it causes injury to tissue cells through the formation of the membrane attack complex (C5b–C9), which leads to cell lysis and cell death, and through the stimulation of inflammation and antigen-specific immunity.

  • A central pool of circulating complement components (mainly produced by hepatic cells) is distinct from a peripheral pool of extracellular complement secreted by various tissue-resident cells and migratory leukocytes.

  • In most vital organs, ischaemia–reperfusion injury is mediated by complement components C5a and C5b–C9 and, as shown in a mouse kidney transplant model, this is strongly dependent on tissue-mediated production of C3.

  • The lectin pathway of complement activation is a common trigger of ischaemia–reperfusion injury in several organ models (initiated either by direct binding of the lectin to ischaemic tissue or via natural IgM), and the alternative pathway may significantly increase the deposition of complement at the site of activation.

  • Effective priming of CD4+ T cells that mediate graft rejection requires C3a and C5a, which are produced by dendritic cells and stimulate the presentation of alloantigens and the differentiation of naive CD4+ T helper (TH) cells to TH1 cells.

  • The reactivity of antigen-primed CD4+ and CD8+ T cells against donor cells is enhanced by the peripheral synthesis of complement and the generation of the effectors C3a, C3b and C5a.

  • Antibody-mediated rejection requires complement (specifically C3) not only for the efficient priming of B cells against alloantigens but also for the induction of inflammation and thrombosis (by C5a and C5b–C9) at the site of antibody binding in the graft.

  • Emerging therapeutic approaches include targeting the donor organ with complement regulators to prevent stress-induced injury and sensitization of the recipient, and treatment of the recipient to prevent complement-mediated vascular injury during antibody-mediated rejection and the recurrence of haemolytic–uraemic syndrome.

  • Imaging ligands that can be used to detect and quantify tissue-bound C3 at the site of tissue injury, as well as biomarkers that predict or associate with complement-mediated damage to the transplant, are allowing the significance of these findings to be addressed in humans.

Abstract

The complement system is a key element of the innate immune system, and the production of complement components can be divided into central (hepatic) and peripheral compartments. Essential complement components such as C3 are produced in both of these compartments, but until recently the functional relevance of the peripheral synthesis of complement was unclear. Here, we review recent findings showing that local peripheral synthesis of complement in a transplanted organ is required for the immediate response of the donor organ to tissue stress and for priming alloreactive T cells that can mediate transplant rejection. We also discuss recent insights into the role of complement in antibody-mediated rejection, and we examine how new treatment strategies that take into account the separation of central and peripheral production of complement are expected to make a difference to transplant outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The complement cascade and its control.
Figure 2: A model for the epithelial cell response to tissue stress.
Figure 3: Influence of complement on alloantigen presentation.
Figure 4: A proposed model by which the alloantibody response is modified by complement.
Figure 5: A toolkit for exploring the therapeutic and diagnostic potential of C3.

Similar content being viewed by others

References

  1. Farrar, C. A., Zhou, W., Lin, T. & Sacks, S. H. Local extravascular pool of C3 is a determinant of postischemic acute renal failure. FASEB J. 20, 217–226 (2006). This paper demonstrated that local synthesis of C3 is essential for post-transplant reperfusion injury in a renal isograft model and that the contribution of this local production depends on the length of cold ischaemic time.

    Article  CAS  PubMed  Google Scholar 

  2. Pratt, J. R., Basheer, S. A. & Sacks, S. H. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nature Med. 8, 582–587 (2002). This study demonstrated that intra-organ complement synthesis can contribute to allograft rejection by enhancing anti-donor T cell responses.

    Article  CAS  PubMed  Google Scholar 

  3. Dorling, A. Transplant accommodation — are the lessons learned from xenotransplantation pertinent for clinical allotransplantation? Am. J. Transplant. 12, 545–553 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Ekser, B., Gridelli, B., Veroux, M. & Cooper, D. K. Clinical pig liver xenotransplantation: how far do we have to go? Xenotransplantation 18, 158–167 (2011).

    Article  PubMed  Google Scholar 

  5. Zhou, W., Medof, M. E., Heeger, P. S. & Sacks, S. Graft-derived complement as a mediator of transplant injury. Curr. Opin. Immunol. 19, 569–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, W. et al. Macrophages from C3-deficient mice have impaired potency to stimulate alloreactive T cells. Blood 107, 2461–2469 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Peng, Q. et al. Local production and activation of complement up-regulates the allostimulatory function of dendritic cells through C3a–C3aR interaction. Blood 111, 2452–2461 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Peng, Q. et al. Dendritic cell function in allostimulation is modulated by C5aR signaling. J. Immunol. 183, 6058–6068 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Li, K. et al. Functional modulation of human monocytes derived DCs by anaphylatoxins C3a and C5a. Immunobiology 217, 65–73 (2012). References 7–9 show that C3aR or C5aR signalling on bone marrow-derived DCs or monocyte-derived DCs causes cell activation and subsequently enhances the capacity of DCs for allospecific T cell stimulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strainic, M. G. et al. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28, 425–435 (2008). This paper demonstrated that the interaction of locally produced C5a or C3a with C5aR or C3aR on APCs and T cells both upstream and downstream of CD28 and CD40L signalling is integrally involved in T cell proliferation and differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colvin, R. B. Antibody-mediated renal allograft rejection: diagnosis and pathogenesis. J. Am. Soc. Nephrol. 18, 1046–1056 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Shoskes, D. A. & Cecka, J. M. Deleterious effects of delayed graft function in cadaveric renal transplant recipients independent of acute rejection. Transplantation 66, 1697–1701 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Weisman, H. F. et al. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249, 146–151 (1990). A landmark paper showing that therapeutic inhibition of complement activation using a recombinant complement regulator markedly protects rats from myocardial ischaemia–reperfusion injury.

    Article  CAS  PubMed  Google Scholar 

  14. Eppinger, M. J., Deeb, G. M., Bolling, S. F. & Ward, P. A. Mediators of ischemia–reperfusion injury of rat lung. Am. J. Pathol. 150, 1773–1784 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Atkinson, C. et al. Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection. J. Clin. Invest. 115, 2444–2453 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, J. et al. The protective role of CD59 and pathogenic role of complement in hepatic ischemia and reperfusion injury. Am. J. Pathol. 179, 2876–2884 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. von Dobschuetz, E. et al. Soluble complement receptor 1 preserves endothelial barrier function and microcirculation in postischemic pancreatitis in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G791–G796 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, W. et al. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J. Clin. Invest. 105, 1363–1371 (2000). This paper demonstrated that complement activation is a crucial mediator of renal ischaemia–reperfusion injury in mice, and that the activation of the alternative pathway and the formation of C5b–C9 complexes on renal tubular epithelial cells represent an important underlying mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fondevila, C. et al. The membrane attack complex (C5b-9) in liver cold ischemia and reperfusion injury. Liver Transpl. 14, 1133–1141 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Turnberg, D. et al. CD59a deficiency exacerbates ischemia–reperfusion injury in mice. Am. J. Pathol. 165, 825–832 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Vries, B. et al. Complement factor C5a mediates renal ischemia–reperfusion injury independent from neutrophils. J. Immunol. 170, 3883–3889 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Lewis, A. G., Köhl, G., Ma, Q., Devarajan, P. & Köhl, J. Pharmacological targeting of C5a receptors during organ preservation improves kidney graft survival. Clin. Exp. Immunol. 153, 117–126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Busche, M. N. & Stahl, G. L. Role of the complement components C5 and C3a in a mouse model of myocardial ischemia and reperfusion injury. Ger. Med. Sci. 8, Doc20 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Fosbrink, M., Niculescu, F., Rus, V., Shin, M. L. & Rus, H. C5b-9-induced endothelial cell proliferation and migration are dependent on Akt inactivation of forkhead transcription factor FOXO1. J. Biol. Chem. 281, 19009–19018 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Tedesco, F. et al. The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J. Exp. Med. 185, 1619–1627 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Biancone, L. et al. Alternative pathway activation of complement by cultured human proximal tubular epithelial cells. Kidney Int. 45, 451–460 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. David, S. et al. Alternative pathway complement activation induces proinflammatory activity in human proximal tubular epithelial cells. Nephrol. Dial. Transplant. 12, 51–56 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Qiu, W. et al. Sublytic C5b-9 complexes induce proliferative changes of glomerular mesangial cells in rat Thy-1 nephritis through TRAF6-mediated PI3K-dependent Akt1 activation. J. Pathol. 226, 619–632 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Williams, J. P. et al. Intestinal reperfusion injury is mediated by IgM and complement. J. Appl. Physiol. 86, 938–942 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Naesens, M. et al. Expression of complement components differs between kidney allografts from living and deceased donors. J. Am. Soc. Nephrol. 20, 1839–1851 (2009). This clinical study demonstrated that the expression of C3 and other complement molecules is markedly increased in kidneys from deceased donors before reperfusion. This local complement expression correlates significantly with the length of cold ischaemic injury and with renal allograft function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thurman, J. M. et al. Altered renal tubular expression of the complement inhibitor Crry permits complement activation after ischemia/reperfusion. J. Clin. Invest. 116, 357–368 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Damman, J. et al. Local renal complement C3 induction by donor brain death is associated with reduced renal allograft function after transplantation. Nephrol. Dial. Transplant. 26, 2345–2354 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Brooimans, R. A. et al. Interleukin 2 mediates stimulation of complement C3 biosynthesis in human proximal tubular epithelial cells. J. Clin. Invest. 88, 379–384 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gerritsma, J. S., Gerritsen, A. F., De, L. M., van Es, L. A. & Daha, M. R. Interferon-γ induces biosynthesis of complement components C2, C4 and factor H by human proximal tubular epithelial cells. Cytokine 9, 276–283 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Busche, M. N., Pavlov, V., Takahashi, K. & Stahl, G. L. Myocardial ischemia and reperfusion injury is dependent on both IgM and mannose-binding lectin. Am. J. Physiol. Heart Circ. Physiol. 297, H1853–H1859 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hart, M. L. et al. Gastrointestinal ischemia–reperfusion injury is lectin complement pathway dependent without involving C1q. J. Immunol. 174, 6373–6380 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Moller-Kristensen, M. et al. Mannan-binding lectin recognizes structures on ischaemic reperfused mouse kidneys and is implicated in tissue injury. Scand. J. Immunol. 61, 426–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Schwaeble, W. J. et al. Targeting of mannan-binding lectin-associated serine protease-2 confers protection from myocardial and gastrointestinal ischemia/reperfusion injury. Proc. Natl Acad. Sci. USA 108, 7523–7528 (2011). This study identified a previously unrecognized C4-independent, MASP2-dependent route of complement activation, demonstrating a pivotal role for the lectin pathway in mediating cardiac and intestinal ischaemia–reperfusion injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. de Vries, B. et al. The mannose-binding lectin-pathway is involved in complement activation in the course of renal ischemia–reperfusion injury. Am. J. Pathol. 165, 1677–1688 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weiser, M. R. et al. Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J. Exp. Med. 183, 2343–2348 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Williams, J. P. et al. Intestinal reperfusion injury is mediated by IgM and complement. J. Appl. Physiol. 86, 938–942 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, M. et al. The role of natural IgM in myocardial ischemia–reperfusion injury. J. Mol. Cell. Cardiol. 41, 62–67 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Fleming, S. D. et al. Anti-phospholipid antibodies restore mesenteric ischemia/reperfusion-induced injury in complement receptor 2/complement receptor 1-deficient mice. J. Immunol. 173, 7055–7061 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Thurman, J. M., Ljubanovic, D., Edelstein, C. L., Gilkeson, G. S. & Holers, V. M. Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. J. Immunol. 170, 1517–1523 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Baldwin, W. M. et al. Complement deposition in early cardiac transplant biopsies is associated with ischemic injury and subsequent rejection episodes. Transplantation 68, 894–900 (1999).

    Article  PubMed  Google Scholar 

  46. Khan, M. A. et al. CD4+ T cells and complement independently mediate graft ischemia in the rejection of mouse orthotopic tracheal transplants. Circ. Res. 109, 1290–1301 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Damman, J. et al. Systemic complement activation in deceased donors is associated with acute rejection after renal transplantation in the recipient. Transplantation 92, 163–169 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Muller, T. F., Kraus, M., Neumann, C. & Lange, H. Detection of renal allograft rejection by complement components C5A and TCC in plasma and urine. J. Lab. Clin. Med. 129, 62–71 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Welch, T. R., Beischel, L. S. & Witte, D. P. Differential expression of complement C3 and C4 in the human kidney. J. Clin. Invest. 92, 1451–1458 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Andrews, P. A., Finn, J. E., Mathieson, P. W. & Sacks, S. H. Molecular analysis of C3 allotypes related to transplant outcome in human renal allografts. Transplantation 60, 1342–1346 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Tang, S., Zhou, W., Sheerin, N. S., Vaughan, R. W. & Sacks, S. H. Contribution of renal secreted complement C3 to the circulating pool in humans. J. Immunol. 162, 4336–4341 (1999).

    CAS  PubMed  Google Scholar 

  52. Keslar, K., Rodriguez, E. R., Tan, C. D., Starling, R. C. & Heeger, P. S. Complement gene expression in human cardiac allograft biopsies as a correlate of histologic grade of injury. Transplantation 86, 1319–1321 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Andrews, P. A. et al. Expression and tissue localization of donor-specific complement C3 synthesized in human renal allografts. Eur. J. Immunol. 25, 1087–1093 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Naughton, M. A. et al. Extrahepatic secreted complement C3 contributes to circulating C3 levels in humans. J. Immunol. 156, 3051–3056 (1996).

    CAS  PubMed  Google Scholar 

  55. Pavlov, V. et al. Donor deficiency of decay-accelerating factor accelerates murine T cell-mediated cardiac allograft rejection. J. Immunol. 181, 4580–4589 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Vieyra, M. et al. Complement regulates CD4 T-cell help to CD8 T cells required for murine allograft rejection. Am. J. Pathol. 179, 766–774 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Raedler, H., Yang, M., Lalli, P. N., Medof, M. E. & Heeger, P. S. Primed CD8+ T-cell responses to allogeneic endothelial cells are controlled by local complement activation. Am. J. Transplant. 9, 1784–1795 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Peng, Q., Li, K., Patel, H., Sacks, S. H. & Zhou, W. Dendritic cell synthesis of C3 is required for full T cell activation and development of a Th1 phenotype. J. Immunol. 176, 3330–3341 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Li, K. et al. Cyclic AMP plays a critical role in C3a-receptor-mediated regulation of dendritic cells in antigen uptake and T-cell stimulation. Blood 112, 5084–5094 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Lalli, P. N. et al. Locally produced C5a binds to T cell-expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis. Blood 112, 1759–1766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, K. et al. Expression of complement components, receptors and regulators by human dendritic cells. Mol. Immunol. 48, 1121–1127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, Q. et al. Deficiency of C5aR prolongs renal allograft survival. J. Am. Soc. Nephrol. 21, 1344–1353 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li, K. et al. Complement activation regulates the capacity of proximal tubular epithelial cell to stimulate alloreactive T cell response. J. Am. Soc. Nephrol. 15, 2414–2422 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Marsh, J. E. et al. The allogeneic T and B cell response is strongly dependent on complement components C3 and C4. Transplantation 72, 1310–1318 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Pepys, M. B. Role of complement in induction of antibody production in vivo. Effect of cobra factor and other C3-reactive agents on thymus-dependent and thymus-independent antibody responses. J. Exp. Med. 140, 126–145 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fang, Y., Xu, C., Fu, Y. X., Holers, V. M. & Molina, H. Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response. J. Immunol. 160, 5273–5279 (1998).

    CAS  PubMed  Google Scholar 

  67. Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C. & Fearon, D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Carroll, M. C. The complement system in regulation of adaptive immunity. Nature Immunol. 5, 981–986 (2004).

    Article  CAS  Google Scholar 

  69. Verschoor, A., Brockman, M. A., Knipe, D. M. & Carroll, M. C. Cutting edge: myeloid complement C3 enhances the humoral response to peripheral viral infection. J. Immunol. 167, 2446–2451 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Verschoor, A., Brockman, M. A., Gadjeva, M., Knipe, D. M. & Carroll, M. C. Myeloid C3 determines induction of humoral responses to peripheral herpes simplex virus infection. J. Immunol. 171, 5363–5371 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Solez, K. et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am. J. Transplant. 8, 753–760 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Park, W. D. et al. Accommodation in ABO-incompatible kidney allografts, a novel mechanism of self-protection against antibody-mediated injury. Am. J. Transplant. 3, 952–960 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Tan, C. D. et al. Correlation of donor-specific antibodies, complement and its regulators with graft dysfunction in cardiac antibody-mediated rejection. Am. J. Transplant. 9, 2075–2084 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Gonzalez-Stawinski, G. V., Tan, C. D., Smedira, N. G., Starling, R. C. & Rodriguez, E. R. Decay-accelerating factor expression may provide immunoprotection against antibody-mediated cardiac allograft rejection. J. Heart Lung Transplant. 27, 357–361 (2008).

    Article  PubMed  Google Scholar 

  75. Griesemer, A. D. et al. Upregulation of CD59: potential mechanism of accommodation in a large animal model. Transplantation 87, 1308–1317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ding, J. W. et al. Expression of complement regulatory proteins in accommodated xenografts induced by anti-α-Gal IgG1 in a rat-to-mouse model. Am. J. Transplant. 8, 32–40 (2008).

    CAS  PubMed  Google Scholar 

  77. Salama, A. D. et al. Transplant accommodation in highly sensitized patients: a potential role for Bcl-xL and alloantibody. Am. J. Transplant. 1, 260–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Kinderlerer, A. R. et al. Heme oxygenase-1 expression enhances vascular endothelial resistance to complement-mediated injury through induction of decay-accelerating factor: a role for increased bilirubin and ferritin. Blood 113, 1598–1607 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Ekser, B. et al. Clinical xenotransplantation: the next medical revolution? Lancet 379, 672–683 (2012).

    Article  PubMed  Google Scholar 

  80. Markiewski, M. M., Nilsson, B., Ekdahl, K. N., Mollnes, T. E. & Lambris, J. D. Complement and coagulation: strangers or partners in crime? Trends Immunol. 28, 184–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Krarup, A., Wallis, R., Presanis, J. S., Gal, P. & Sim, R. B. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS ONE 2, e623 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Amara, U. et al. Molecular intercommunication between the complement and coagulation systems. J. Immunol. 185, 5628–5636 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Lewis, E. C. et al. α1-Antitrypsin monotherapy induces immune tolerance during islet allograft transplantation in mice. Proc. Natl Acad. Sci. USA 105, 16236–16241 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng, X. et al. Preventing renal ischemia–reperfusion injury using small interfering RNA by targeting complement 3 gene. Am. J. Transplant. 6, 2099–2108 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Zheng, X. et al. Gene silencing of complement C5a receptor using siRNA for preventing ischemia/reperfusion injury. Am. J. Pathol. 173, 973–980 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Smith, R. A. Targeting anticomplement agents. Biochem. Soc. Trans. 30, 1037–1041 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Patel, H., Smith, R. A., Sacks, S. H. & Zhou, W. Therapeutic strategy with a membrane-localizing complement regulator to increase the number of usable donor organs after prolonged cold storage. J. Am. Soc. Nephrol. 17, 1102–1111 (2006). This study provided the proof-of-concept for a new strategy that increases the number of surviving post-ischaemic grafts through intragraft delivery of a membrane-localizing complement regulator.

    Article  CAS  PubMed  Google Scholar 

  88. Pratt, J. R. et al. Nontransgenic hyperexpression of a complement regulator in donor kidney modulates transplant ischemia/reperfusion damage, acute rejection, and chronic nephropathy. Am. J. Pathol. 163, 1457–1465 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Smith, R. A. G. et al. Membrane-localising complement inhibitors — clinical progress. Mol. Immunol. 44, 3915 (2007).

    Article  Google Scholar 

  90. Hillmen, P. et al. Effect of the complement inhibitor eculizumab on thromboembolism in patients with paroxysmal nocturnal hemoglobinuria. Blood 110, 4123–4128 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Stegall, M. D. et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am. J. Transplant. 11, 2405–2413 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Locke, J. E. et al. The use of antibody to complement protein C5 for salvage treatment of severe antibody-mediated rejection. Am. J. Transplant. 9, 231–235 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Al-Akash, S. I., Almond, P. S., Savell, V. H. Jr, Gharaybeh, S. I. & Hogue, C. Eculizumab induces long-term remission in recurrent post-transplant HUS associated with C3 gene mutation. Pediatr. Nephrol. 26, 613–619 (2011).

    Article  PubMed  Google Scholar 

  94. Caprioli, J. et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood 108, 1267–1279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bresin, E. et al. Outcome of renal transplantation in patients with non-Shiga toxin-associated hemolytic uremic syndrome: prognostic significance of genetic background. Clin. J. Am. Soc. Nephrol. 1, 88–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Nurnberger, J. et al. Eculizumab for atypical hemolytic-uremic syndrome. N. Engl. J. Med. 360, 542–544 (2009).

    Article  PubMed  Google Scholar 

  97. Chatelet, V. et al. Eculizumab: safety and efficacy after 17 months of treatment in a renal transplant patient with recurrent atypical hemolytic-uremic syndrome: case report. Transplant. Proc. 42, 4353–4355 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Davin, J. C. et al. Maintenance of kidney function following treatment with eculizumab and discontinuation of plasma exchange after a third kidney transplant for atypical hemolytic uremic syndrome associated with a CFH mutation. Am. J. Kidney Dis. 55, 708–711 (2010).

    Article  PubMed  Google Scholar 

  99. Cheong, H. I. et al. Attempted treatment of factor H deficiency by liver transplantation. Pediatr. Nephrol. 19, 454–458 (2004).

    Article  PubMed  Google Scholar 

  100. Atkinson, C. et al. Targeted complement inhibitors protect against posttransplant cardiac ischemia and reperfusion injury and reveal an important role for the alternative pathway of complement activation. J. Immunol. 185, 7007–7013 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Brown, K. M. et al. Influence of donor C3 allotype on late renal-transplantation outcome. N. Engl. J. Med. 354, 2014–2023 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Varagunam, M., Yaqoob, M. M., Dohler, B. & Opelz, G. C3 polymorphisms and allograft outcome in renal transplantation. N. Engl. J. Med. 360, 874–880 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Damman, J. et al. Association of complement C3 gene variants with renal transplant outcome of deceased cardiac dead donor kidneys. Am. J. Transplant. 12, 660–668 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Wahrmann, M. et al. Clinical relevance of preformed C4d-fixing and non-C4d-fixing HLA single antigen reactivity in renal allograft recipients. Transpl. Int. 22, 982–989 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. de Rooij, B. J. et al. Lectin complement pathway gene profile of donor and recipient determine the risk of bacterial infections after orthotopic liver transplantation. Hepatology 52, 1100–1110 (2010).

    Article  PubMed  Google Scholar 

  106. de Rooij, B. J. et al. Mannose-binding lectin and ficolin-2 gene polymorphisms predispose to cytomegalovirus (re)infection after orthotopic liver transplantation. J. Hepatol. 55, 800–807 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Berger, S. P. et al. Low pretransplantation mannose-binding lectin levels predict superior patient and graft survival after simultaneous pancreas–kidney transplantation. J. Am. Soc. Nephrol. 18, 2416–2422 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Sargsyan, S. A. et al. Detection of glomerular complement C3 fragments by magnetic resonance imaging in murine lupus nephritis. Kidney Int. 81, 152–159 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Badar, A. et al. Recombinant complement receptor 2 radiolabeled with [99mTc(CO)3]+: a potential new radiopharmaceutical for imaging activated complement. PLoS ONE 6, e18275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Springall, T. et al. Epithelial secretion of C3 promotes colonization of the upper urinary tract by Escherichia coli. Nature Med. 7, 801–806 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Li, K., Feito, M. J., Sacks, S. H. & Sheerin, N. S. CD46 (membrane cofactor protein) acts as a human epithelial cell receptor for internalization of opsonized uropathogenic Escherichia coli. J. Immunol. 177, 2543–2551 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Lambris, J. D., Ricklin, D. & Geisbrecht, B. V. Complement evasion by human pathogens. Nature Rev. Microbiol. 6, 132–142 (2008).

    Article  CAS  Google Scholar 

  113. Monk, N. J. et al. Fc-dependent depletion of activated T cells occurs through CD40L-specific antibody rather than costimulation blockade. Nature Med. 9, 1275–1280 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Baruah, P. et al. Mice lacking C1q or C3 show accelerated rejection of minor H disparate skin grafts and resistance to induction of tolerance. Eur. J. Immunol. 40, 1758–1767 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ezzelarab, M., Ayares, D. & Cooper, D. K. Carbohydrates in xenotransplantation. Immunol. Cell Biol. 83, 396–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Pruitt, S. K. et al. The effect of soluble complement receptor type 1 on hyperacute rejection of porcine xenografts. Transplantation 57, 363–370 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Houser, S. L. et al. Thrombotic microangiopathy and graft arteriopathy in pig hearts following transplantation into baboons. Xenotransplantation 11, 416–425 (2004).

    Article  PubMed  Google Scholar 

  118. Kuwaki, K. et al. Heart transplantation in baboons using α1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nature Med. 11, 29–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Cooper, D. K., Tseng, Y. L. & Saidman, S. L. Alloantibody and xenoantibody cross-reactivity in transplantation. Transplantation 77, 1–5 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. McGregor, C. G. et al. Human CD55 expression blocks hyperacute rejection and restricts complement activation in Gal knockout cardiac xenografts. Transplantation 93, 686–692 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ekser, B., Rigotti, P., Gridelli, B. & Cooper, D. K. Xenotransplantation of solid organs in the pig-to-primate model. Transpl. Immunol. 21, 87–92 (2009).

    Article  PubMed  Google Scholar 

  122. Diamond, L. E. et al. A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation 71, 132–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Menoret, S. et al. Characterization of human CD55 and CD59 transgenic pigs and kidney xenotransplantation in the pig-to-baboon combination. Transplantation 77, 1468–1471 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Morgan, B. P., Berg, C. W. & Harris, C. L. “Homologous restriction” in complement lysis: roles of membrane complement regulators. Xenotransplantation 12, 258–265 (2005).

    Article  PubMed  Google Scholar 

  125. Yang, Y. G. & Sykes, M. Xenotransplantation: current status and a perspective on the future. Nature Rev. Immunol. 7, 519–531 (2007).

    Article  CAS  Google Scholar 

  126. Kemper, C. et al. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421, 388–392 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Cardone, J. et al. Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nature Immunol. 11, 862–871 (2010).

    Article  CAS  Google Scholar 

  128. Ghannam, A. et al. Human C3 deficiency associated with impairments in dendritic cell differentiation, memory B cells, and regulatory T cells. J. Immunol. 181, 5158–5166 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council (grant numbers G0600698 and G1001197). The research was also funded and supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas's NHS Foundation Trust and King's College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven H. Sacks.

Ethics declarations

Competing interests

Steven H. Sacks received a contribution from Alexion Pharmaceuticals to organize a national meeting of Complement UK in 2010. King's College London owns the intellectual property for mirococept.

Supplementary information

Supplementary information S1 (table)

Potential sources of complement during transplantation (and in some other non-transplanted tissues) (PDF 140 kb)

Related links

Related links

FURTHER INFORMATION

Steven H. Sacks's homepage

Wuding Zhou's homepage

Glossary

Complement cascade

There are three independent pathways that can lead to the activation of the complement cascade. The classical pathway is activated via C1q binding to immune complexes, the alternative pathway is triggered by direct C3 activation, and the lectin pathway is initiated by mannose-binding lectin (MBL) binding to the surface of microorganisms and other activating surfaces.

Xenotransplantation

The transplantation of organs, tissues or cells from one species to another.

Allotransplantation

The transplantation of organs, tissues or cells from a donor to a genetically non-identical recipient of the same species.

Ischaemia–reperfusion injury

An injury in which the tissue first suffers from hypoxia as a result of severely decreased, or completely arrested, blood flow. Restoration of normal blood flow then triggers inflammation, which exacerbates the tissue damage.

Mannose-binding lectin

(MBL). A protein of the C-type lectin family that binds to carbohydrate structures such as mannose on the surface of many pathogens and other activating surfaces and triggers complement activation. It is composed of a number of identical subunits and is found as a complex in association with several serine protease molecules.

Major histocompatibility antigens

Highly polymorphic cell-surface glycoproteins (termed MHC molecules) that characterize different members of the same species and underlie the rapid rejection of organ, cell or tissue transplants between those individuals.

Minor histocompatibility antigens

Polymorphic peptides that are expressed by the donor tissue and recognized by recipient T cells, even when a transplant donor and recipient have identical major histocompatibility antigens. The amino acid differences in minor antigens can cause the graft to be slowly rejected. An example is the male H-Y antigen, which is recognized by a female recipient of the same mouse stain.

Minor histocompatibility antigen H-Y

H-Y is a protein encoded on the Y chromosome. T cells from females respond to peptides derived from this protein, and so H-Y is a male-specific minor histocompatibility antigen. Furthermore, T cell receptors (TCRs) specific for this antigen have been cloned and used to generate distinct lines of TCR-transgenic mice.

Small interfering RNAs

(siRNAs). Short (21-base-pair) double-stranded RNA fragments that can direct RNA-degradative machinery to homologous endogenous RNA sequences when introduced into cells, thereby inhibiting the expression of the targeted genes.

Paroxysmal nocturnal haemoglobinuria

An acquired defect of the membrane-expressed regulators of complement activation CD55 and CD59 that leads to intermittent complement-induced intravascular haemolysis, haemoglobin in the urine and thrombosis.

Haemolytic–uraemic syndrome

A combination of haemolytic anaemia, acute renal failure and thrombocytopenia that typically follows a gastrointestinal infection with the Escherichia coli strain O157:H7. In atypical cases, this syndrome is caused by a defect in complement regulation by a complement-regulatory protein (namely, CD46, factor H or factor I).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacks, S., Zhou, W. The role of complement in the early immune response to transplantation. Nat Rev Immunol 12, 431–442 (2012). https://doi.org/10.1038/nri3225

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing