Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Targeting natural killer cells and natural killer T cells in cancer

Key Points

  • Natural killer (NK) and natural killer T (NKT) cells are subsets of lymphocytes that share some phenotypical and functional similarities.

  • NK and NKT cells can rapidly respond to the presence of tumour cells and participate in antitumour immune responses.

  • Innovative anticancer therapies that are based on the manipulation of NK cells include allogeneic haematopoietic stem cell transplantation, infusion of NK cells and monoclonal antibody-based treatments.

  • The combined transfer of invariant NKT cells and α-galactosylceramide-pulsed dendritic cells induces substantial antitumour immunity in patients.

Abstract

Natural killer (NK) cells and natural killer T (NKT) cells are subsets of lymphocytes that share some phenotypical and functional similarities. Both cell types can rapidly respond to the presence of tumour cells and participate in antitumour immune responses. This has prompted interest in the development of innovative cancer therapies that are based on the manipulation of NK and NKT cells. Recent studies have highlighted how the immune reactivity of NK and NKT cells is shaped by the environment in which they develop. The rational use of these cells in cancer immunotherapies awaits a better understanding of their effector functions, migratory patterns and survival properties in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recognition of tumour cells by NK cells.
Figure 2: Cancer therapies targeting NK cells.
Figure 3: Antitumour activities of iNKT cells.
Figure 4: Targeting iNKT cells for cancer therapy.

References

  1. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  PubMed  Google Scholar 

  2. Beutler, B. Innate immunity: an overview. Mol. Immunol. 40, 845–859 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001).

    Article  CAS  Google Scholar 

  4. Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nature Immunol. 12, 21–27 (2011).

    Article  CAS  Google Scholar 

  5. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oldham, R. K. & Herberman, R. B. Evaluation of cell-mediated cytotoxic reactivity against tumor associated antigens with 125I-iododeoxyuridine labeled target cells. J. Immunol. 111, 862–871 (1973).

    CAS  PubMed  Google Scholar 

  7. Herberman, R. B., Nunn, M. E. & Lavrin, D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int. J. Cancer 16, 216–229 (1975).

    Article  CAS  PubMed  Google Scholar 

  8. Kiessling, R., Klein, E. & Wigzell, H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5, 112–117 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Smyth, M. J., Hayakawa, Y., Takeda, K. & Yagita, H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nature Rev. Cancer 2, 850–861 (2002).

    Article  CAS  Google Scholar 

  10. Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Orange, J. S. & Ballas, Z. K. Natural killer cells in human health and disease. Clin. Immunol. 118, 1–10 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Imai, K., Matsuyama, S., Miyake, S., Suga, K. & Nakachi, K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356, 1795–1799 (2000). One of the very few epidemiological studies to suggest a role for NK cells in the control of tumours in humans.

    Article  CAS  PubMed  Google Scholar 

  13. Carrega, P. et al. Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56brightCD16 cells and display an impaired capability to kill tumor cells. Cancer 112, 863–875 (2008).

    Article  PubMed  Google Scholar 

  14. Platonova, S. et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 71, 5412–5422 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Eckl, J. et al. Transcript signature predicts tissue NK cell content and defines renal cell carcinoma subgroups independent of TNM staging. J. Mol. Med. 90, 55–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Halama, N. et al. Natural killer cells are scarce in colorectal carcinoma tissue despite high levels of chemokines and cytokines. Clin. Cancer Res. 17, 678–689 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Menard, C. et al. Natural killer cell IFN-γ levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res. 69, 3563–3569 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nature Rev. Immunol. 2, 557–568 (2002).

    Article  CAS  Google Scholar 

  19. Tilloy, F. et al. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted α/β T cell subpopulation in mammals. J. Exp. Med. 189, 1907–1921 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NK T cell lineage. Science 296, 553–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Gapin, L., Matsuda, J. L., Surh, C. D. & Kronenberg, M. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nature Immunol. 2, 971–978 (2001).

    Article  CAS  Google Scholar 

  22. Egawa, T. et al. Genetic evidence supporting selection of the Vα14i NKT cell lineage from double-positive thymocyte precursors. Immunity 22, 705–716 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Porcelli, S., Yockey, C. E., Brenner, M. B. & Balk, S. P. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD48 α/β T cells demonstrates preferential use of several Vβ genes and an invariant TCR α chain. J. Exp. Med. 178, 1–16 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Schumann, J., Voyle, R. B., Wei, B. Y. & MacDonald, H. R. Cutting edge: influence of the TCR Vβ domain on the avidity of CD1d:α-galactosylceramide binding by invariant Vα14 NKT cells. J. Immunol. 170, 5815–5819 (2003).

    Article  PubMed  Google Scholar 

  26. Wei, D. G., Curran, S. A., Savage, P. B., Teyton, L. & Bendelac, A. Mechanisms imposing the Vβ bias of Vα14 natural killer T cells and consequences for microbial glycolipid recognition. J. Exp. Med. 203, 1197–1207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    CAS  PubMed  Google Scholar 

  28. Pei, B. et al. Diverse endogenous antigens for mouse NKT cells: self-antigens that are not glycosphingolipids. J. Immunol. 186, 1348–1360 (2011). This study suggests that the self antigens recognized by NKT cells may not be exclusively glycosphingolipids.

    Article  CAS  PubMed  Google Scholar 

  29. Venkataswamy, M. M. & Porcelli, S. A. Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Semin. Immunol. 22, 68–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Brigl, M. & Brenner, M. B. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22, 817–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2004).

    Article  CAS  Google Scholar 

  32. Godfrey, D. I., Pellicci, D. G. & Smyth, M. J. Immunology: the elusive NKT cell antigen — is the search over? Science 306, 1687–1689 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Bendelac, A., Savage, P. B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2006).

    Article  CAS  Google Scholar 

  34. Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Swann, J. B. et al. Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 113, 6382–6385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nowak, M. et al. Defective NKT cell activation by CD1d+ TRAMP prostate tumor cells is corrected by interleukin-12 with α-galactosylceramide. PLoS ONE 5, e11311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bellone, M. et al. iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells. PLoS ONE 5, e8646 (2010). References 34–37 suggest a tumour immunosurveillance role for NKT cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Savage, A. K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kovalovsky, D. et al. The BTB–zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nature Immunol. 9, 1055–1064 (2008).

    Article  CAS  Google Scholar 

  40. Gascoyne, D. M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nature Immunol. 10, 1118–1124 (2009).

    Article  CAS  Google Scholar 

  41. Kamizono, S. et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med. 206, 2977–2986 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wesley, J. D., Tessmer, M. S., Chaukos, D. & Brossay, L. NK cell-like behavior of Vα14i NK T cells during MCMV infection. PLoS Pathog. 4, e1000106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tyznik, A. J. et al. Cutting edge: the mechanism of invariant NKT cell responses to viral danger signals. J. Immunol. 181, 4452–4456 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Brigl, M. et al. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med. 208, 1163–1177 (2011). References 43–45 suggest that NKT cells can behave as innate immune cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stetson, D. B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069–1076 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Matsuda, J. L. et al. Homeostasis of Vα14i NKT cells. Nature Immunol. 3, 966–974 (2002).

    Article  CAS  Google Scholar 

  48. Ranson, T. et al. IL-15 availability conditions homeostasis of peripheral natural killer T cells. Proc. Natl Acad. Sci. USA 100, 2663–2668 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Townsend, M. J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Wingender, G., Krebs, P., Beutler, B. & Kronenberg, M. Antigen-specific cytotoxicity by invariant NKT cells in vivo is CD95/CD178-dependent and is correlated with antigenic potency. J. Immunol. 185, 2721–2729 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Carlyle, J. R. et al. Evolution of the Ly49 and Nkrp1 recognition systems. Semin. Immunol. 20, 321–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Parham, P. MHC class I molecules and KIRs in human history, health and survival. Nature Rev. Immunol. 5, 201–214 (2005).

    Article  CAS  Google Scholar 

  53. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Fernandez, N. C. et al. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105, 4416–4423 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342 (2006). References 53–55 indicate that MHC class I recognition by NK cell inhibitory receptors contributes to the acquisition of NK cell functions.

    Article  CAS  PubMed  Google Scholar 

  56. Yokoyama, W. M. & Kim, S. How do natural killer cells find self to achieve tolerance? Immunity 24, 249–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Raulet, D. H. & Vance, R. E. Self-tolerance of natural killer cells. Nature Rev. Immunol. 6, 520–531 (2006).

    Article  CAS  Google Scholar 

  58. Brodin, P., Karre, K. & Hoglund, P. NK cell education: not an on-off switch but a tunable rheostat. Trends Immunol. 30, 143–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Orr, M. T. & Lanier, L. L. Natural killer cell education and tolerance. Cell 142, 847–856 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hoglund, P. et al. Recognition of β2-microglobulin-negative (β2m) T-cell blasts by natural killer cells from normal but not from β2m mice: nonresponsiveness controlled by β2m bone marrow in chimeric mice. Proc. Natl Acad. Sci. USA 88, 10332–10336 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liao, N.-S., Bix, M., Zilstra, M., Jaenish, R. & Raulet, D. MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 253, 199–202 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Orr, M. T., Murphy, W. J. & Lanier, L. L. 'Unlicensed' natural killer cells dominate the response to cytomegalovirus infection. Nature Immunol. 11, 321–327 (2010).

    Article  CAS  Google Scholar 

  63. Joncker, N. T., Fernandez, N. C., Treiner, E., Vivier, E. & Raulet, D. H. NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model. J. Immunol. 182, 4572–4580 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Brodin, P., Lakshmikanth, T., Johansson, S., Karre, K. & Hoglund, P. The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood 113, 2434–2441 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Guia, S. et al. Confinement of activating receptors at the plasma membrane controls natural killer cell tolerance. Sci. Signal. 4, ra21 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Joncker, N. T., Shifrin, N., Delebecque, F. & Raulet, D. H. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment. J. Exp. Med. 207, 2065–2072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Elliott, J. M., Wahle, J. A. & Yokoyama, W. M. MHC class I-deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I-sufficient environment. J. Exp. Med. 207, 2073–2079 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kijima, M., Gardiol, N. & Held, W. Natural killer cell mediated missing-self recognition can protect mice from primary chronic myeloid leukemia in vivo. PLoS ONE 6, e27639 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bottino, C., Moretta, L. & Moretta, A. NK cell activating receptors and tumor recognition in humans. Curr. Top. Microbiol. Immunol. 298, 175–182 (2006).

    CAS  PubMed  Google Scholar 

  70. Moretta, A. et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 19, 197–223 (2001). This review covers the discovery of activating NK cell receptors.

    Article  CAS  PubMed  Google Scholar 

  71. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Raulet, D. H. & Guerra, N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nature Rev. Immunol. 9, 568–580 (2009).

    Article  CAS  Google Scholar 

  73. Raulet, D. H. Roles of the NKG2D immunoreceptor and its ligands. Nature Rev. Immunol. 3, 781–790 (2003).

    Article  CAS  Google Scholar 

  74. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  75. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Cosman, D. et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14, 123–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Carayannopoulos, L. N. et al. Ligands for murine NKG2D display heterogenous binding behavior. Eur. J. Immunol. 32, 597–605 (2002). References 74–77 report the identification of NKG2D ligands.

    Article  CAS  PubMed  Google Scholar 

  78. Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Unni, A. M., Bondar, T. & Medzhitov, R. Intrinsic sensor of oncogenic transformation induces a signal for innate immunosurveillance. Proc. Natl Acad. Sci. USA 105, 1686–1691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Soriani, A. et al. ATM-ATR dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK cell susceptibility and is associated with a senescent phenotype. Blood 113, 3503–3511 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Sivori, S. et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J. Exp. Med. 186, 1129–1136 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vitale, M. et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J. Exp. Med. 187, 2065–2072 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pende, D. et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J. Exp. Med. 190, 1505–1516 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brandt, C. S. et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 206, 1495–1503 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, Y., Wang, Q. & Mariuzza, R. A. Structure of the human activating natural cytotoxicity receptor NKp30 bound to its tumor cell ligand B7-H6. J. Exp. Med. 208, 703–714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bottino, C. et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 198, 557–567 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cartron, G. et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99, 754–758 (2002). This study reveals the importance of CD16 for monoclonal antibody therapies in humans.

    Article  CAS  PubMed  Google Scholar 

  89. Veeramani, S. et al. Rituximab infusion induces NK activation in lymphoma patients with the high-affinity CD16 polymorphism. Blood 118, 3347–3349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Terme, M., Ullrich, E., Delahaye, N. F., Chaput, N. & Zitvogel, L. Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nature Immunol. 9, 486–494 (2008).

    Article  CAS  Google Scholar 

  91. Thomas, E. et al. Bone marrow transplantation. N. Engl. J. Med. 292, 832–843; 895–902 (1975).

    Article  CAS  PubMed  Google Scholar 

  92. Weiden, P. L. et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N. Engl. J. Med. 300, 1068–1073 (1979).

    Article  CAS  PubMed  Google Scholar 

  93. Storb, R. Allogeneic hematopoietic stem cell transplantation — yesterday, today, and tomorrow. Exp. Hematol. 31, 1–10 (2003).

    Article  PubMed  Google Scholar 

  94. Childs, R. et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N. Engl. J. Med. 343, 750–758 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Blaise, D. et al. Reduced-intensity preparative regimen and allogeneic stem cell transplantation for advanced solid tumors. Blood 103, 435–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Ferrara, J. L., Levine, J. E., Reddy, P. & Holler, E. Graft-versus-host disease. Lancet 373, 1550–1561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dong, Z. et al. Essential function for SAP family adaptors in the surveillance of hematopoietic cells by natural killer cells. Nature Immunol. 10, 973–980 (2009).

    Article  CAS  Google Scholar 

  98. Aversa, F. et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N. Engl. J. Med. 339, 1186–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002). A demonstration of the clinical antitumour activity of human NK cells, in the peculiar context of haplotype-mismatched, allogeneic T cell-depleted haematopoietic stem cell transplantation following administration of a myeloablative conditioning regimen.

    Article  CAS  PubMed  Google Scholar 

  100. Giebel, S. et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 102, 814–819 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Ruggeri, L. et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 110, 433–440 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kroger, N. et al. Comparison between antithymocyte globulin and alemtuzumab and the possible impact of KIR-ligand mismatch after dose-reduced conditioning and unrelated stem cell transplantation in patients with multiple myeloma. Br. J. Haematol. 129, 631–643 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Bignon, J. D. & Gagne, K. KIR matching in hematopoietic stem cell transplantation. Curr. Opin. Immunol. 17, 553–559 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Poggi, A. & Zocchi, M. R. Cyclosporin A regulates human NK cell apoptosis induced by soluble HLA-I or by target cells. Autoimmun. Rev. 4, 532–536 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, H. et al. The unexpected effect of cyclosporin A on CD56+CD16 and CD56+CD16+ natural killer cell subpopulations. Blood 110, 1530–1539 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Moretta, A. et al. Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells. J. Exp. Med. 182, 875–884 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Olcese, L. et al. Killer-cell activatory receptors for MHC class I molecules are included in a multimeric complex expressed by human killer cells. J. Immunol. 158, 5083–5086 (1997).

    CAS  PubMed  Google Scholar 

  108. Lanier, L. L., Corliss, B. C., Wu, J., Leong, C. & Phillips, J. H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391, 703–707 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Verheyden, S., Schots, R., Duquet, W. & Demanet, C. A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. Leukemia 19, 1446–1451 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. De Santis, D. et al. Natural killer cell HLA-C epitopes and killer cell immunoglobulin-like receptors both influence outcome of mismatched unrelated donor bone marrow transplants. Tissue Antigens 65, 519–528 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Cook, M. et al. Donor KIR genotype has a major influence on the rate of cytomegalovirus reactivation following T-cell replete stem cell transplantation. Blood 107, 1230–1232 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, C. et al. Activating KIR genes are associated with CMV reactivation and survival after non-T-cell depleted HLA-identical sibling bone marrow transplantation for malignant disorders. Bone Marrow Transplant. 38, 437–444 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. McQueen, K. L. et al. Donor–recipient combinations of group A and B KIR haplotypes and HLA class I ligand affect the outcome of HLA-matched, sibling donor hematopoietic cell transplantation. Hum. Immunol. 68, 309–323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Clausen, J. et al. Impact of natural killer cell dose and donor killer-cell immunoglobulin-like receptor (KIR) genotype on outcome following human leucocyte antigen-identical haematopoietic stem cell transplantation. Clin. Exp. Immunol. 148, 520–528 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Holler, E. et al. Increased serum levels of tumor necrosis factor α precede major complications of bone marrow transplantation. Blood 75, 1011–1016 (1990).

    CAS  PubMed  Google Scholar 

  116. Storb, R. et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 89, 3048–3054 (1997).

    CAS  PubMed  Google Scholar 

  117. Giralt, S. et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood 89, 4531–4536 (1997).

    CAS  PubMed  Google Scholar 

  118. Slavin, S. et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 91, 756–763 (1998).

    CAS  PubMed  Google Scholar 

  119. Blaise, D., Vey, N., Faucher, C. & Mohty, M. Current status of reduced-intensity-conditioning allogeneic stem cell transplantation for acute myeloid leukemia. Haematologica 92, 533–541 (2007).

    Article  PubMed  Google Scholar 

  120. Gratwohl, A. et al. The EBMT activity survey 2007 with focus on allogeneic HSCT for AML and novel cellular therapies. Bone Marrow Transplant. 43, 275–291 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Pende, D. et al. Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. Blood 113, 3119–3129 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Mohty, M. et al. Recovery of lymphocyte and dendritic cell subsets following reduced intensity allogeneic bone marrow transplantation. Hematology 7, 157–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Larosa, F. et al. Peripheral T-cell expansion and low infection rate after reduced-intensity conditioning and allogeneic blood stem cell transplantation. Bone Marrow Transplant. 35, 859–868 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Kim, D. H. et al. Non-CD34+ cells, especially CD8+ cytotoxic T cells and CD56+ natural killer cells, rather than CD34 cells, predict early engraftment and better transplantation outcomes in patients with hematologic malignancies after allogeneic peripheral stem cell transplantation. Biol. Blood Marrow Transplant. 12, 719–728 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Savani, B. N. et al. Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia. Leukemia 21, 2145–2152 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Dunbar, E. M. et al. The relationship between circulating natural killer cells after reduced intensity conditioning hematopoietic stem cell transplantation and relapse-free survival and graft-versus-host disease. Haematologica 93, 1852–1858 (2008).

    Article  PubMed  Google Scholar 

  127. Kolb, H. J. et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86, 2041–2050 (1995).

    CAS  PubMed  Google Scholar 

  128. Dazzi, F. et al. Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood 96, 2712–2716 (2000).

    CAS  PubMed  Google Scholar 

  129. Marks, D. I. et al. The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood 100, 3108–3114 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Shimoni, A. et al. Long-term follow-up of recipients of CD8-depleted donor lymphocyte infusions for the treatment of chronic myelogenous leukemia relapsing after allogeneic progenitor cell transplantation. Biol. Blood Marrow Transplant. 7, 568–575 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Alyea, E. P. et al. CD8+ cell depletion of donor lymphocyte infusions using CD8 monoclonal antibody-coated high-density microparticles (CD8-HDM) after allogeneic hematopoietic stem cell transplantation: a pilot study. Bone Marrow Transplant. 34, 123–128 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Porter, D. L. et al. Graft-versus-tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies. J. Clin. Oncol. 17, 1234 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Guo, M. et al. Infusion of HLA-mismatched peripheral blood stem cells improves the outcome of chemotherapy for acute myeloid leukemia in elderly patients. Blood 117, 936–941 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Miller, J. S. et al. Large scale ex vivo expansion and activation of human natural killer cells for autologous therapy. Bone Marrow Transplant. 14, 555–562 (1994).

    CAS  PubMed  Google Scholar 

  135. Passweg, J. R. et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 18, 1835–1838 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. McKenna, D. H. Jr. et al. Good manufacturing practices production of natural killer cells for immunotherapy: a six-year single-institution experience. Transfusion 47, 520–528 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Lundqvist, A., McCoy, J. P., Samsel, L. & Childs, R. Reduction of GVHD and enhanced antitumor effects after adoptive infusion of alloreactive Ly49-mismatched NK cells from MHC-matched donors. Blood 109, 3603–3606 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Castriconi, R. et al. Human NK cell infusions prolong survival of metastatic human neuroblastoma-bearing NOD/scid mice. Cancer Immunol. Immunother. 56, 1733–1742 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Shi, J. et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br. J. Haematol. 143, 641–653 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Arai, S. et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 10, 625–632 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Cho, D. & Campana, D. Expansion and activation of natural killer cells for cancer immunotherapy. Korean J. Lab. Med. 29, 89–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Barkholt, L. et al. Safety analysis of ex vivo-expanded NK and NK-like T cells administered to cancer patients: a phase I clinical study. Immunotherapy 1, 753–764 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Bachanova, V. et al. Allogeneic natural killer cells for refractory lymphoma. Cancer Immunol. Immunother. 59, 1739–1744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nguyen, S. et al. Infusion of allogeneic natural killer cells in a patient with acute myeloid leukemia in relapse after haploidentical hematopoietic stem cell transplantation. Transfusion 51, 1769–1778 (2011).

    Article  PubMed  Google Scholar 

  145. Geller, M. A. et al. A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 13, 98–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. De Somer, L. et al. Recipient lymphocyte infusion in MHC-matched bone marrow chimeras induces a limited lymphohematopoietic host-versus-graft reactivity but a significant antileukemic effect mediated by CD8+ T cells and natural killer cells. Haematologica 96, 424–431 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Curti, A. et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 118, 3273–3279 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Brehm, C. et al. IL-2 stimulated but not unstimulated NK cells induce selective disappearance of peripheral blood cells: concomitant results to a phase I/II study. PLoS ONE 6, e27351 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005). A demonstration of the safety and potential efficacy of NK cell infusion as a cancer therapy in humans.

    Article  CAS  PubMed  Google Scholar 

  150. Alici, E. IPH-2101, a fully human anti-NK-cell inhibitory receptor mAb for the potential treatment of hematological cancers. Curr. Opin. Mol. Ther. 12, 724–733 (2010).

    CAS  PubMed  Google Scholar 

  151. Romagne, F. et al. Pre-clinical characterization of 1–7F9, a novel human anti-KIR therapeutic antibody that augments NK-mediated killing of tumor cells. Blood 114, 2667–2677 (2009). A characterization of the first KIR-specific human monoclonal antibody.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Romagne, F. & Vivier, E. Natural killer cell-based therapies. F1000 Med. Rep. 3, 9 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Sola, C. et al. Genetic and antibody-mediated reprogramming of natural killer cell missing-self recognition in vivo. Proc. Natl Acad. Sci. USA 106, 12879–12884 (2009). This paper describes preclinical models of the safety and efficacy of targeting MHC class I-specific inhibitory receptors using monoclonal antibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Benson, D. M. et al. A phase I study of IPH2101, a novel anti-inhibitory KIR monoclonal antibody, in patients with multiple myeloma. J. Clin. Oncol. 28 (15 suppl.), 8139 (2010).

    Article  Google Scholar 

  155. Vey, N. et al. A phase I study of the anti-natural killer inhibitory receptor (KIR) monoclonal antibody (1–7F9, IPH2101) in elderly patients with acute myeloid leukemia (AML). J. Clin. Oncol. 27 (15 suppl.), 3015 (2009).

    Google Scholar 

  156. Benson, D. M. Jr. et al. IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood 118, 6387–6391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Walzer, T. & Vivier, E. G-protein-coupled receptors in control of natural killer cell migration. Trends Immunol. 32, 486–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Brand, J. M. et al. Kinetics and organ distribution of allogeneic natural killer lymphocytes transfused into patients suffering from renal cell carcinoma. Stem Cells Dev. 13, 307–314 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Sun, J. C. & Lanier, L. L. NK cell development, homeostasis and function: parallels with CD8 T cells. Nature Rev. Immunol. 11, 645–657 (2011).

    Article  CAS  Google Scholar 

  160. Park, S. H., Kyin, T., Bendelac, A. & Carnaud, C. The contribution of NKT cells, NK cells, and other γ-chain-dependent non-T non-B cells to IL-12-mediated rejection of tumors. J. Immunol. 170, 1197–1201 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Smyth, M. J. et al. Sequential production of interferon-γ by NK1.1+ T cells and natural killer cells is essential for the antimetastatic effect of α-galactosylceramide. Blood 99, 1259–1266 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Metelitsa, L. S., Weinberg, K. I., Emanuel, P. D. & Seeger, R. C. Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia 17, 1068–1077 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Renukaradhya, G. J. et al. Type I NKT cells protect (and type II NKT cells suppress) the host's innate antitumor immune response to a B-cell lymphoma. Blood 111, 5637–5645 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wu, D. Y., Segal, N. H., Sidobre, S., Kronenberg, M. & Chapman, P. B. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med. 198, 173–181 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shimizu, K., Kurosawa, Y., Taniguchi, M., Steinman, R. M. & Fujii, S. Cross-presentation of glycolipid from tumor cells loaded with α-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J. Exp. Med. 204, 2641–2653 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Swann, J. B., Coquet, J. M., Smyth, M. J. & Godfrey, D. I. CD1-restricted T cells and tumor immunity. Curr. Top. Microbiol. Immunol. 314, 293–323 (2007).

    CAS  PubMed  Google Scholar 

  167. Crowe, N. Y., Smyth, M. J. & Godfrey, D. I. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J. Exp. Med. 196, 119–127 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kammertoens, T., Qin, Z., Briesemeister, D., Bendelac, A. & Blankenstein, T. B-cells and IL-4 promote methylcholanthrene-induced carcinogenesis but there is no evidence for a role of T/NKT-cells and their effector molecules (Fas-ligand, TNF-α, perforin). Int. J. Cancer 31 Jan 2012 (doi:10.1002/ijc.27411).

    Article  CAS  PubMed  Google Scholar 

  169. Song, L. et al. Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J. Clin. Invest. 119, 1524–1536 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tahir, S. M. et al. Loss of IFN-γ production by invariant NK T cells in advanced cancer. J. Immunol. 167, 4046–4050 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Yanagisawa, K. et al. Impaired proliferative response of Vα24 NKT cells from cancer patients against α-galactosylceramide. J. Immunol. 168, 6494–6499 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Tachibana, T. et al. Increased intratumor Vα24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin. Cancer Res. 11, 7322–7327 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Schneiders, F. L. et al. Circulating invariant natural killer T-cell numbers predict outcome in head and neck squamous cell carcinoma: updated analysis with 10-year follow-up. J. Clin. Oncol. 30, 567–570 (2012).

    Article  PubMed  Google Scholar 

  174. Terabe, M. et al. A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J. Exp. Med. 202, 1627–1633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kawano, T. et al. Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells. Proc. Natl Acad. Sci. USA 95, 5690–5693 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Parekh, V. V. et al. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J. Clin. Invest. 115, 2572–2583 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kim, S. et al. Impact of bacteria on the phenotype, functions, and therapeutic activities of invariant NKT cells in mice. J. Clin. Invest. 118, 2301–2315 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Cerundolo, V., Barral, P. & Batista, F. D. Synthetic iNKT cell-agonists as vaccine adjuvants — finding the balance. Curr. Opin. Immunol. 22, 417–424 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Stanic, A. K. et al. Another view of T cell antigen recognition: cooperative engagement of glycolipid antigens by Va14Ja18 natural T (iNKT) cell receptor. J. Immunol. 171, 4539–4551 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Oki, S., Tomi, C., Yamamura, T. & Miyake, S. Preferential Th2 polarization by OCH is supported by incompetent NKT cell induction of CD40L and following production of inflammatory cytokines by bystander cells in vivo. Int. Immunol. 17, 1619–1629 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Im, J. S. et al. Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity 30, 888–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Sullivan, B. A. et al. Mechanisms for glycolipid antigen-driven cytokine polarization by Vα14i NKT cells. J. Immunol. 184, 141–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Yue, S. C. et al. Direct CD1d-mediated stimulation of APC IL-12 production and protective immune response to virus infection in vivo. J. Immunol. 184, 268–276 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Teng, M. W., Yue, S., Sharkey, J., Exley, M. A. & Smyth, M. J. CD1d activation and blockade: a new antitumor strategy. J. Immunol. 182, 3366–3371 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Hix, L. M. et al. CD1d-expressing breast cancer cells modulate NKT cell-mediated antitumor immunity in a murine model of breast cancer metastasis. PLoS ONE 6, e20702 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Barral, P. et al. B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc. Natl Acad. Sci. USA 105, 8345–8350 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Barral, P. et al. CD169+ macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nature Immunol. 11, 303–312 (2010).

    Article  CAS  Google Scholar 

  188. Motohashi, S. et al. A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 12, 6079–6086 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Yamasaki, K. et al. Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin. Immunol. 138, 255–265 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Giaccone, G. et al. A phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin. Cancer Res. 8, 3702–3709 (2002).

    CAS  PubMed  Google Scholar 

  191. Schneiders, F. L. et al. Clinical experience with α-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection. Clin. Immunol. 140, 130–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Nieda, M. et al. Therapeutic activation of Vα24+Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103, 383–389 (2004).

    Article  CAS  PubMed  Google Scholar 

  193. Ishikawa, A. et al. A phase I study of α-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 11, 1910–1917 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Chang, D. H. et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J. Exp. Med. 201, 1503–1517 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kunii, N. et al. Combination therapy of in vitro-expanded natural killer T cells and α-galactosylceramide-pulsed antigen-presenting cells in patients with recurrent head and neck carcinoma. Cancer Sci. 100, 1092–1098 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Cooper, M. A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl Acad. Sci. USA 106, 1915–1919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nature Immunol. 11, 1127–1135 (2010).

    Article  CAS  Google Scholar 

  198. O'Leary, J. G., Goodarzi, M., Drayton, D. L. & von Andrian, U. H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunol. 7, 507–516 (2006).

    Article  CAS  Google Scholar 

  199. Bukowski, J. F., Biron, C. A. & Welsh, R. M. Elevated natural killer cell-mediated cytotoxicity, plasma interferon, and tumor cell rejection in mice persistently infected with lymphocytic choriomeningitis virus. J. Immunol. 131, 991–996 (1983).

    CAS  PubMed  Google Scholar 

  200. Carnaud, C. et al. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647–4650 (1999).

    CAS  PubMed  Google Scholar 

  201. Eberl, G. & MacDonald, H. R. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur. J. Immunol. 30, 985–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  202. Hermans, I. F. et al. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J. Immunol. 171, 5140–5147 (2003).

    Article  CAS  PubMed  Google Scholar 

  203. Wesley, J. D. et al. Cutting edge: IFN-γ signaling to macrophages is required for optimal Vα14i NK T/NK cell cross-talk. J. Immunol. 174, 3864–3868 (2005).

    Article  CAS  PubMed  Google Scholar 

  204. Gonzalez-Aseguinolaza, G. et al. Natural killer T cell ligand α-galactosylceramide enhances protective immunity induced by malaria vaccines. J. Exp. Med. 195, 617–624 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Huang, Y. et al. Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, α-galactosylceramide. Vaccine 26, 1807–1816 (2008).

    Article  CAS  PubMed  Google Scholar 

  206. Galli, G. et al. Invariant NKT cells sustain specific B cell responses and memory. Proc. Natl Acad. Sci. USA 104, 3984–3989 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kamijuku, H. et al. Mechanism of NKT cell activation by intranasal coadministration of α-galactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol. 1, 208–218 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  209. Oki, S., Chiba, A., Yamamura, T. & Miyake, S. The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J. Clin. Invest. 113, 1631–1640 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Yu, K. O. et al. Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc. Natl Acad. Sci. USA 102, 3383–3388 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Schmieg, J., Yang, G., Franck, R. W. & Tsuji, M. Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand α-galactosylceramide. J. Exp. Med. 198, 1631–1641 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Chiche, L. et al. The role of natural killer cells in sepsis. J. Biomed. Biotechnol. 2011, 986491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Schleinitz, N., Vely, F., Harle, J. R. & Vivier, E. Natural killer cells in human autoimmune diseases. Immunology 131, 451–458 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Andrews, D. M. et al. Innate immunity defines the capacity of antiviral T cells to limit persistent infection. J. Exp. Med. 207, 1333–1343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Waggoner, S. N., Cornberg, M., Selin, L. K. & Welsh, R. M. Natural killer cells act as rheostats modulating antiviral T cells. Nature 481, 394–398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. Ogino, S., Galon, J., Fuchs, C. S. & Dranoff, G. Cancer immunology-analysis of host and tumor factors for personalized medicine. Nature Rev. Clin. Oncol. 8, 711–719 (2011).

    Article  CAS  Google Scholar 

  218. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Matsuda, J. L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Exley, M. A. et al. Selective activation, expansion, and monitoring of human iNKT cells with a monoclonal antibody specific for the TCR α-chain CDR3 loop. Eur. J. Immunol. 38, 1756–1766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Pellicci, D. G. et al. Recognition of β-linked self glycolipids mediated by natural killer T cell antigen receptors. Nature Immunol. 12, 827–833 (2011). This study describes a previously unknown population of CD1d-restricted NKT cells.

    Article  CAS  Google Scholar 

  222. Brennan, P. J. et al. Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nature Immunol. 12, 1202–1211 (2011). This study shows that the expression of a newly identified endogenous ligand for the NKT cell TCR is increased during some infections and promotes NKT cell activation.

    Article  CAS  Google Scholar 

  223. Brigl, M., Bry, L., Kent, S. C., Gumperz, J. E. & Brenner, M. B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nature Immunol. 4, 1230–1237 (2003).

    Article  CAS  Google Scholar 

  224. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  225. Salio, M. et al. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc. Natl Acad. Sci. USA 104, 20490–20495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Paget, C. et al. Activation of invariant NKT cells by Toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27, 597–609 (2007).

    Article  CAS  PubMed  Google Scholar 

  227. Kärre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature 319, 675–678 (1986).

    Article  PubMed  Google Scholar 

  228. Ljunggren, H. G. & Karre, K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  229. Moretta, L. et al. Allorecognition by NK cells: nonself or no self? Immunol Today 13, 300–306 (1992).

    Article  CAS  PubMed  Google Scholar 

  230. Karlhofer, F. M., Ribaudo, R. K. & Yokoyama, W. M. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358, 66–70 (1992).

    Article  CAS  PubMed  Google Scholar 

  231. Moretta, A. et al. Receptors for HLA class-I molecules in human natural killer cells. Annu. Rev. Immunol. 14, 619–648 (1996).

    Article  CAS  PubMed  Google Scholar 

  232. Kärre, K. How to recognize a foreign submarine. Immunol. Rev. 155, 5–9 (1997).

    Article  PubMed  Google Scholar 

  233. Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  234. Vance, R. E., Kraft, J. R., Altman, J. D., Jensen, P. E. & Raulet, D. H. Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1b. J. Exp. Med. 188, 1841–1848 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Vilches, C. & Parham, P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu. Rev. Immunol. 20, 217–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  236. Olcese, L. et al. Human and mouse killer-cell inhibitory receptors recruit PTP1C and PTP1D protein tyrosine phosphatases. J. Immunol. 156, 4531–4534 (1996).

    CAS  PubMed  Google Scholar 

  237. Burshtyn, D. N. et al. Recruitment of tyrosine phosphatase HCP by the killer cell inhibitory receptor. Immunity 4, 77–85 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Vivier, E., Nunes, J. A. & Vely, F. Natural killer cell signaling pathways. Science 306, 1517–1519 (2004).

    Article  CAS  PubMed  Google Scholar 

  239. Kumar, V. & McNerney, M. E. A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nature Rev. Immunol. 5, 363–374 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E. V. and S. U. are supported by funds from a THINK European Research Council advanced grant, the Agence Nationale de la Recherche and the Ligue Nationale Contre le Cancer, and by institutional grants from INSERM, CNRS and the Université d'Aix-Marseille to the Centre d'Immunologie de Marseille-Luminy. E.V. is a scholar of the Institut Universitaire de France, and a co-founder of and shareholder in Innate Pharma. D.B. and C.C. are supported by grants from the Institut Paoli-Calmettes, the Programme Hospitalier de Recherche Clinique (PHRC) and the Association pour la Recherche sur le Cancer. L.B. is supported by US National Institutes of Health research grants AI46709 and AI058181.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric Vivier or Laurent Brossay.

Ethics declarations

Competing interests

Eric Vivier is a co-founder of and shareholder in Innate Pharma.

Related links

Related links

FURTHER INFORMATION

ClinicalTrials.gov

Glossary

Toll-like receptors

(TLRs). A family of evolutionarily conserved pattern-recognition receptors. These molecules are located intracellularly and at the cell surface of macrophages, dendritic cells, B cells and intestinal epithelial cells. Their natural ligands are molecules that are found in bacteria, viruses and fungi.

Innate lymphoid cells

(ILCs). A group of cells of lymphoid origin that includes NK cells, LTi cells and other non-T, non-B cells that produce distinct cytokines such as IL-5, IL-13 or IL-17.

Natural killer cells

(NK cells). Non-T, non-B lymphocytes that can mediate natural killing of prototypical NK cell-sensitive targets (such as K562 cells in humans and YAC1 cells in mice) and/or produce IFNγ. In humans, NK cells typically have a NKp46+CD56+CD3 phenotype, and they are NKp46+NK1.1+CD3 in the C57BL/6 mouse strain and NKp46+CD3 in all mouse strains.

Imatinib mesylate

A first of its class tyrosine kinase inhibitor with clinical activity against chronic myeloid leukaemia associated with the t(9;22) reciprocal translocation. The introduction of imatinib mesylate into clinical practice at the end of the twentieth century induced a rapid shift in medical practices, such that allogeneic haematopoietic stem cell transplantation was abandoned as the standard treatment for this type of cancer.

CD1d

An MHC-like molecule that associates with β2-microglobulin and presents lipids.

Invariant NKT cells

(iNKT cells). A subset of T cells that possess a semi-invariant TCR. In both mice and humans, iNKT cells recognize ligands presented by CD1d.

T-bet

A member of the T-box family of transcription factors. It is a master switch in the development of T helper 1 (TH1) cells through its ability to regulate the expression of the IL-12 receptor, to inhibit signals that promote TH2 cell development and to promote the production of interferon-γ.

Perforin- and granzyme-mediated mechanisms

Granzymes are serine proteases that are found primarily in the cytoplasmic granules of cytotoxic T lymphocytes and NK cells. They enter target cells through perforin pores and then cleave and activate intracellular caspases to induce target-cell apoptosis.

CD95–CD178 pathway

CD178 (also known as FAS ligand) binds to CD95 (also known as FAS). This results in the formation of a death-inducing signalling complex and the subsequent activation of caspases, which promote the apoptosis of the CD95-expressing target cell.

Immunoreceptor tyrosine-based inhibitory motif

(ITIM). A motif that is present in the cytoplasmic domains of several inhibitory receptors. After ligand binding, ITIMs are phosphorylated on their tyrosine residues and recruit lipid or tyrosine phosphatases.

DNA damage response

A cell response triggered by DNA damage, such as single or double strand breaks. The DNA damage response stops cell cycle progression to enable repair before the damage is transmitted to progeny cells. Checkpoints in the mammalian DNA damage response are controlled by the PI3K-related kinases ATM and ATR.

Immunoreceptor tyrosine-based activation motifs

(ITAMs). Activating receptors often have ITAMs consisting of a consensus amino-acid sequence with paired tyrosines and leucines (Yxx(I/L)x6–12Yxx(I/L)). These motifs are normally located in the cytoplasmic domains of ligand-binding transmembrane receptors (such as FcɛRI and the TCR), and they mediate interactions between the transmembrane receptor complex and protein tyrosine kinases, which are required to initiate early and late signalling events.

Antibody-dependent cellular cytotoxicity

(ADCC). A mechanism used by leukocytes that express Fc receptors to kill antibody-coated target cells.

Rituximab

A chimeric monoclonal antibody that is specific for the CD20 molecule, which is primarily expressed by B cells. Rituximab is the most frequently used antibody therapy for patients with cancer.

Graft-versus-leukaemia effect

The antitumour activity of donor T cells against residual leukaemic cells of the graft recipient following (allogeneic) bone marrow transplantation.

Graft-versus-host disease

(GVHD). Tissue damage in a recipient of allogeneic transplanted tissue (usually a bone marrow transplant) that results from the activity of donor cytotoxic T lymphocytes that recognize the tissue of the recipient as foreign. GVHD varies markedly in severity, but can be life threatening in severe cases. Typically, damage to the skin and gut mucosa leads to clinical manifestations.

Ciclosporin

(Also known as cyclosporin A). A commonly used immunosuppressive drug that blocks calcineurin A and thereby inhibits T cell activation. It is used to prevent the rejection of transplanted organs and to treat some inflammatory diseases. Ciclosporin is widely used to prevent graft-versus-host disease following allogeneic haematopoietic stem cell transplantation.

Reduced-intensity conditioning regimens

Regimens that use less chemotherapy and radiation than is normally used for myeloablation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivier, E., Ugolini, S., Blaise, D. et al. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 12, 239–252 (2012). https://doi.org/10.1038/nri3174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3174

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer