Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Living in the liver: hepatic infections

Key Points

  • The liver serves as an important filter organ to remove circulating pathogens from the blood. However, certain pathogens — such as hepatitis B virus, hepatitis C virus and malaria-inducing Plasmodium spp. parasites — efficiently target the liver and can establish persistent infections in hepatocytes.

  • Despite the function of the liver in skewing immune responses towards tolerance, hepatic cells are equipped with innate immune sensory receptors to detect infectious microorganisms and mount inflammatory responses.

  • Most infectious microorganisms are cleared from the liver through the combination of innate and adaptive immune defence, despite pathogen-specific immune escape strategies. However, our knowledge on the decisive molecular mechanisms that discriminate acute, resolving infections from chronic infections is still incomplete.

  • Persistent infection of hepatocytes is perpetuated by the immunoregulatory liver microenvironment, the predominant co-inhibitory over co-stimulatory signalling by hepatic antigen-presenting cells and the exhaustion of pathogen-specific T cells.

  • Novel therapeutic strategies to overcome chronic viral infection of hepatocytes will combine measures to lower the level of viral antigens in combination with measures to increase the number of virus-specific T cells and their efficiency to locally exert their effector function in the liver.

Abstract

The liver has vital metabolic and clearance functions that involve the uptake of nutrients, waste products and pathogens from the blood. In addition, its unique immunoregulatory functions mediated by local expression of co-inhibitory receptors and immunosuppressive mediators help to prevent inadvertent organ damage. However, these tolerogenic properties render the liver an attractive target site for pathogens. Although most pathogens that reach the liver via the blood are eliminated or controlled by local innate and adaptive immune responses, some pathogens (such as hepatitis viruses) can escape immune control and persist in hepatocytes, causing substantial morbidity and mortality worldwide. Here, we review our current knowledge of the mechanisms of liver targeting by pathogens and describe the interplay between pathogens and host factors that promote pathogen elimination and maintain organ integrity or that allow pathogen persistence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Liver microanatomy.
Figure 2: Host mechanisms involved in the clearance of pathogens in the liver.
Figure 3: Host mechanisms that promote the persistence of liver infection.

Similar content being viewed by others

References

  1. Thomson, A. W. & Knolle, P. A. Antigen-presenting cell function in the tolerogenic liver environment. Nature Rev. Immunol. 10, 753–766 (2010).

    Article  CAS  Google Scholar 

  2. Schlepper-Schafer, J. et al. Endocytosis via galactose receptors in vivo. Ligand size directs uptake by hepatocytes and/or liver macrophages. Exp. Cell Res. 165, 494–506 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Wisse, E., De Zanger, R. B., Charels, K., Van Der Smissen, P. & McCuskey, R. S. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5, 683–692 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Tavassoli, M., Kishimoto, T., Soda, R., Kataoka, M. & Harjes, K. Liver endothelium mediates the uptake of iron–transferrin complex by hepatocytes. Exp. Cell. Res. 165, 369–379 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Mostov, K. E. Transepithelial transport of immunoglobulins. Annu. Rev. Immunol. 12, 63–84 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Middleton, J. et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91, 385–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Smedsrod, B. Clearance function of scavenger endothelial cells. Comp. Hepatol. 3, S22 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pradel, G. & Frevert, U. Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology 33, 1154–1165 (2001). The first report showing that sporozoites target Kupffer cells to overcome the sinusoidal barrier.

    Article  CAS  PubMed  Google Scholar 

  9. Ishino, T., Yano, K., Chinzei, Y. & Yuda, M. Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol. 2, e4 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Baer, K. et al. Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the liver. Cell. Microbiol. 9, 397–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Mota, M. M., Hafalla, J. C. & Rodriguez, A. Migration through host cells activates Plasmodium sporozoites for infection. Nature Med. 8, 1318–1322 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Coppi, A. et al. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J. Exp. Med. 208, 341–356 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Silvie, O. et al. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nature Med. 9, 93–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Sturm, A. et al. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313, 1287–1290 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Bartenschlager, R., Penin, F., Lohmann, V. & Andre, P. Assembly of infectious hepatitis C virus particles. Trends Microbiol. 19, 95–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Bashirova, A. A. et al. A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J. Exp. Med. 193, 671–678 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lai, W. K. et al. Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium: a role for capturing hepatitis C virus particles. Am. J. Pathol. 169, 200–208 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gardner, J. P. et al. L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc. Natl Acad. Sci. USA 100, 4498–4503 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pohlmann, S. et al. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J. Virol. 77, 4070–4080 (2003). References 18 and 19 were the first two reports on the potential role of L-SIGN and DC-SIGN in liver infection by HCV.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Agnello, V., Abel, G., Elfahal, M., Knight, G. B. & Zhang, Q. X. Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl Acad. Sci. USA 96, 12766–12771 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scarselli, E. et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 21, 5017–5025 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Evans, M. J. et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446, 801–805 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Ploss, A. et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457, 882–886 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lupberger, J. et al. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nature Med. 17, 589–595 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Gripon, P. et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl Acad. Sci. USA 99, 15655–15660 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blanchet, M. & Sureau, C. Analysis of the cytosolic domains of the hepatitis B virus envelope proteins for their function in viral particle assembly and infectivity. J. Virol. 80, 11935–11945 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Salisse, J. & Sureau, C. A function essential to viral entry underlies the hepatitis B virus “a” determinant. J. Virol. 83, 9321–9328 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Petersen, J. et al. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nature Biotech. 26, 335–341 (2008).

    Article  CAS  Google Scholar 

  31. Schulze, A., Gripon, P. & Urban, S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 46, 1759–1768 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Jilbert, A. R., Miller, D. S., Scougall, C. A., Turnbull, H. & Burrell, C. J. Kinetics of duck hepatitis B virus infection following low dose virus inoculation: one virus DNA genome is infectious in neonatal ducks. Virology 226, 338–345 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Asabe, S. et al. The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J. Virol. 83, 9652–9662 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Breiner, K. M., Schaller, H. & Knolle, P. A. Endothelial cell-mediated uptake of a hepatitis B virus: a new concept of liver targeting of hepatotropic microorganisms. Hepatology 34, 803–808 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Ashida, M. & Hamada, C. Molecular cloning of the hepatitis A virus receptor from a simian cell line. J. Gen. Virol. 78, 1565–1569 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Kaplan, G. et al. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J. 15, 4282–4296 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Feigelstock, D., Thompson, P., Mattoo, P., Zhang, Y. & Kaplan, G. G. The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor. J. Virol. 72, 6621–6628 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. van Egmond, M. et al. FcαRI-positive liver Kupffer cells: reappraisal of the function of immunoglobulin A in immunity. Nature Med. 6, 680–685 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Popov, A. et al. Indoleamine 2,3-dioxygenase-expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection. J. Clin. Invest. 116, 3160–3170 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Egen, J. G. et al. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28, 271–284 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Volkman, H. E. et al. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327, 466–469 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Taylor, J. L. et al. Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection. Infect. Immun. 74, 6135–6144 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Davis, J. M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang, B. et al. Toll-like receptor activated human and murine hepatic stellate cells are potent regulators of hepatitis C virus replication. J. Hepatol. 51, 1037–1045 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Wu, J. et al. Hepatitis B virus suppresses Toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology 49, 1132–1140 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Kern, M. et al. Virally infected mouse liver endothelial cells trigger CD8+ T-cell immunity. Gastroenterology 138, 336–346 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Saito, T., Owen, D. M., Jiang, F., Marcotrigiano, J. & Gale, M. Jr. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454, 523–527 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ebert, G. et al. 5′ triphosphorylated small interfering RNAs control replication of hepatitis B virus and induce an interferon response in human liver cells and mice. Gastroenterology 141, 696–706 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nature Med. 13, 1324–1332 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Gao, B., Jeong, W. I. & Tian, Z. Liver: an organ with predominant innate immunity. Hepatology 47, 729–736 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Baumann, H. & Gauldie, J. The acute phase response. Immunol. Today 15, 74–80 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Wu, J. et al. Toll-like receptor-mediated control of HBV replication by nonparenchymal liver cells in mice. Hepatology 46, 1769–1778 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Biswas, S. K. & Lopez-Collazo, E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 30, 475–487 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. De Creus, A. et al. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J. Immunol. 174, 2037–2045 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Limmer, A. et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nature Med. 6, 1348–1354 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Khakoo, S. I. et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305, 872–874 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, W. Y. et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nature Immunol. 11, 295–302 (2010). A seminal paper demonstrating the efficient intravascular immune response in the liver against bacteria.

    Article  CAS  Google Scholar 

  58. Dolganiuc, A. et al. Hepatitis C core and nonstructural 3 proteins trigger Toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology 127, 1513–1524 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Cooper, A., Tal, G., Lider, O. & Shaul, Y. Cytokine induction by the hepatitis B virus capsid in macrophages is facilitated by membrane heparan sulfate and involves TLR2. J. Immunol. 175, 3165–3176 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Hosel, M. et al. Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. Hepatology 50, 1773–1782 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Klein, C. et al. The IL-6–gp130–STAT3 pathway in hepatocytes triggers liver protection in T cell-mediated liver injury. J. Clin. Invest. 115, 860–869 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gehring, S. et al. Kupffer cells abrogate cholestatic liver injury in mice. Gastroenterology 130, 810–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Dunn, C. et al. Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology 137, 1289–1300 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Wieland, S., Thimme, R., Purcell, R. H. & Chisari, F. V. Genomic analysis of the host response to hepatitis B virus infection. Proc. Natl Acad. Sci. USA 101, 6669–6674 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gale, M. Jr & Foy, E. M. Evasion of intracellular host defence by hepatitis C virus. Nature 436, 939–945 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Qu, L. & Lemon, S. M. Hepatitis A and hepatitis C viruses: divergent infection outcomes marked by similarities in induction and evasion of interferon responses. Semin. Liver Dis. 30, 319–332 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Ke, P. Y. & Chen, S. S. Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J. Clin. Invest. 121, 37–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Li, X. D., Sun, L., Seth, R. B., Pineda, G. & Chen, Z. J. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl Acad. Sci. USA 102, 17717–17722 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Foy, E. et al. Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 300, 1145–1148 (2003). The first report on HCV immune escape blocking IRF3 function.

    Article  CAS  PubMed  Google Scholar 

  72. Yang, Y. et al. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc. Natl Acad. Sci. USA 104, 7253–7258 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Qu, L. et al. Disruption of TLR3 signaling due to cleavage of TRIF by the hepatitis A virus protease-polymerase processing intermediate, 3CD. PLoS Pathog. 7, e1002169 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Lanford, R. E. et al. Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA. Proc. Natl Acad. Sci. USA 108, 11223–11228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Desai, M. M. et al. Differential, type I interferon-mediated autophagic trafficking of hepatitis C virus proteins in mouse liver. Gastroenterology 141, 674–685 (2011).

    Article  PubMed  CAS  Google Scholar 

  76. Usynin, I., Klotz, C. & Frevert, U. Malaria circumsporozoite protein inhibits the respiratory burst in Kupffer cells. Cell. Microbiol. 9, 2610–2628 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Torgler, R. et al. Sporozoite-mediated hepatocyte wounding limits Plasmodium parasite development via MyD88-mediated NF-κB activation and inducible NO synthase expression. J. Immunol. 180, 3990–3999 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Gowda, D. C. TLR-mediated cell signaling by malaria GPIs. Trends Parasitol. 23, 596–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Taniguchi, M., Seino, K. & Nakayama, T. The NKT cell system: bridging innate and acquired immunity. Nature Immunol. 4, 1164–1165 (2003).

    Article  CAS  Google Scholar 

  80. Swain, M. G. Natural killer T cells within the liver: conductors of the hepatic immune orchestra. Dig. Dis. 28, 7–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Klugewitz, K., Adams, D. H., Emoto, M., Eulenburg, K. & Hamann, A. The composition of intrahepatic lymphocytes: shaped by selective recruitment? Trends Immunol. 25, 590–594 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Polakos, N. K. et al. Early intrahepatic accumulation of CD8+ T cells provides a source of effectors for nonhepatic immune responses. J. Immunol. 179, 201–210 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Keating, R. et al. Virus-specific CD8+ T cells in the liver: armed and ready to kill. J. Immunol. 178, 2737–2745 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nature Immunol. 11, 1127–1135 (2010). A demonstration of a population of CXCR6-expressing intrahepatic NK cells able to mediate antigen-specific memory.

    Article  CAS  Google Scholar 

  85. Schmidt, N. W. et al. Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc. Natl Acad. Sci. USA 105, 14017–14022 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kumar, K. A. et al. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature 444, 937–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Chakravarty, S. et al. CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. Nature Med. 13, 1035–1041 (2007). A classical paper reporting extrahepatic priming of sporozoite-specific T cells.

    Article  CAS  PubMed  Google Scholar 

  88. Carvalho, L. H. et al. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nature Med. 8, 166–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Morrot, A., Hafalla, J. C., Cockburn, I. A., Carvalho, L. H. & Zavala, F. IL-4 receptor expression on CD8+ T cells is required for the development of protective memory responses against liver stages of malaria parasites. J. Exp. Med. 202, 551–560 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Overstreet, M. G., Cockburn, I. A., Chen, Y. C. & Zavala, F. Protective CD8 T cells against Plasmodium liver stages: immunobiology of an 'unnatural' immune response. Immunol. Rev. 225, 272–283 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Cockburn, I. A. et al. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites. PLoS Pathog. 6, e1000877 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Good, M. F. & Doolan, D. L. Malaria vaccine design: immunological considerations. Immunity 33, 555–566 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Amadei, B. et al. Activation of natural killer cells during acute infection with hepatitis C virus. Gastroenterology 138, 1536–1545 (2010).

    Article  PubMed  CAS  Google Scholar 

  94. Canbay, A. et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 38, 1188–1198 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Lang, P. A. et al. Tissue macrophages suppress viral replication and prevent severe immunopathology in an interferon-I-dependent manner in mice. Hepatology 52, 25–32 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Schulz, O. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433, 887–892 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Veerapu, N. S., Raghuraman, S., Liang, T. J., Heller, T. & Rehermann, B. Sporadic reappearance of minute amounts of hepatitis C virus RNA after successful therapy stimulates cellular immune responses. Gastroenterology 140, 676–685 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Rehermann, B., Ferrari, C., Pasquinelli, C. & Chisari, F. V. The hepatitis B virus persists for decades after patients' recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response. Nature Med. 2, 1104–1108 (1996). A landmark paper demonstrating that HBV is controlled but not eliminated.

    Article  CAS  PubMed  Google Scholar 

  101. Bertoletti, A. & Ferrari, C. Kinetics of the immune response during HBV and HCV infection. Hepatology 38, 4–13 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Rehermann, B. & Nascimbeni, M. Immunology of hepatitis B virus and hepatitis C virus infection. Nature Rev. Immunol. 5, 215–229 (2005).

    Article  CAS  Google Scholar 

  103. Guidotti, L. G. & Chisari, F. V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19, 65–91 (2001). A key review on the non-cytolytic antiviral activity of cytokines in HBV-infected transgenic mice.

    Article  CAS  PubMed  Google Scholar 

  104. Garcia-Rodriguez, M. J., Canales, M. A., Hernandez-Maraver, D. & Hernandez-Navarro, F. Late reactivation of resolved hepatitis B virus infection: an increasing complication post rituximab-based regimens treatment? Am. J. Hematol. 83, 673–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. von Hahn, T. et al. Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses during chronic infection in vivo. Gastroenterology 132, 667–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Brimacombe, C. L. et al. Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J. Virol. 85, 596–605 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Lopes, A. R. et al. Bim-mediated deletion of antigen-specific CD8 T cells in patients unable to control HBV infection. J. Clin. Invest. 118, 1835–1845 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Radziewicz, H. et al. Impaired hepatitis C virus (HCV)-specific effector CD8+ T cells undergo massive apoptosis in the peripheral blood during acute HCV infection and in the liver during the chronic phase of infection. J. Virol. 82, 9808–9822 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Bowen, D. G. et al. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J. Clin. Invest. 114, 701–712 (2004). A key paper describing that initial priming of T cells in the liver determines the development of peripheral immune tolerance.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Holz, L. E. et al. Intrahepatic murine CD8 T-cell activation associates with a distinct phenotype leading to Bim-dependent death. Gastroenterology 135, 989–997 (2008).

    Article  PubMed  Google Scholar 

  111. Schurich, A. et al. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-prone CD8 T cells in persistent hepatitis B virus infection. Hepatology 53, 1494–1503 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Larrubia, J. R. et al. Bim-mediated apoptosis and PD-1/PD-L1 pathway impair reactivity of PD1+/CD127 HCV-specific CD8+ cells targeting the virus in chronic hepatitis C virus infection. Cell. Immunol. 269, 104–114 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Tinoco, R., Alcalde, V., Yang, Y., Sauer, K. & Zuniga, E. I. Cell-intrinsic transforming growth factor-β signaling mediates virus-specific CD8+ T cell deletion and viral persistence in vivo. Immunity 31, 145–157 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Benseler, V. et al. Hepatocyte entry leads to degradation of autoreactive CD8 T cells. Proc. Natl Acad. Sci. USA 108, 16735–16740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wherry, E. J. T cell exhaustion. Nature Immunol. 12, 492–499 (2011).

    Article  CAS  Google Scholar 

  116. Iwai, Y., Terawaki, S., Ikegawa, M., Okazaki, T. & Honjo, T. PD-1 inhibits antiviral immunity at the effector phase in the liver. J. Exp. Med. 198, 39–50 (2003). This paper reports the seminal discovery of the essential protective role of PDL1 for the liver.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Dong, H. et al. B7-H1 determines accumulation and deletion of intrahepatic CD8+ T lymphocytes. Immunity 20, 327–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Isogawa, M., Furuichi, Y. & Chisari, F. V. Oscillating CD8+ T cell effector functions after antigen recognition in the liver. Immunity 23, 53–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nature Immunol. 10, 29–37 (2009). An elegant demonstration of multiple co-inhibitory pathways driving T cell exhaustion.

    Article  CAS  Google Scholar 

  120. Klenerman, P. & Thimme, R. T cell responses in hepatitis C: the good, the bad and the unconventional. Gut 28 Aug 2011 (doi:10.1136/gutjnl-2011-300620).

  121. Fisicaro, P. et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 138, 682–693 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. He, X. S. et al. Quantitative analysis of hepatitis C virus-specific CD8+ T cells in peripheral blood and liver using peptide–MHC tetramers. Proc. Natl Acad. Sci. USA 96, 5692–5697 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Maini, M. K. et al. The role of virus-specific CD8+ cells in liver damage and viral control during persistent hepatitis B virus infection. J. Exp. Med. 191, 1269–1280 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Bengsch, B. et al. Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog. 6, e1000947 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Blackburn, S. D. et al. Tissue-specific differences in PD-1 and PD-L1 expression during chronic viral infection: implications for CD8 T-cell exhaustion. J. Virol. 84, 2078–2089 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Diehl, L. et al. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology 47, 296–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Yu, M. C. et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 40, 1312–1321 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Mühlbauer, M. et al. PD-L1 is induced in hepatocytes by viral infection and by interferon-α and -γ and mediates T cell apoptosis. J. Hepatol. 45, 520–528 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Zhang, Z. et al. Dynamic programmed death 1 expression by virus-specific CD8 T cells correlates with the outcome of acute hepatitis B. Gastroenterology 134, 1938–1949 (2008).

    Article  PubMed  Google Scholar 

  130. Kassel, R. et al. Chronically inflamed livers up-regulate expression of inhibitory B7 family members. Hepatology 50, 1625–1637 (2009).

    Article  PubMed  Google Scholar 

  131. Mengshol, J. A. et al. A crucial role for Kupffer cell-derived galectin-9 in regulation of T cell immunity in hepatitis C infection. PLoS ONE 5, e9504 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006). A seminal report on the role of PD1 in T cell exhaustion during viral infection.

    Article  CAS  PubMed  Google Scholar 

  133. Doherty, D. G. et al. The human liver contains multiple populations of NK cells, T cells, and CD3+CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J. Immunol. 163, 2314–2321 (1999).

    CAS  PubMed  Google Scholar 

  134. Wuensch, S. A., Spahn, J. & Crispe, I. N. Direct, help-independent priming of CD8+ T cells by adeno-associated virus-transduced hepatocytes. Hepatology 52, 1068–1077 (2010).

    Article  PubMed  CAS  Google Scholar 

  135. Raziorrouh, B. et al. Inhibitory molecules that regulate expansion and restoration of HCV-specific CD4+ T cells in patients with chronic infection. Gastroenterology 141, 1422–1431 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Manigold, T. & Racanelli, V. T-cell regulation by CD4 regulatory T cells during hepatitis B and C virus infections: facts and controversies. Lancet Infect. Dis. 7, 804–813 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Franceschini, D. et al. PD-L1 negatively regulates CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J. Clin. Invest. 119, 551–564 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Knolle, P. et al. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J. Hepatol. 22, 226–229 (1995).

    Article  CAS  PubMed  Google Scholar 

  139. Ha, S. J., West, E. E., Araki, K., Smith, K. A. & Ahmed, R. Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol. Rev. 223, 317–333 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Peppa, D. et al. Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog. 6, e1001227 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Accapezzato, D. et al. Hepatic expansion of a virus-specific regulatory CD8+ T cell population in chronic hepatitis C virus infection. J. Clin. Invest. 113, 963–972 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Abel, M. et al. Intrahepatic virus-specific IL-10-producing CD8 T cells prevent liver damage during chronic hepatitis C virus infection. Hepatology 44, 1607–1616 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Chang, J. J. et al. The phenotype of hepatitis B virus-specific T cells differ in the liver and blood in chronic hepatitis B virus infection. Hepatology 46, 1332–1340 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Chisari, F. V. et al. Production of two distinct and independent hepatic immunoregulatory molecules by the perfused rat liver. Hepatology 5, 735–743 (1985).

    Article  CAS  PubMed  Google Scholar 

  145. Munn, D. H. & Mellor, A. L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest. 117, 1147–1154 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Larrea, E. et al. Upregulation of indoleamine 2,3-dioxygenase in hepatitis C virus infection. J. Virol. 81, 3662–3666 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Dunn, C. et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J. Exp. Med. 204, 667–680 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Oliviero, B. et al. Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology 137, 1151–1160 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Tu, Z. et al. TLR-dependent cross talk between human Kupffer cells and NK cells. J. Exp. Med. 205, 233–244 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Sene, D. et al. Hepatitis C virus (HCV) evades NKG2D-dependent NK cell responses through NS5A-mediated imbalance of inflammatory cytokines. PLoS Pathog. 6, e1001184 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Billerbeck, E. et al. Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc. Natl Acad. Sci. USA 107, 3006–3011 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  152. de Lalla, C. et al. Production of profibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J. Immunol. 173, 1417–1425 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Finlay, B. B. & McFadden, G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124, 767–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Rosen, H. R. Clinical practice. Chronic hepatitis C infection. N. Engl. J. Med. 364, 2429–2438 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Werle-Lapostolle, B. et al. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology 126, 1750–1758 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461, 399–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Tanaka, Y. et al. Genome-wide association of IL28B with response to pegylated interferon-α and ribavirin therapy for chronic hepatitis C. Nature Genet. 41, 1105–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Suppiah, V. et al. IL28B is associated with response to chronic hepatitis C interferon-α and ribavirin therapy. Nature Genet. 41, 1100–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Han, Q., Zhang, C., Zhang, J. & Tian, Z. Reversal of hepatitis B virus-induced immune tolerance by an immunostimulatory 3p-HBx-siRNAs in a retinoic acid inducible gene I-dependent manner. Hepatology 54, 1179–1189 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Bertoletti, A. & Maini, M. K. Protection or damage: a dual role for the virus-specific cytotoxic T lymphocyte response in hepatitis B and C infection? Curr. Opin. Immunol. 12, 403–408 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Kakimi, K., Guidotti, L. G., Koezuka, Y. & Chisari, F. V. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med. 192, 921–930 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Loggi, E. et al. Anti-HBs re-seroconversion after liver transplantation in a patient with past HBV infection receiving a HBsAg positive graft. J. Hepatol. 50, 625–630 (2009).

    Article  PubMed  Google Scholar 

  163. Maini, M. K. & Schurich, A. The molecular basis of the failed immune response in chronic HBV: therapeutic implications. J. Hepatol. 52, 616–619 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Kutscher, S., Bauer, T., Dembek, C., Sprinzl, M. & Protzer, U. Design of therapeutic vaccines: hepatitis B as an example. Microb. Biotechnol. 29 Sep 2011 (doi:10.1111/j.1751-7915.2011.00303.x).

  165. McCaffrey, A. P. et al. Inhibition of hepatitis B virus in mice by RNA interference. Nature Biotech. 21, 639–644 (2003).

    Article  CAS  Google Scholar 

  166. Klein, C. et al. Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology 125, 9–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Ilan, Y. et al. Ablation of persistent hepatitis B by bone marrow transplantation from a hepatitis B-immune donor. Gastroenterology 104, 1818–1821 (1993).

    Article  CAS  PubMed  Google Scholar 

  168. Hui, C. K. et al. A long-term follow-up study on hepatitis B surface antigen-positive patients undergoing allogeneic hematopoietic stem cell transplantation. Blood 106, 464–469 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Hawkins, R. E. et al. Development of adoptive cell therapy for cancer: a clinical perspective. Hum. Gene Ther. 21, 665–672 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Protzer, U. & Abken, H. Can engineered “designer” T cells outsmart chronic hepatitis B? Hepat. Res. Treat. 2010, 901216 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  171. Gehring, A. J. et al. Engineering virus-specific T cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. J. Hepatol. 55, 103–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Bohne, F. et al. T cells redirected against hepatitis B virus surface proteins eliminate infected hepatocytes. Gastroenterology 134, 239–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Abken, H., Hombach, A. & Heuser, C. Immune response manipulation: recombinant immunoreceptors endow T-cells with predefined specificity. Curr. Pharm. Des. 9, 1992–2001 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Riddell, S. R. & Protzer, U. Carving the CAR. Gene Ther. 17, 1191–1192 (2010).

    Article  CAS  PubMed  Google Scholar 

  175. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nature Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Das, A. et al. Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J. Exp. Med. 205, 2111–2124 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Thomas, D. L. et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461, 798–801 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Dazert, E. et al. Loss of viral fitness and cross-recognition by CD8+ T cells limit HCV escape from a protective HLA-B27-restricted human immune response. J. Clin. Invest. 119, 376–386 (2009). An important report demonstrating the link between viral fitness and HLA-B27-restricted T cell immunity.

    PubMed  PubMed Central  CAS  Google Scholar 

  179. Chisari, F. V. & Ferrari, C. Hepatitis B virus immunopathogenesis. Annu. Rev. Immunol. 13, 29–60 (1995).

    Article  CAS  PubMed  Google Scholar 

  180. Kurts, C., Robinson, B. W. & Knolle, P. A. Cross-priming in health and disease. Nature Rev. Immunol. 10, 403–414 (2010).

    Article  CAS  Google Scholar 

  181. Wieland, S. F., Spangenberg, H. C., Thimme, R., Purcell, R. H. & Chisari, F. V. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc. Natl Acad. Sci. USA 101, 2129–2134 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Murray, J. M., Wieland, S. F., Purcell, R. H. & Chisari, F. V. Dynamics of hepatitis B virus clearance in chimpanzees. Proc. Natl Acad. Sci. USA 102, 17780–17785 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Summers, J. & Mason, W. S. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell 29, 403–415 (1982).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the German Research Foundation (DFG; SFB 704, SFB 670, SFB 576, SFB TR57), the Helmholtz Alliance on Immunotherapy of Cancer and the UK Medical Research Council (G0801213). We apologize to all colleagues whose excellent work could not be cited owing to space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ulrike Protzer, Mala K. Maini or Percy A. Knolle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Liver sinusoidal endothelial cells

(LSECs). Cells that line the hepatic sinusoids and take up molecules from the blood. LSECs function as liver-resident antigen-presenting cells and contribute to the induction of local tolerance.

Kupffer cells

Specialized macrophages in the liver that line the sinusoidal vessels. They present antigens, regulate local immune responses and remove microbial particles, endotoxins and other noxious substances that are present in portal venous blood.

Hepatic stellate cells

A perisinusoidal cell population within the space of Dissé that controls sinusoidal diameter and hepatic blood flow. Stellate cells are the main reservoir of retinol in the liver and contribute to the development of liver fibrosis following inflammation. They have antigen-presenting cell function and contribute to local hepatic immune tolerance.

Space of Dissé

The space between liver sinusoidal endothelial cells (LSECs) and hepatocytes that is filled with extracellular matrix and is populated by hepatic stellate cells. Access to the space of Dissé is provided through fenestrae in LSECs or following transcytotic transport through LSECs.

Granulomas

Structures that are orchestrated by macrophages at different stages of activation and are usually surrounded by a layer of lymphocytes. These macrophages resemble epithelial cells and often include multinucleated giant cells. Granuloma formation is a chronic inflammatory response that can be initiated by various infectious and non-infectious agents.

Pattern-recognition receptors

Immune sensory receptors — such as membrane-bound Toll-like receptors or cytosolic RIG-I-like helicases — that recognize conserved structures of pathogens.

LPS tolerance

A state of hyporesponsiveness to various pro-inflammatory stimuli that results from continuous exposure to low-level lipopolysaccharide derived from the gut. It was described first for Kupffer cells.

Unfolded protein response

A response that increases the ability of the endoplasmic reticulum to fold and translocate proteins, decreases the synthesis of proteins and causes cell cycle arrest and apoptosis.

Autophagy

An evolutionarily conserved process, in which acidic double-membrane vacuoles sequester intracellular contents (such as damaged organelles and macromolecules) and target them for degradation and recycling, through fusion with lysosomes.

Damage-associated molecular pattern

(DAMP). A molecule that is produced by or released from host cells following cellular stress, damage or non-physiological cell death. DAMPs are thought to be responsible for the initiation and perpetuation of inflammatory responses and tissue repair under non-infectious conditions. Examples include: hyaluronan (which is released from the degraded stroma); HMGB1 (which is released from the nucleus); and ATP, uric acid, S100 calcium-binding proteins and heat-shock proteins (which are released from the cytosol). They can induce tolerogenic or immunogenic myeloid dendritic cells, depending on the nature of other signals that are present.

Pathogen-associated molecular pattern

(PAMP). A conserved microbial structure that is not found in mammalian cells and is recognized by non-variable pattern-recognition receptors. PAMPs include microbial components such as bacterial lipopolysaccharide, hypomethylated DNA, flagellin, double-stranded RNA and other cytosolic nucleic acids.

Suicidal emperipolesis

A recently described process during which CD8+ T cells invade hepatocytes, leading to CD8+ T cell death.

Ribavirin

A drug that interferes with RNA metabolism and blocks viral replication. Ribavirin is used in combination with interferon-α to treat hepatitis C.

IFNλ

(Interferon-λ; also known as type III IFNs). There are three IFNλ cytokines, interleukin-28A (IL-28A), IL-28B and IL-29, which can be produced by almost every cell type after infection and bind to a heterodimeric receptor (comprised of the IL-10 receptor β-chain and the IL-28 receptor α-chain) that is expressed mainly by epithelial cells. They have direct antiviral properties, induce IFN-responsive gene expression and increase antigen presentation.

Chimeric antigen receptor

An artificial T cell receptor construct that consists of an extracellular single-chain antibody fragment that functions as the antigen-binding domain, together with transmembrane and intracellular signalling domains from the T cell receptor CD3ζ chain and/or from a co-stimulatory molecule such as CD28.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Protzer, U., Maini, M. & Knolle, P. Living in the liver: hepatic infections. Nat Rev Immunol 12, 201–213 (2012). https://doi.org/10.1038/nri3169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing