Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways

Key Points

  • Apoptosis and programmed necrosis are common host defence signalling pathways that contribute to the elimination of intracellular pathogens.

  • Caspase 8 promotes apoptosis and suppresses programmed necrosis in complex with FAS-associated death domain protein (FADD) and cellular FLICE-like inhibitory protein (cFLIP).

  • Many viruses encode inhibitors of caspase 8 activity to suppress apoptosis. Caspase 8 inhibition unveils programmed necrosis, a pathway that may also be suppressed by viral inhibitors of cell death.

  • Programmed necrosis has only recently been recognized as a host-defence pathway through the characterization of cell death suppressors encoded by murine cytomegalovirus (MCMV).

  • Programmed necrosis is dependent on receptor-interacting protein 3 (RIP3) and can be either RIP1-dependent (necroptosis) or RIP1-independent (MCMV-induced programmed necrosis).

  • Pathogen-associated dysregulation of caspase 8 can drive both inflammation and programmed necrosis, contributing to disease outcomes.

Abstract

Pathogens specifically target both the caspase 8-dependent apoptotic cell death pathway and the necrotic cell death pathway that is dependent on receptor-interacting protein 1 (RIP1; also known as RIPK1) and RIP3 (also known as RIPK3). The fundamental co-regulation of these two cell death pathways emerged when the midgestational death of mice deficient in FAS-associated death domain protein (FADD) or caspase 8 was reversed by elimination of RIP1 or RIP3, indicating a far more entwined relationship than previously appreciated. Thus, mammals require caspase 8 activity during embryogenesis to suppress the kinases RIP1 and RIP3 as part of the dialogue between two distinct cell death processes that together fulfil reinforcing roles in the host defence against intracellular pathogens such as herpesviruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caspase 8-mediated regulation of RIP1–RIP3 signalling pathways.
Figure 2: Viral modulation of cell death signals mediated by caspase 8 activation and RIP1–RIP3 pathways.

Similar content being viewed by others

References

  1. Strasser, A., O'Connor, L. & Dixit, V. M. Apoptosis signaling. Annu. Rev. Biochem. 69, 217–245 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Yuan, J. & Kroemer, G. Alternative cell death mechanisms in development and beyond. Genes Dev. 24, 2592–2602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol. 1, 489–495 (2000). A seminal study that demonstrated that the kinase RIP1 is a mediator of necrosis induced by the death receptor FAS and that caspase 8 is a crucial negative regulator of the pathway.

    Article  CAS  Google Scholar 

  5. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009). References 5–7 demonstrated that a RHIM-dependent RIP1–RIP3 kinase complex mediates necrosis induced by death receptors.

    Article  CAS  PubMed  Google Scholar 

  8. Sun, X., Yin, J., Starovasnik, M. A., Fairbrother, W. J. & Dixit, V. M. Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J. Biol. Chem. 277, 9505–9511 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. & Green, D. R. The BCL-2 family reunion. Mol. Cell 37, 299–310 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Pop, C. & Salvesen, G. S. Human caspases: activation, specificity, and regulation. J. Biol. Chem. 284, 21777–21781 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kantari, C. & Walczak, H. Caspase-8 and Bid: caught in the act between death receptors and mitochondria. Biochim. Biophys. Acta 1813, 558–563 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Rev. Mol. Cell Biol. 11, 700–714 (2010).

    Article  CAS  Google Scholar 

  15. Kang, T. B. et al. Caspase-8 serves both apoptotic and nonapoptotic roles. J. Immunol. 173, 2976–2984 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Kang, T. B. et al. Mutation of a self-processing site in caspase-8 compromises its apoptotic but not its nonapoptotic functions in bacterial artificial chromosome-transgenic mice. J. Immunol. 181, 2522–2532 (2008). This study formally demonstrated that the role of caspase 8 in mediating extrinsic apoptosis is distinct from its essential role during mammalian embryogenesis.

    Article  CAS  PubMed  Google Scholar 

  17. Sakamaki, K. et al. Ex vivo whole-embryo culture of caspase-8-deficient embryos normalize their aberrant phenotypes in the developing neural tube and heart. Cell Death Differ. 9, 1196–1206 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Varfolomeev, E. E. et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Yeh, W. C. et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, J., Cado, D., Chen, A., Kabra, N. H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Yeh, W. C. et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12, 633–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011). This study showed that mice lacking both Casp8 and Rip3 are viable, fertile and immunocompetent, and sustain antiviral T cell immunity. Thus, dysregulation of RIP3 underlies the embryonic lethality, as well as the defects in T cell function, in caspase 8-deficient mice. Like FAS-deficient mice, Casp8−/−Rip3−/− mice fail to eliminate excess T cells as they age.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oberst, A. et al. Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011). This study showed that mice lacking both Casp8 and Rip3 develop normally into adults but fail to eliminate excess T cells as they age, similarly to FAS-deficient mice. The regulation of RIP1–RIP3 activity was attributed to proteolytic activity of the caspase 8–cFLIP L complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, H. et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373–376 (2011). This study showed that mice lacking both Fadd and Rip1 complete embryonic development. Thus, dysregulation of RIP1 underlies the embryonic lethality, as well as the defects in T cell function, in FADD-deficient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Degterev, A. & Yuan, J. Expansion and evolution of cell death programmes. Nature Rev. Mol. Cell Biol. 9, 378–390 (2008).

    Article  CAS  Google Scholar 

  26. Moquin, D. & Chan, F. K. The molecular regulation of programmed necrotic cell injury. Trends Biochem. Sci. 35, 434–441 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7, 302–313 (2010). A virus-encoded RHIM-containing suppressor of programmed necrosis was identified in this study, unveiling a natural RIP3-dependent, RIP1-independent death pathway in mammalian host defence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kalai, M. et al. Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death Differ. 9, 981–994 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Feoktistova, M. et al. cIAPs block ripoptosome formation, a RIP1/Caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449–463 (2011). This study showed that TLR3 signalling engages a cytosolic caspase 8-activating complex (the ripoptosome) that requires RIP1 kinase activity, is repressed by cIAP and is differentially controlled by cFLIP L and cFLIP s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tenev, T. et al. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432–448 (2011). This study identified that cellular responses to genotoxic stress involve the formation of a cytosolic caspase 8-activating complex (the ripoptosome), with a requirement for RIP1 kinase activity and repression by cIAP.

    Article  CAS  PubMed  Google Scholar 

  31. Wallach, D., Kovalenko, A. & Kang, T. B. 'Necrosome'-induced inflammation: must cells die for it? Trends Immunol. 32, 505–509 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Bonnet, M. C. et al. The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35, 572–582 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Welz, P. S. et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477, 330–334 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Gunther, C. et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Wilson, N. S., Dixit, V. & Ashkenazi, A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunol. 10, 348–355 (2009).

    Article  CAS  Google Scholar 

  37. Walczak, H. TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol. Rev. 244, 9–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Silke, J. The regulation of TNF signalling: what a tangled web we weave. Curr. Opin. Immunol. 23, 620–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Wajant, H. & Scheurich, P. TNFR1-induced activation of the classical NF-κB pathway. FEBS J. 278, 862–876 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Benedict, C. A., Norris, P. S. & Ware, C. F. To kill or be killed: viral evasion of apoptosis. Nature Immunol. 3, 1013–1018 (2002).

    Article  CAS  Google Scholar 

  41. Kischkel, F. C. et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Sprick, M. R. et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12, 599–609 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Ashkenazi, A. & Dixit, V. M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Ting, A. T., Pimentel-Muinos, F. X. & Seed, B. RIP mediates tumor necrosis factor receptor 1 activation of NF-κB but not Fas/APO-1-initiated apoptosis. EMBO J. 15, 6189–6196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsu, H., Huang, J., Shu, H. B., Baichwal, V. & Goeddel, D. V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Hsu, H., Xiong, J. & Goeddel, D. V. The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell 81, 495–504 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274, 787–789 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Vince, J. E. et al. TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (TNF) to efficiently activate NF-κB and to prevent TNF-induced apoptosis. J. Biol. Chem. 284, 35906–35915 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J. Biol. Chem. 283, 24295–24299 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, L., Du, F. & Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008). This report revealed that TNFR1 pro-death signalling is blocked by the E3 ligase cIAP in part through inhibition of the RIP1-dependent assembly of a caspase 8-activating complex, but that this inhibition is reversed by the deubiquitylating enzyme CYLD.

    Article  CAS  PubMed  Google Scholar 

  54. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Vanlangenakker, N. et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 18, 656–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Biton, S. & Ashkenazi, A. NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling. Cell 145, 92–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Vucic, D., Dixit, V. M. & Wertz, I. E. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nature Rev. Mol. Cell Biol. 12, 439–452 (2011).

    Article  CAS  Google Scholar 

  58. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Boatright, K. M., Deis, C., Denault, J. B., Sutherlin, D. P. & Salvesen, G. S. Activation of caspases-8 and -10 by FLIPL . Biochem. J. 382, 651–657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Micheau, O. et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J. Biol. Chem. 277, 45162–45171 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Oberst, A. et al. Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J. Biol. Chem. 285, 16632–16642 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pop, C. et al. FLIPL induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem. J. 433, 447–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Chan, F. K. et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J. Biol. Chem. 278, 51613–51621 (2003). This study presented initial evidence that some mammalian viruses encode suppressors of programmed necrosis.

    Article  CAS  PubMed  Google Scholar 

  64. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu, J. V. et al. Complementary roles of FADD and RIPK3 in T cell homeostasis and antiviral immunity. Proc. Natl Acad. Sci. USA 108, 15312–15317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feng, S. et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell. Signal. 19, 2056–2067 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. O'Donnell, M. A. et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nature Cell Biol. 13, 1437–1442 (2011). This study identified the RIP1 deubiquitylating enzyme CYLD as a key target of caspase 8 in suppressing necrosis following death receptor signalling.

    Article  CAS  PubMed  Google Scholar 

  68. Ch'en, I. L., Tsau, J. S., Molkentin, J. D., Komatsu, M. & Hedrick, S. M. Mechanisms of necroptosis in T cells. J. Exp. Med. 208, 633–641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hedrick, S. M., Ch'en, I. L. & Alves, B. N. Intertwined pathways of programmed cell death in immunity. Immunol. Rev. 236, 41–53 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ch'en, I. L. et al. Antigen-mediated T cell expansion regulated by parallel pathways of death. Proc. Natl Acad. Sci. USA 105, 17463–17468 (2008). This study demonstrated that caspase 8-deficient T cells fail to proliferate in response to antigens owing to RIP1-dependent necroptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gaide, O. et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-κB activation. Nature Immunol. 3, 836–843 (2002).

    Article  CAS  Google Scholar 

  72. Ruefli-Brasse, A. A., French, D. M. & Dixit, V. M. Regulation of NF-κB-dependent lymphocyte activation and development by paracaspase. Science 302, 1581–1584 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Kawadler, H., Gantz, M. A., Riley, J. L. & Yang, X. The paracaspase MALT1 controls caspase-8 activation during lymphocyte proliferation. Mol. Cell 31, 415–421 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Misra, R. S. et al. Caspase-8 and c-FLIPL associate in lipid rafts with NF-κB adaptors during T cell activation. J. Biol. Chem. 282, 19365–19374 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Eimon, P. M. et al. Delineation of the cell-extrinsic apoptosis pathway in the zebrafish. Cell Death Differ. 13, 1619–1630 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Naitza, S. et al. The Drosophila immune defense against Gram-negative infection requires the death protein dFADD. Immunity 17, 575–581 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep. 1, 353–358 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Newton, K., Sun, X. & Dixit, V. M. Kinase RIP3 is dispensable for normal NF-κB signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol. Cell. Biol. 24, 1464–1469 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Challa, S. & Chan, F. K. Going up in flames: necrotic cell injury and inflammatory diseases. Cell. Mol. Life Sci. 67, 3241–3253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Kaiser, W. J., Upton, J. W. & Mocarski, E. S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-κB activation via the DNA-dependent activator of IFN regulatory factors. J. Immunol. 181, 6427–6434 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Rebsamen, M. et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-κB. EMBO Rep. 10, 916–922 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. DeFilippis, V. R., Alvarado, D., Sali, T., Rothenburg, S. & Fruh, K. Human cytomegalovirus induces the interferon response via the DNA sensor ZBP1. J. Virol. 84, 585–598 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Ishii, K. J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–729 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Galluzzi, L. et al. Viral strategies for the evasion of immunogenic cell death. J. Intern. Med. 267, 526–542 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Lamkanfi, M. & Dixit, V. M. Manipulation of host cell death pathways during microbial infections. Cell Host Microbe 8, 44–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Roy, C. R. & Mocarski, E. S. Pathogen subversion of cell-intrinsic innate immunity. Nature Immunol. 8, 1179–1187 (2007).

    Article  CAS  Google Scholar 

  89. Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477–1485 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Clem, R. J., Fechheimer, M. & Miller, L. K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254, 1388–1390 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Chen, P., Tian, J., Kovesdi, I. & Bruder, J. T. Interaction of the adenovirus 14.7-kDa protein with FLICE inhibits Fas ligand-induced apoptosis. J. Biol. Chem. 273, 5815–5820 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Taylor, J. M. & Barry, M. Near death experiences: poxvirus regulation of apoptotic death. Virology 344, 139–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Lagunoff, M. & Carroll, P. A. Inhibition of apoptosis by the γ-herpesviruses. Int. Rev. Immunol. 22, 373–399 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. McCormick, A. L. Control of apoptosis by human cytomegalovirus. Curr. Top. Microbiol. Immunol. 325, 281–295 (2008).

    CAS  PubMed  Google Scholar 

  95. Li, M. & Beg, A. A. Induction of necrotic-like cell death by tumor necrosis factor α and caspase inhibitors: novel mechanism for killing virus-infected cells. J. Virol. 74, 7470–7477 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mocarski, E. S. in Human Herpesviruses: Biology, Therapy and Immunoprophylaxis (eds Arvin, A. et al.) 204–230 (Cambridge Univ. Press, Cambridge, UK, 2007).

    Book  Google Scholar 

  97. Cicin-Sain, L. et al. Dominant-negative FADD rescues the in vivo fitness of a cytomegalovirus lacking an antiapoptotic viral gene. J. Virol. 82, 2056–2064 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Skaletskaya, A. et al. A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc. Natl Acad. Sci. USA 98, 7829–7834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brune, W. Inhibition of programmed cell death by cytomegaloviruses. Virus Res. 157, 144–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Manzur, M., Fleming, P., Huang, D. C., Degli-Esposti, M. A. & Andoniou, C. E. Virally mediated inhibition of Bax in leukocytes promotes dissemination of murine cytomegalovirus. Cell Death Differ. 16, 312–320 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. Cytomegalovirus M45 cell death suppression requires receptor-interacting protein (RIP) homotypic interaction motif (RHIM)-dependent interaction with RIP1. J. Biol. Chem. 283, 16966–16970 (2008). This was the first report of a virus-encoded RHIM-containing inhibitor of RHIM-dependent signalling pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mack, C., Sickmann, A., Lembo, D. & Brune, W. Inhibition of proinflammatory and innate immune signaling pathways by a cytomegalovirus RIP1-interacting protein. Proc. Natl Acad. Sci. USA 105, 3094–3099 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lembo, D. & Brune, W. Tinkering with a viral ribonucleotide reductase. Trends Biochem. Sci. 34, 25–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. McCormick, A. L., Skaletskaya, A., Barry, P. A., Mocarski, E. S. & Goldmacher, V. S. Differential function and expression of the viral inhibitor of caspase 8-induced apoptosis (vICA) and the viral mitochondria-localized inhibitor of apoptosis (vMIA) cell death suppressors conserved in primate and rodent cytomegaloviruses. Virology 316, 221–233 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Paterson, S. et al. Antagonistic coevolution accelerates molecular evolution. Nature 464, 275–278 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ferguson, T. A., Choi, J. & Green, D. R. Armed response: how dying cells influence T-cell functions. Immunol. Rev. 241, 77–88 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Krysko, D. V., D'Herde, K. & Vandenabeele, P. Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11, 1709–1726 (2006).

    Article  PubMed  Google Scholar 

  109. Strasser, A., Jost, P. J. & Nagata, S. The many roles of FAS receptor signaling in the immune system. Immunity 30, 180–192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    Article  CAS  PubMed  Google Scholar 

  111. Nagata, S. & Suda, T. Fas and Fas ligand: lpr and gld mutations. Immunol. Today 16, 39–43 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Salmena, L. & Hakem, R. Caspase-8 deficiency in T cells leads to a lethal lymphoinfiltrative immune disorder. J. Exp. Med. 202, 727–732 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chun, H. J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419, 395–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Wang, J. et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98, 47–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Rosenberg, S., Zhang, H. & Zhang, J. FADD deficiency impairs early hematopoiesis in the bone marrow. J. Immunol. 186, 203–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Beisner, D. R., Ch'en, I. L., Kolla, R. V., Hoffmann, A. & Hedrick, S. M. Cutting edge: innate immunity conferred by B cells is regulated by caspase-8. J. Immunol. 175, 3469–3473 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Imtiyaz, H. Z. et al. The Fas-associated death domain protein is required in apoptosis and TLR-induced proliferative responses in B cells. J. Immunol. 176, 6852–6861 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Lemmers, B. et al. Essential role for caspase-8 in Toll-like receptors and NFκB signaling. J. Biol. Chem. 282, 7416–7423 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Kovalenko, A. et al. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J. Exp. Med. 206, 2161–2177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lee, P. et al. Dynamic expression of epidermal caspase 8 simulates a wound healing response. Nature 458, 519–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Li, C. et al. Development of atopic dermatitis-like skin disease from the chronic loss of epidermal caspase-8. Proc. Natl Acad. Sci. USA 107, 22249–22254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ben Moshe, T. et al. Role of caspase-8 in hepatocyte response to infection and injury in mice. Hepatology 45, 1014–1024 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank D. Livingston-Rosanoff and L. Daley-Bauer for their contributions, L. Roback and A. L. McCormick for helping to facilitate this research and C. Benedict for discussions. The research was supported by grants from the US National Institutes of Health (AI030363 and AI020212) and the Georgia Cancer Coalition. We apologize to investigators whose contributions were not cited more extensively owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward S. Mocarski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Edward S. Mocarski's homepage

Glossary

Apoptosis

The most common form of developmental cell death that regulates cell numbers, drives morphogenesis, deletes structures and eliminates unneeded and harmful cells. Apoptosis is a cell-autonomous death pathway mediated by caspases that dismantles the cell but maintains membrane integrity and is characterized by cell shrinkage, membrane blebbing and DNA fragmentation.

RIP1

(Receptor-interacting protein 1; also known as RIPK1). A signalling adaptor and protein kinase that regulates the activation of gene expression via the NF-κB and MAPK pathways and controls the initiation of necroptosis and apoptosis via death domain- and RHIM-dependent complexes.

RIP3

(Receptor-interacting protein 3; also known as RIPK3). A RHIM-containing signalling adaptor and protein kinase that mediates necroptosis and MCMV-induced necrosis.

Programmed necrosis

A cell-autonomous, regulated cell death pathway that is characterized by cell swelling, membrane rupture and cytoplasmic leakage, but not by membrane blebbing.

Necroptosis

A form of programmed necrosis that is executed by the kinase activities of RIP1 and RIP3. This pathway is inhibited by RIP1 kinase inhibitors, such as necrostatin 1 (5-(1H-indol-3-ylmethyl)-3-methyl-2-thioxo-4-imidazolidinone).

RIP homotypic interaction motif

(RHIM). A protein–protein interaction motif containing the core sequence (I/V/L)-(Q/M)-(I/V/L)-G that mediates homophilic interactions between four cellular proteins (namely, RIP1, RIP3, TRIF and DAI) and one viral protein (MCMV vIRA).

Death receptors

A subset of receptors belonging to the TNF receptor superfamily that transmit cell death signals initiated by their cognate ligands. These receptors include TNFR1, FAS, DR3, TRAILR1 and TRAILR2.

Toll-like receptors

(TLRs). A family of pattern recognition receptors that recognize unique structures derived from microorganisms. TLR signalling promotes inflammatory and cytokine responses, as well as cell proliferation or cell death pathways.

FAS

(Also known as CD95). A death receptor of the TNF receptor superfamily. FAS ligand binding induces cell death. FAS signalling controls the homeostatic elimination of T cells.

Death-inducing signalling complex

(DISC). A death receptor-bound complex that contains FADD and caspase 8 (or caspase 10). The DISC assembles following ligand binding and drives autocatalytic caspase 8 (or caspase 10) activation.

Complex I

A TNFR1-bound complex that contains TRADD, TRAF2 or TRAF5, cIAP and RIP1. This complex drives the activation of gene expression via the NF-κB and MAPK pathways.

Cellular inhibitor of apoptosis proteins

(cIAP1 and cIAP2; collectively referred to as cIAP here). Members of a family of functionally and structurally related E3 ubiquitin ligases that regulate canonical and non-canonical activation of NF-κB, as well as MAPK activation by receptors of the TNF receptor superfamily. cIAP polyubiquitylates RIP1 to prevent the formation of the ripoptosome or TNFR1-dependent complex II.

Complex II

A TNFR1- and RIP1-dependent cytosolic complex that contains caspase 8, FADD, cFLIP and RIP1. Within this complex, caspase 8 and cFLIP regulate programmed cell death pathways.

Necrosome

An inducible cytosolic complex that contains oligomerized RIP1 and RIP3. This complex drives RIP1- and RIP3-dependent necroptosis.

Ripoptosome

A RIP1-dependent cytosolic complex that is similar in composition to TNFR1-dependent complex II and that controls programmed cell death pathways.

TIR domain-containing adaptor protein inducing interferon-β

(TRIF). A adaptor protein for TLR3 and TLR4 that organizes downstream signalling cascades leading to IRF3 and NF-κB activation, or cell death. TRIF mediates signalling through a TIR domain, TRAF-binding sites and RHIM-mediated interactions with RIP1 and RIP3.

CARMA1–BCL-10–MALT1 complex

A PKC-dependent specialized signalling complex that is formed during TCR-dependent antigen recognition and that triggers NF-κB activation.

DNA-dependent activator of interferon regulatory factors

(DAI; also known as ZBP1). A cytosolic, RHIM-containing sensor of double-stranded DNA that activates IRF3 and NF-κB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mocarski, E., Upton, J. & Kaiser, W. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat Rev Immunol 12, 79–88 (2012). https://doi.org/10.1038/nri3131

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing