Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of ubiquitylation in immune defence and pathogen evasion

Key Points

  • Ubiquitylation has important roles in innate immune signalling pathways triggered by pattern recognition receptors.

  • Ubiquitylation is used by the macroautophagy system for the delivery and clearance of cargos containing microorganisms.

  • Ubiquitylation controls the expression levels of MHC molecules and, hence, antigen presentation.

  • Ubiquitylation regulates signalling pathways in B cells and T cells.

  • Pathogens exploit the ubiquitylation system to evade immune surveillance.

Abstract

Ubiquitylation is a widely used post-translational protein modification that regulates many biological processes, including immune responses. The role of ubiquitin in immune regulation was originally uncovered through studies of antigen presentation and the nuclear factor-κB family of transcription factors, which orchestrate host defence against microorganisms. Recent studies have revealed crucial roles of ubiquitylation in many aspects of the immune system, including innate and adaptive immunity and antimicrobial autophagy. In addition, mounting evidence indicates that microbial pathogens exploit the ubiquitin pathway to evade the host immune system. Here, we review recent advances on the role of ubiquitylation in host defence and pathogen evasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ubiquitin-mediated signalling in TLR and IL-1R pathways.
Figure 2: Different types of polyubiquitylation in the TLR4 signalling pathways.
Figure 3: Roles of ubiquitylation in diverse PRR signalling pathways.
Figure 4: Ubiquitin adaptor proteins mediate selective autophagy of pathogens.
Figure 5: Ubiquitylation controls the expression of MHC molecules.
Figure 6: Ubiquitin E3 ligases regulate TCR signalling.

Similar content being viewed by others

References

  1. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Sun, S. C. Deubiquitylation and regulation of the immune response. Nature Rev. Immunol. 8, 501–511 (2008).

    Article  CAS  Google Scholar 

  3. Harhaj, E. W. & Dixit, V. M. Deubiquitinases in the regulation of NF-κB signaling. Cell Res. 21, 22–39 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Dikic, I., Wakatsuki, S. & Walters, K. J. Ubiquitin-binding domains — from structures to functions. Nature Rev. Mol. Cell Biol. 10, 659–671 (2009).

    Article  CAS  Google Scholar 

  5. Chen, Z. J. & Sun, L. J. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 33, 275–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Ye, Y. & Rape, M. Building ubiquitin chains: E2 enzymes at work. Nature Rev. Mol. Cell Biol. 10, 755–764 (2009).

    Article  CAS  Google Scholar 

  10. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin–RING ubiquitin ligases. Nature Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  11. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunol. 11, 373–384 (2010).

    Article  CAS  Google Scholar 

  13. Lin, S. C., Lo, Y. C. & Wu, H. Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885–890 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000). This paper provides the first evidence that K63-linked polyubiquitylation is important for IKK activation.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001). This paper shows that TAK1 is an upstream kinase of MAPK kinases and IKK and that the kinase activity of TAK1 is stimulated by TRAF6-catalysed K63-linked polyubiquitylation.

    Article  CAS  PubMed  Google Scholar 

  16. Kanayama, A. et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535–548 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, C. J., Conze, D. B., Li, T., Srinivasula, S. M. & Ashwell, J. D. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nature Cell Biol. 8, 398–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, S. & Chen, Z. J. Expanding role of ubiquitination in NF-κB signaling. Cell Res. 21, 6–21 (2011).

    Article  PubMed  CAS  Google Scholar 

  20. Meylan, E. et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κB activation. Nature Immunol. 5, 503–507 (2004).

    Article  CAS  Google Scholar 

  21. Chang, M., Jin, W. & Sun, S. C. Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nature Immunol. 10, 1089–1095 (2009).

    Article  CAS  Google Scholar 

  22. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Tseng, P. H. et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nature Immunol. 11, 70–75 (2010). This paper reveals how different types of polyubiquitylation cooperate to regulate immune signalling.

    Article  CAS  Google Scholar 

  25. Gonzalez-Navajas, J. M. et al. Interleukin 1 receptor signaling regulates DUBA expression and facilitates Toll-like receptor 9-driven antiinflammatory cytokine production. J. Exp. Med. 207, 2799–2807 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628–1632 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Kagan, J. C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nature Immunol. 9, 361–368 (2008).

    Article  CAS  Google Scholar 

  28. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunol. 5, 730–737 (2004).

    Article  CAS  Google Scholar 

  29. Rehwinkel, J. & Reis e Sousa, C. RIGorous detection: exposing virus through RNA sensing. Science 327, 284–286 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Yoneyama, M. & Fujita, T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 227, 54–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature Immunol. 6, 981–988 (2005).

    Article  CAS  Google Scholar 

  33. Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Xu, L. G. et al. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19, 727–740 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Li, X. D., Sun, L., Seth, R. B., Pineda, G. & Chen, Z. J. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl Acad. Sci. USA 102, 17717–17722 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gack, M. U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007). This paper provides the first evidence that TRIM25 and K63-linked polyubiquitylation are important for RIG-I activation.

    Article  CAS  PubMed  Google Scholar 

  37. Gack, M. U. et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5, 439–449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oshiumi, H., Matsumoto, M., Hatakeyama, S. & Seya, T. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-β induction during the early phase of viral infection. J. Biol. Chem. 284, 807–817 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315–330 (2010). This paper describes the reconstitution of the RIG-I-mediated antiviral pathway in vitro and reveals that RIG-I binds to unanchored K63-linked polyubiquitin chains and that this binding is important for IRF3 activation by RIG-I.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kowalinski, E. et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147, 423–435 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Luo, D. et al. Structural insights into RNA recognition by RIG-I. Cell 147, 409–422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Civril, F. et al. The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling. EMBO Rep. 12, 1127–1134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang, F. et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479, 423–427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hou, F. et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeng, W., Xu, M., Liu, S., Sun, L. & Chen, Z. J. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol. Cell 36, 315–325 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Li, S., Wang, L., Berman, M., Kong, Y. Y. & Dorf, M. E. Mapping a dynamic innate immunity protein interaction network regulating type I interferon production. Immunity 35, 426–440 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arimoto, K. et al. Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense. Proc. Natl Acad. Sci. USA 107, 15856–15861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsuchida, T. et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33, 765–776 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Barber, G. N. Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr. Opin. Immunol. 23, 10–20 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bertrand, M. J. et al. Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 30, 789–801 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Hasegawa, M. et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation. EMBO J. 27, 373–383 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Pertel, T. et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472, 361–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xia, Z. P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009). References 52 and 53 present evidence that unanchored K63-linked polyubiquitin chains activate TAK1 to trigger immune and inflammatory responses. Reference 52 also shows that retroviral capsids stimulate the E3 ligase activity of TRIM5 to synthesize unanchored K63-linked polyubiquitin chains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Bosanac, I. et al. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Mol. Cell 40, 548–557 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Boone, D. L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nature Immunol. 5, 1052–1060 (2004).

    Article  CAS  Google Scholar 

  57. Turer, E. E. et al. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J. Exp. Med. 205, 451–464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hitotsumatsu, O. et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28, 381–390 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shembade, N., Ma, A. & Harhaj, E. W. Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135–1139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, M., Lee, A. J., Wu, X. & Sun, S. C. Regulation of antiviral innate immunity by deubiquitinase CYLD. Cell. Mol. Immunol. 8, 502–504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kirkin, V., McEwan, D. G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol. Cell 34, 259–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Kraft, C., Peter, M. & Hofmann, K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nature Cell Biol. 12, 836–841 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Virgin, H. W. & Levine, B. Autophagy genes in immunity. Nature Immunol. 10, 461–470 (2009).

    CAS  Google Scholar 

  64. Perrin, A. J., Jiang, X., Birmingham, C. L., So, N. S. & Brumell, J. H. Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr. Biol. 14, 806–811 (2004). This paper presents evidence of polyubiquitin tagging on the surface of an intracellular bacterium.

    Article  CAS  PubMed  Google Scholar 

  65. Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nature Immunol. 10, 1215–1221 (2009). This paper shows that NDP52 is a 'missing link' between ubiquitylated intracellular bacteria and autophagy.

    Article  CAS  Google Scholar 

  66. Zheng, Y. T. et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183, 5909–5916 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011). This paper identifies optineurin as another link between ubiquitylated bacteria and autophagy, and provides evidence that selective autophagy can be regulated through phosphorylation of optineurin by TBK1, which is activated by some TLRs that detect bacterial infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Cemma, M., Kim, P. K. & Brumell, J. H. The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy 7, 22–26 (2011).

    Article  CAS  Google Scholar 

  70. Ponpuak, M. et al. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32, 329–341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu, Y. et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yano, T. et al. Autophagic control of Listeria through intracellular innate immune recognition in Drosophila. Nature Immunol. 9, 908–916 (2008).

    Article  CAS  Google Scholar 

  73. van Niel, G., Wubbolts, R. & Stoorvogel, W. Endosomal sorting of MHC class II determines antigen presentation by dendritic cells. Curr. Opin. Cell Biol. 20, 437–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Shin, J. S. et al. Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature 444, 115–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. van Niel, G. et al. Dendritic cells regulate exposure of MHC class II at their plasma membrane by oligoubiquitination. Immunity 25, 885–894 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Ishido, S., Goto, E., Matsuki, Y. & Ohmura-Hoshino, M. E3 ubiquitin ligases for MHC molecules. Curr. Opin. Immunol. 21, 78–83 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Matsuki, Y. et al. Novel regulation of MHC class II function in B cells. EMBO J. 26, 846–854 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Walseng, E. et al. Ubiquitination regulates MHC class II–peptide complex retention and degradation in dendritic cells. Proc. Natl Acad. Sci. USA 107, 20465–20470 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. De Gassart, A. et al. MHC class II stabilization at the surface of human dendritic cells is the result of maturation-dependent MARCH I down-regulation. Proc. Natl Acad. Sci. USA 105, 3491–3496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thibodeau, J. et al. Interleukin-10-induced MARCH1 mediates intracellular sequestration of MHC class II in monocytes. Eur. J. Immunol. 38, 1225–1230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Young, L. J. et al. Differential MHC class II synthesis and ubiquitination confers distinct antigen-presenting properties on conventional and plasmacytoid dendritic cells. Nature Immunol. 9, 1244–1252 (2008).

    Article  CAS  Google Scholar 

  82. Tze, L. E. et al. CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10-driven MARCH1-mediated ubiquitination and degradation. J. Exp. Med. 208, 149–165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rock, K. L. & Goldberg, A. L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 17, 739–779 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Michalek, M. T., Grant, E. P., Gramm, C., Goldberg, A. L. & Rock, K. L. A role for the ubiquitin-dependent proteolytic pathway in MHC class I-restricted antigen presentation. Nature 363, 552–554 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Groettrup, M., Kirk, C. J. & Basler, M. Proteasomes in immune cells: more than peptide producers? Nature Rev. Immunol. 10, 73–78 (2010).

    Article  CAS  Google Scholar 

  86. Lilley, B. N. & Ploegh, H. L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T. A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Stagg, H. R. et al. The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER. J. Cell Biol. 186, 685–692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Burr, M. L. et al. HRD1 and UBE2J1 target misfolded MHC class I heavy chains for endoplasmic reticulum-associated degradation. Proc. Natl Acad. Sci. USA 108, 2034–2039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Duncan, L. M. et al. Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J. 25, 1635–1645 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sun, L., Deng, L., Ea, C. K., Xia, Z. P. & Chen, Z. J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. King, C. G. et al. Cutting edge: requirement for TRAF6 in the induction of T cell anergy. J. Immunol. 180, 34–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Stempin, C. C. et al. The E3 ubiquitin ligase mindbomb-2 (MIB2) protein controls B-cell CLL/lymphoma 10 (BCL10)-dependent NF-κB activation. J. Biol. Chem. 286, 37147–37157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mueller, D. L. E3 ubiquitin ligases as T cell anergy factors. Nature Immunol. 5, 883–890 (2004).

    Article  CAS  Google Scholar 

  95. Nurieva, R. I. et al. The E3 ubiquitin ligase GRAIL regulates T cell tolerance and regulatory T cell function by mediating T cell receptor–CD3 degradation. Immunity 32, 670–680 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vardhana, S., Choudhuri, K., Varma, R. & Dustin, M. L. Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster. Immunity 32, 531–540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Huang, H. et al. K33-linked polyubiquitination of T cell receptor-ζ regulates proteolysis-independent T cell signaling. Immunity 33, 60–70 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chang, M. et al. The ubiquitin ligase Peli1 negatively regulates T cell activation and prevents autoimmunity. Nature Immunol. 12, 1002–1009 (2011).

    Article  CAS  Google Scholar 

  99. Vallabhapurapu, S. et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling. Nature Immunol. 9, 1364–1370 (2008).

    Article  CAS  Google Scholar 

  100. Matsuzawa, A. et al. Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 321, 663–668 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Neumann, M. & Naumann, M. Beyond IκBs: alternative regulation of NF-κB activity. FASEB J. 21, 2642–2654 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Quezada, C. M., Hicks, S. W., Galan, J. E. & Stebbins, C. E. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc. Natl Acad. Sci. USA 106, 4864–4869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhu, Y. et al. Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nature Struct. Mol. Biol. 15, 1302–1308 (2008).

    Article  CAS  Google Scholar 

  104. Graff, J. W., Ettayebi, K. & Hardy, M. E. Rotavirus NSP1 inhibits NFκB activation by inducing proteasome-dependent degradation of β-TrCP: a novel mechanism of IFN antagonism. PLoS Pathog. 5, e1000280 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Le Negrate, G. et al. Salmonella secreted factor L deubiquitinase of Salmonella typhimurium inhibits NF-κB, suppresses IκBα ubiquitination and modulates innate immune responses. J. Immunol. 180, 5045–5056 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Andrew, A. & Strebel, K. HIV-1 Vpu targets cell surface markers CD4 and BST-2 through distinct mechanisms. Mol. Aspects Med. 31, 407–417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rodrigues, L. et al. Termination of NF-κB activity through a gammaherpesvirus protein that assembles an EC5S ubiquitin-ligase. EMBO J. 28, 1283–1295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ashida, H. et al. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nature Cell Biol. 12, 66–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13, 539–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Bauhofer, O. et al. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J. Virol. 81, 3087–3096 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Barro, M. & Patton, J. T. Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. Proc. Natl Acad. Sci. USA 102, 4114–4119 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yu, Y., Wang, S. E. & Hayward, G. S. The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity 22, 59–70 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Ramachandran, A. & Horvath, C. M. Paramyxovirus disruption of interferon signal transduction: STATus report. J. Interferon Cytokine Res. 29, 531–537 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li, T., Chen, X., Garbutt, K. C., Zhou, P. & Zheng, N. Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124, 105–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Kirchhoff, F. Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 8, 55–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Goila-Gaur, R. & Strebel, K. HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 5, 51 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif–Cul5–SCF complex. Science 302, 1056–1060 (2003). This paper shows that the HIV restriction factor APOBEC3G is degraded in the presence of the HIV protein Vif, which targets APOBEC3G for ubiquitylation by the Cul5 E3 ligase complex.

    Article  CAS  PubMed  Google Scholar 

  119. Liu, B., Sarkis, P. T., Luo, K., Yu, Y. & Yu, X. F. Regulation of Apobec3F and human immunodeficiency virus type 1 Vif by Vif–Cul5–ElonB/C E3 ubiquitin ligase. J. Virol. 79, 9579–9587 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011). References 120 and 121 demonstrate that the HIV-2 Vpx protein targets the HIV restriction factor SAMHD1 for ubiquitylation and degradation, explaining why HIV-2, but not HIV-1, can replicate in macrophages and DCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cui, J. et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 329, 1215–1218 (2010). This paper provides the first example of ubiquitin and NEDD8 inactivation through their modification by a bacterial virulence factor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Boggio, R., Colombo, R., Hay, R. T., Draetta, G. F. & Chiocca, S. A mechanism for inhibiting the SUMO pathway. Mol. Cell 16, 549–561 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Ribet, D. et al. Listeria monocytogenes impairs SUMOylation for efficient infection. Nature 464, 1192–1195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kim, J. G. et al. XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-infected tomato leaves. Plant Cell 20, 1915–1929 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kattenhorn, L. M., Korbel, G. A., Kessler, B. M., Spooner, E. & Ploegh, H. L. A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae. Mol. Cell 19, 547–557 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Inn, K. S. et al. Inhibition of RIG-I-mediated signaling by Kaposi's sarcoma-associated herpesvirus-encoded deubiquitinase ORF64. J. Virol. 85, 10899–10904 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Frias-Staheli, N. et al. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2, 404–416 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Skaug, B. & Chen, Z. J. Emerging role of ISG15 in antiviral immunity. Cell 143, 187–190 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hagglund, R. & Roizman, B. Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J. Virol. 78, 2169–2178 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Daubeuf, S. et al. HSV ICP0 recruits USP7 to modulate TLR-mediated innate response. Blood 113, 3264–3275 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yokota, S., Okabayashi, T., Yokosawa, N. & Fujii, N. Measles virus P protein suppresses Toll-like receptor signal through up-regulation of ubiquitin-modifying enzyme A20. FASEB J. 22, 74–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Yoshikawa, Y. et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nature Cell Biol. 11, 1233–1240 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005).

    CAS  PubMed  Google Scholar 

  135. Collins, C. A. et al. Atg5-independent sequestration of ubiquitinated mycobacteria. PLoS Pathog. 5, e1000430 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Lapaque, N. et al. Salmonella regulates polyubiquitination and surface expression of MHC class II antigens. Proc. Natl Acad. Sci. USA 106, 14052–14057 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wilson, J. E., Katkere, B. & Drake, J. R. Francisella tularensis induces ubiquitin-dependent major histocompatibility complex class II degradation in activated macrophages. Infect. Immun. 77, 4953–4965 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, X. et al. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J. Cell Biol. 177, 613–624 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cadwell, K. & Coscoy, L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309, 127–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Thomas, M., Wills, M. & Lehner, P. J. Natural killer cell evasion by an E3 ubiquitin ligase from Kaposi's sarcoma-associated herpesvirus. Biochem. Soc. Trans. 36, 459–463 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Yoshimura, A., Naka, T. & Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nature Rev. Immunol. 7, 454–465 (2007).

    Article  CAS  Google Scholar 

  142. Pothlichet, J., Chignard, M. & Si-Tahar, M. Cutting edge: innate immune response triggered by influenza A virus is negatively regulated by SOCS1 and SOCS3 through a RIG-I/IFNAR1-dependent pathway. J. Immunol. 180, 2034–2038 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Frey, K. G. et al. HSV-1-induced SOCS-1 expression in keratinocytes: use of a SOCS-1 antagonist to block a novel mechanism of viral immune evasion. J. Immunol. 183, 1253–1262 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Charoenthongtrakul, S., Zhou, Q., Shembade, N., Harhaj, N. S. & Harhaj, E. W. Human T cell leukemia virus type 1 Tax inhibits innate antiviral signaling via NF-κB-dependent induction of SOCS1. J. Virol. 85, 6955–6962 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Oliere, S. et al. HTLV-1 evades type I interferon antiviral signaling by inducing the suppressor of cytokine signaling 1 (SOCS1). PLoS Pathog. 6, e1001177 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Patel, J. C., Hueffer, K., Lam, T. T. & Galan, J. E. Diversification of a Salmonella virulence protein function by ubiquitin-dependent differential localization. Cell 137, 283–294 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the Chen laboratory is supported by grants from the US National Institutes of Health, the Cancer Prevention and Research Institute of Texas and the Welch Foundation. Z.J.C. is an Investigator of Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijian J. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Zhijian J. Chen's homepage

Glossary

Non-canonical NF-κB signalling

An NF-κB activation pathway that processes the NF-κB precursor p100 into p52, uses an NF-κB dimer containing p52 and REL-B subunits, and occurs during B cell maturation and activation. By contrast, canonical NF-κB signalling involves the degradation of IκB and the activation of NF-κB dimers comprising p65 (also known as REL-A), c-REL and p50.

Gene flow

The transfer of genes from one population to another, or across species.

Convergent evolution

The process by which lineages that are not closely related in evolutionary terms independently acquire similar traits.

Sumoylation

A type of protein modification in which the ubiquitin-like protein SUMO is covalently attached to target proteins by an enzymatic cascade that is analogous to that involved in ubiquitylation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Chen, Z. The role of ubiquitylation in immune defence and pathogen evasion. Nat Rev Immunol 12, 35–48 (2012). https://doi.org/10.1038/nri3111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing