Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The light and dark sides of intestinal intraepithelial lymphocytes

Key Points

  • Intraepithelial lymphocytes (IELs) that reside within the epithelium of the intestine form one of the main branches of the immune system.

  • IELs are almost exclusively antigen-experienced T cells that are heterogeneous in phenotype, ontogeny, antigen specificity and function.

  • IELs consist of two main subtypes. The natural IELs consist of T cell receptor-αβ (TCRαβ)+ T cells and TCRγδ+ T cells that express CD8αα or are negative for both CD4 and CD8. These IELs acquire their activated and functional phenotype, in part, during self-agonist antigen-based selection in the thymus. Induced IELs consist of CD4+ and CD8αβ+ TCRαβ+ T cells that often co-express CD8αα. They are the progeny of naive T cells that are conventionally selected in the thymus and acquire their activated phenotype and functional differentiation post-thymically in response to cognate antigens encountered in the periphery.

  • IELs serve unique and dual functions. Their 'light side' is their ability to preserve the integrity of the epithelium and prevent damage induced by invading pathogens (protective immunity) or induced by excessive or aberrant inflammatory immune responses.

  • IELs also have a 'dark side': as they are located within the fragile, single cell layer of the epithelium and possess potent cytotoxic effector machinery, they can target the epithelium in a destructive way. Consequently, IELs may drive immunopathological responses in chronic inflammatory diseases, such as inflammatory bowel disease and coeliac disease.

Abstract

The intraepithelial lymphocytes (IELs) that reside within the epithelium of the intestine form one of the main branches of the immune system. As IELs are located at this critical interface between the core of the body and the outside environment, they must balance protective immunity with an ability to safeguard the integrity of the epithelial barrier: failure to do so would compromise homeostasis of the organism. In this Review, we address how the unique development and functions of intestinal IELs allow them to achieve this balance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thymic and peripheral differentiation of natural and induced IELs.
Figure 2: Kinetics of the accumulation of natural and induced IELs.
Figure 3: The 'light' and 'dark' sides of intestinal IELs.

Similar content being viewed by others

References

  1. Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Rev. Immunol. 10, 159–169 (2010).

    Article  CAS  Google Scholar 

  2. Darlington, D. & Rogers, A. W. Epithelial lymphocytes in the small intestine of the mouse. J. Anat. 100, 813–830 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonneville, M. et al. Intestinal intraepithelial lymphocytes are a distinct set of γδ T cells. Nature 336, 479–481 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Goodman, T. & Lefrancois, L. Expression of the γ-δ T-cell receptor on intestinal CD8+ intraepithelial lymphocytes. Nature 333, 855–858 (1988). References 3 and 4 describe the high frequency of TCRγδ-expressing T cells among IELs.

    Article  CAS  PubMed  Google Scholar 

  5. Guy-Grand, D. et al. Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J. Exp. Med. 173, 471–481 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Cheroutre, H. Starting at the beginning: new perspectives on the biology of mucosal T cells. Annu. Rev. Immunol. 22, 217–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Sugahara, S. et al. Extrathymic derivation of gut lymphocytes in parabiotic mice. Immunology 96, 57–65 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suzuki, S. et al. Low level of mixing of partner cells seen in extrathymic T cells in the liver and intestine of parabiotic mice: its biological implication. Eur. J. Immunol. 28, 3719–3729 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Shires, J., Theodoridis, E. & Hayday, A. C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001). One of the first studies to describe the cytotoxic function of IELs against virus-infected intestinal epithelial cells.

    Article  CAS  PubMed  Google Scholar 

  10. Offit, P. A. & Dudzik, K. I. Rotavirus-specific cytotoxic T lymphocytes appear at the intestinal mucosal surface after rotavirus infection. J. Virol. 63, 3507–3512 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang, F. et al. Cytosolic PLA2 is required for CTL-mediated immunopathology of celiac disease via NKG2D and IL-15. J. Exp. Med. 206, 707–719 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chardes, T., Buzoni-Gatel, D., Lepage, A., Bernard, F. & Bout, D. Toxoplasma gondii oral infection induces specific cytotoxic CD8α/β+ Thy-1+ gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes. J. Immunol. 153, 4596–4603 (1994).

    CAS  PubMed  Google Scholar 

  13. Muller, S., Buhler-Jungo, M. & Mueller, C. Intestinal intraepithelial lymphocytes exert potent protective cytotoxic activity during an acute virus infection. J. Immunol. 164, 1986–1994 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Roberts, A. I., O'Connell, S. M., Biancone, L., Brolin, R. E. & Ebert, E. C. Spontaneous cytotoxicity of intestinal intraepithelial lymphocytes: clues to the mechanism. Clin. Exp. Immunol. 94, 527–532 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ebert, E. C. & Roberts, A. I. Lymphokine-activated killing by human intestinal lymphocytes. Cell. Immunol. 146, 107–116 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Guy-Grand, D., Malassis-Seris, M., Briottet, C. & Vassalli, P. Cytotoxic differentiation of mouse gut thymodependent and independent intraepithelial T lymphocytes is induced locally. Correlation between functional assays, presence of perforin and granzyme transcripts, and cytoplasmic granules. J. Exp. Med. 173, 1549–1552 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. Nature Immunol. 5, 597–605 (2004).

    Article  CAS  Google Scholar 

  18. Denning, T. L. et al. Mouse TCRαβ+CD8αα intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. J. Immunol. 178, 4230–4239 (2007). References 17 and 18 suggest that CD8αα+TCRαβ+ IEL precursor cells acquire functional specialization during their differentiation in the thymus. Their unique functional and phenotypic differentiation is reflected in the gene signature that they display at the mature stage as CD8αα+TCRαβ+ IELs.

    Article  CAS  PubMed  Google Scholar 

  19. Bhagat, G. et al. Small intestinal CD8+TCRγδ+NKG2A+ intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. J. Clin. Invest. 118, 281–293 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, R., Wei, H., Sun, R., Zhang, J. & Tian, Z. NKG2D recognition mediates Toll-like receptor 3 signaling-induced breakdown of epithelial homeostasis in the small intestines of mice. Proc. Natl Acad. Sci. USA 104, 7512–7515 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cepek, K. L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. Nature 372, 190–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Kilshaw, P. J. & Murant, S. J. A new surface antigen on intraepithelial lymphocytes in the intestine. Eur. J. Immunol. 20, 2201–2207 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Leishman, A. J. et al. Precursors of functional MHC class I- or class II-restricted CD8αα+ T cells are positively selected in the thymus by agonist self-peptides. Immunity 16, 355–364 (2002). The first report to describe the thymic agonist selection pathway for MHC class-I- and MHC class-II-restricted IELs using TCR transgenic models.

    Article  CAS  PubMed  Google Scholar 

  24. Gangadharan, D. et al. Identification of pre- and postselection TCRαβ+ intraepithelial lymphocyte precursors in the thymus. Immunity 25, 631–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Madakamutil, L. T. et al. CD8αα-mediated survival and differentiation of CD8 memory T cell precursors. Science 304, 590–593 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Hershberg, R. et al. Expression of the thymus leukemia antigen in mouse intestinal epithelium. Proc. Natl Acad. Sci. USA 87, 9727–9731 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leishman, A. J. et al. T cell responses modulated through interaction between CD8αα and the nonclassical MHC class I molecule, TL. Science 294, 1936–1939 (2001). Identified TLA as a high-affinity ligand for CD8αα and showed functional effects of the interaction between TLA and CD8αα homodimers.

    Article  CAS  PubMed  Google Scholar 

  28. Lefrancois, L. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J. Immunol. 147, 1746–1751 (1991).

    CAS  PubMed  Google Scholar 

  29. Mosley, R. L., Styre, D. & Klein, J. R. CD4+CD8+ murine intestinal intraepithelial lymphocytes. Int. Immunol. 2, 361–365 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Ohteki, T. & MacDonald, H. R. Expression of the CD28 costimulatory molecule on subsets of murine intestinal intraepithelial lymphocytes correlates with lineage and responsiveness. Eur. J. Immunol. 23, 1251–1255 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Van Houten, N., Mixter, P. F., Wolfe, J. & Budd, R. C. CD2 expression on murine intestinal intraepithelial lymphocytes is bimodal and defines proliferative capacity. Int. Immunol. 5, 665–672 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Lin, T. et al. CD3-CD8+ intestinal intraepithelial lymphocytes (IEL) and the extrathymic development of IEL. Eur. J. Immunol. 24, 1080–1087 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, R., Wang-Zhu, Y. & Grey, H. Interactions between double positive thymocytes and high affinity ligands presented by cortical epithelial cells generate double negative thymocytes with T cell regulatory activity. Proc. Natl Acad. Sci. USA 99, 2181–2186 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guy-Grand, D., Cuenod-Jabri, B., Malassis-Seris, M., Selz, F. & Vassalli, P. Complexity of the mouse gut T cell immune system: identification of two distinct natural killer T cell intraepithelial lineages. Eur. J. Immunol. 26, 2248–2256 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Huleatt, J. W. & Lefrancois, L. Antigen-driven induction of CD11c on intestinal intraepithelial lymphocytes and CD8+ T cells in vivo. J. Immunol. 154, 5684–5693 (1995).

    CAS  PubMed  Google Scholar 

  36. Guy-Grand, D. et al. Different use of T cell receptor transducing modules in two populations of gut intraepithelial lymphocytes are related to distinct pathways of T cell differentiation. J. Exp. Med. 180, 673–679 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Ohno, H., Ono, S., Hirayama, N., Shimada, S. & Saito, T. Preferential usage of the Fc receptor γ chain in the T cell antigen receptor complex by γ/δ T cells localized in epithelia. J. Exp. Med. 179, 365–369 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Park, S. Y. et al. Differential contribution of the FcR γ chain to the surface expression of the T cell receptor among T cells localized in epithelia: analysis of FcR γ-deficient mice. Eur. J. Immunol. 25, 2107–2110 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Arstila, T. et al. Identical T cell clones are located within the mouse gut epithelium and lamina propia and circulate in the thoracic duct lymph. J. Exp. Med. 191, 823–834 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lefrancois, L. & Masopust, D. T cell immunity in lymphoid and non-lymphoid tissues. Curr. Opin. Immunol. 14, 503–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Mowat, A. M. Anatomical basis of tolerance and immunity to intestinal antigens. Nature Rev. Immunol. 3, 331–341 (2003).

    Article  CAS  Google Scholar 

  42. Neutra, M. R., Mantis, N. J. & Kraehenbuhl, J. P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nature Immunol. 2, 1004–1009 (2001).

    Article  CAS  Google Scholar 

  43. Cheroutre, H. & Lambolez, F. Doubting the TCR coreceptor function of CD8αα. Immunity 28, 149–159 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Regnault, A., Cumano, A., Vassalli, P., Guy-Grand, D. & Kourilsky, P. Oligoclonal repertoire of the CD8αα and the CD8αβ TCR-α/β murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. J. Exp. Med. 180, 1345–1358 (1994). This study describes the oligoclonal repertoire of TCRαβ+ IELs in mice.

    Article  CAS  PubMed  Google Scholar 

  45. Cheroutre, H. & Lambolez, F. The thymus chapter in the life of gut-specific intra epithelial lymphocytes. Curr. Opin. Immunol. 20, 185–191 (2008).

    Article  CAS  Google Scholar 

  46. Ishikawa, H. et al. Curriculum vitae of intestinal intraepithelial T cells: their developmental and behavioral characteristics. Immunol. Rev. 215, 154–165 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Lambolez, F., Kronenberg, M. & Cheroutre, H. Thymic differentiation of TCRαβ+ CD8αα+ IELs. Immunol. Rev. 215, 178–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Rocha, B. The extrathymic T-cell differentiation in the murine gut. Immunol. Rev. 215, 166–177 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Eberl, G. & Littman, D. R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Cheroutre, H., Mucida, D. & Lambolez, F. The importance of being earnestly selfish. Nature Immunol. 10, 1047–1049 (2009).

    Article  CAS  Google Scholar 

  51. Hogquist, K. A., Baldwin, T. A. & Jameson, S. C. Central tolerance: learning self-control in the thymus. Nature Rev. Immunol. 5, 772–782 (2005).

    Article  CAS  Google Scholar 

  52. Jensen, K. D. et al. Thymic selection determines γδ T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon γ. Immunity 29, 90–100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carpenter, A. C. & Bosselut, R. Decision checkpoints in the thymus. Nature Immunol. 11, 666–673 (2010).

    Article  CAS  Google Scholar 

  54. Collins, A., Littman, D. R. & Taniuchi, I. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nature Rev. Immunol. 9, 106–115 (2009).

    Article  CAS  Google Scholar 

  55. Singer, A., Adoro, S. & Park, J. H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nature Rev. Immunol. 8, 788–801 (2008).

    Article  CAS  Google Scholar 

  56. Manzano, M., Abadia-Molina, A. C., Garcia-Olivares, E., Gil, A. & Rueda, R. Absolute counts and distribution of lymphocyte subsets in small intestine of BALB/c mice change during weaning. J. Nutr. 132, 2757–2762 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Helgeland, L., Brandtzaeg, P., Rolstad, B. & Vaage, J. T. Sequential development of intraepithelial γδ and αβ T lymphocytes expressing CD8αβ in neonatal rat intestine: requirement for the thymus. Immunology 92, 447–456 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Steege, J. C., Buurman, W. A. & Forget, P. P. The neonatal development of intraepithelial and lamina propria lymphocytes in the murine small intestine. Dev. Immunol. 5, 121–128 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Umesaki, Y., Setoyama, H., Matsumoto, S. & Okada, Y. Expansion of αβ T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79, 32–37 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Latthe, M., Terry, L. & MacDonald, T. T. High frequency of CD8αα homodimer-bearing T cells in human fetal intestine. Eur. J. Immunol. 24, 1703–1705 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Vaz, N. M. & Faria, A. M. C. Guia Incompleto de Imunobiologia: Imunologia como se o Organismo Importasse. (COPMED, Belo Horizonte, 1993).

    Google Scholar 

  62. Mota-Santos, T. et al. Divergency in the specificity of the induction and maintenance of neonatal suppression. Eur. J. Immunol. 20, 1717–1721 (1990). References 59 and 62 describe the relevance of microbial colonization for the development of different IEL populations.

    Article  CAS  PubMed  Google Scholar 

  63. Pereira, P. et al. Autonomous activation of B and T cells in antigen-free mice. Eur. J. Immunol. 16, 685–688 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. Hashimoto, K., Handa, H., Umehara, K. & Sasaki, S. Germfree mice reared on an “antigen-free” diet. Lab. Anim. Sci. 28, 38–45 (1978).

    CAS  PubMed  Google Scholar 

  65. Menezes, J. S. et al. Stimulation by food proteins plays a critical role in the maturation of the immune system. Int. Immunol. 15, 447–455 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Staton, T. L. et al. CD8+ recent thymic emigrants home to and efficiently repopulate the small intestine epithelium. Nature Immunol. 7, 482–488 (2006).

    Article  CAS  Google Scholar 

  67. Grueter, B. et al. Runx3 regulates integrin αE/CD103 and CD4 expression during development of CD4-/CD8+ T cells. J. Immunol. 175, 1694–1705 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Staton, T. L., Johnston, B., Butcher, E. C. & Campbell, D. J. Murine CD8+ recent thymic emigrants are αE integrin-positive and CC chemokine ligand 25 responsive. J. Immunol. 172, 7282–7288 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Kunisawa, J. et al. Sphingosine 1-phosphate dependence in the regulation of lymphocyte trafficking to the gut epithelium. J. Exp. Med. 204, 2335–2348 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu, S., Bruce, D., Froicu, M., Weaver, V. & Cantorna, M. T. Failure of T cell homing, reduced CD4/CD8αα intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. Proc. Natl Acad. Sci. USA 105, 20834–20839 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Campbell, D. J. & Butcher, E. C. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 195, 135–141 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206, 3115–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Agace, W. W. T-cell recruitment to the intestinal mucosa. Trends Immunol. 29, 514–522 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003). References 77 and 78 identified a role for retinoic acid-producing DCs in promoting T cell homing to the intestine.

    Article  CAS  PubMed  Google Scholar 

  79. McDermott, M. R. et al. Impaired intestinal localization of mesenteric lymphoblasts associated with vitamin A deficiency and protein-calorie malnutrition. Immunology 45, 1–5 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hammerschmidt, S. I. et al. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J. Exp. Med. 205, 2483–2490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Edele, F. et al. Cutting edge: instructive role of peripheral tissue cells in the imprinting of T cell homing receptor patterns. J. Immunol. 181, 3745–3749 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Johansson-Lindbom, B. & Agace, W. W. Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol. Rev. 215, 226–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. El-Asady, R. et al. TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med. 201, 1647–1657 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ericsson, A., Svensson, M., Arya, A. & Agace, W. W. CCL25/CCR9 promotes the induction and function of CD103 on intestinal intraepithelial lymphocytes. Eur. J. Immunol. 34, 2720–2729 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Andrew, D. P., Rott, L. S., Kilshaw, P. J. & Butcher, E. C. Distribution of α4β7 and αEβ7 integrins on thymocytes, intestinal epithelial lymphocytes and peripheral lymphocytes. Eur. J. Immunol. 26, 897–905 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Poussier, P., Ning, T., Banerjee, D. & Julius, M. A unique subset of self-specific intraintestinal T cells maintains gut integrity. J. Exp. Med. 195, 1491–1497 (2002). Details a protective role for CD8αα+TCRαβ+ IELs in preventing inflammation induced by conventional CD4+ T cells in a model of induced colitis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kuhl, A. A. et al. Aggravation of intestinal inflammation by depletion/deficiency of γδ T cells in different types of IBD animal models. J. Leukoc. Biol. 81, 168–175 (2007).

    Article  PubMed  CAS  Google Scholar 

  88. Mucida, D. & Cheroutre, H. The many face-lifts of CD4 T helper cells. Adv. Immunol. 107, 139–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Roberts, S. J. et al. T-cell αβ+ and γδ+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc. Natl Acad. Sci. USA 93, 11774–11779 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Komano, H. et al. Homeostatic regulation of intestinal epithelia by intraepithelial γδ T cells. Proc. Natl Acad. Sci. USA 92, 6147–6151 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Guy-Grand, D., DiSanto, J. P., Henchoz, P., Malassis-Seris, M. & Vassalli, P. Small bowel enteropathy: role of intraepithelial lymphocytes and of cytokines (IL-12, IFN-γ, TNF) in the induction of epithelial cell death and renewal. Eur. J. Immunol. 28, 730–744 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Boismenu, R. & Havran, W. L. Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266, 1253–1255 (1994). References 90–92 describe protective roles for TCRγδ+ IELs in intestinal epithelial cell growth and turnover and epithelium homeostasis.

    Article  CAS  PubMed  Google Scholar 

  93. Mengel, J. et al. Anti-γδ T cell antibody blocks the induction and maintenance of oral tolerance to ovalbumin in mice. Immunol. Lett. 48, 97–102 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Fujihashi, K. et al. γδ T cells regulate mucosally induced tolerance in a dose-dependent fashion. Int. Immunol. 11, 1907–1916 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Chen, Y., Chou, K., Fuchs, E., Havran, W. L. & Boismenu, R. Protection of the intestinal mucosa by intraepithelial γδ T cells. Proc. Natl Acad. Sci. USA 99, 14338–14343 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Inagaki-Ohara, K. et al. Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect. Immun. 74, 5292–5301 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ismail, A. S., Behrendt, C. L. & Hooper, L. V. Reciprocal interactions between commensal bacteria and γδ intraepithelial lymphocytes during mucosal injury. J. Immunol. 182, 3047–3054 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Mombaerts, P., Arnoldi, J., Russ, F., Tonegawa, S. & Kaufmann, S. H. Different roles of αβ and γδ T cells in immunity against an intracellular bacterial pathogen. Nature 365, 53–56 (1993). Shows a protective role for TCRαβ+ and TCRγδ+ IELs against intracellular bacterial infections in the intestine.

    Article  CAS  PubMed  Google Scholar 

  99. Hamada, S. et al. Importance of murine Vδ1γδ T cells expressing interferon-γ and interleukin-17A in innate protection against Listeria monocytogenes infection. Immunology 125, 170–177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Andrew, E. M. et al. Delineation of the function of a major γδ T cell subset during infection. J. Immunol. 175, 1741–1750 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Tsuchiya, T. et al. Role of γδ T cells in the inflammatory response of experimental colitis mice. J. Immunol. 171, 5507–5513 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Witherden, D. A. et al. The junctional adhesion molecule JAML is a costimulatory receptor for epithelial γδ T cell activation. Science 329, 1205–1210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lepage, A. C., Buzoni-Gatel, D., Bout, D. T. & Kasper, L. H. Gut-derived intraepithelial lymphocytes induce long term immunity against Toxoplasma gondii. J. Immunol. 161, 4902–4908 (1998). Describes a role for IFNγ-producing TCRαβ+CD8αα+IELs in the protection against an intestinal infection with parasites.

    CAS  PubMed  Google Scholar 

  104. Roark, C. L., Simonian, P. L., Fontenot, A. P., Born, W. K. & O'Brien, R. L. γδ T cells: an important source of IL-17. Curr. Opin. Immunol. 20, 353–357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Simpson, S. J. et al. Expression of pro-inflammatory cytokines by TCRαβ+ and TCRγδ+ T cells in an experimental model of colitis. Eur. J. Immunol. 27, 17–25 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Takagaki, Y., DeCloux, A., Bonneville, M. & Tonegawa, S. Diversity of γδ T-cell receptors on murine intestinal intra-epithelial lymphocytes. Nature 339, 712–714 (1989).

    Article  CAS  PubMed  Google Scholar 

  107. Kyes, S., Carew, E., Carding, S. R., Janeway, C. A. Jr & Hayday, A. Diversity in T-cell receptor γ gene usage in intestinal epithelium. Proc. Natl Acad. Sci. USA 86, 5527–5531 (1989). Together with reference 103, references 106 and 107describe the restricted repertoire of TCRγδ+ IELs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tanaka, Y., Morita, C. T., Nieves, E., Brenner, M. B. & Bloom, B. R. Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 375, 155–158 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. O'Brien, R. L. et al. Stimulation of a major subset of lymphocytes expressing T cell receptor γδ by an antigen derived from Mycobacterium tuberculosis. Cell 57, 667–674 (1989).

    Article  CAS  PubMed  Google Scholar 

  110. Yamagata, T., Benoist, C. & Mathis, D. A shared gene-expression signature in innate-like lymphocytes. Immunol. Rev. 210, 52–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Mixter, P. F. et al. A model for the origin of TCR-αβ+ CD4-CD8- B220+ cells based on high affinity TCR signals. J. Immunol. 162, 5747–5756 (1999).

    CAS  PubMed  Google Scholar 

  112. Sewell, A. K. et al. Antagonism of cytotoxic T-lymphocyte activation by soluble CD8. Nature Med. 5, 399–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Cawthon, A. G., Lu, H. & Alexander-Miller, M. A. Peptide requirement for CTL activation reflects the sensitivity to CD3 engagement: correlation with CD8αβ versus CD8αα expression. J. Immunol. 167, 2577–2584 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Ma, C. S., Nichols, K. E. & Tangye, S. G. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu. Rev. Immunol. 25, 337–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001). Details preferential effector memory cell differentiation and cytotoxic function of intestinal CD8+TCRαβ+ IELs in response to infections.

    Article  CAS  PubMed  Google Scholar 

  116. Hansen, S. G. et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nature Med. 15, 293–299 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Dharakul, T. et al. Immunization with baculovirus-expressed recombinant rotavirus proteins VP1, VP4, VP6, and VP7 induces CD8+ T lymphocytes that mediate clearance of chronic rotavirus infection in SCID mice. J. Virol. 65, 5928–5932 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kanwar, S. S., Ganguly, N. K., Walia, B. N. & Mahajan, R. C. Direct and antibody dependent cell mediated cytotoxicity against Giardia lamblia by splenic and intestinal lymphoid cells in mice. Gut 27, 73–77 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176, 2079–2083 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Masopust, D., Jiang, J., Shen, H. & Lefrancois, L. Direct analysis of the dynamics of the intestinal mucosa CD8 T cell response to systemic virus infection. J. Immunol. 166, 2348–2356 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Pope, C. et al. Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J. Immunol. 166, 3402–3409 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Huleatt, J. W., Pilip, I., Kerksiek, K. & Pamer, E. G. Intestinal and splenic T cell responses to enteric Listeria monocytogenes infection: distinct repertoires of responding CD8 T lymphocytes. J. Immunol. 166, 4065–4073 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Mehandru, S. et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 200, 761–770 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, Q. et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434, 1148–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Raffatellu, M. et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nature Med. 14, 421–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Prendergast, A. et al. HIV-1 infection is characterized by profound depletion of CD161+ Th17 cells and gradual decline in regulatory T cells. AIDS 24, 491–502 (2010).

    Article  PubMed  Google Scholar 

  127. Epple, H. J. et al. Acute HIV infection induces mucosal infiltration with CD4+ and CD8+ T cells, epithelial apoptosis, and a mucosal barrier defect. Gastroenterology 139, 1289–1300 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Sugimoto, K. et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest. 118, 534–544 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nature Immunol. 8, 1390–1397 (2007).

    Article  CAS  Google Scholar 

  130. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Mucida, D. et al. Retinoic acid can directly promote TGF-β-mediated Foxp3+ Treg cell conversion of naive T cells. Immunity 30, 471–472; author reply 472–473 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Curtis, M. M. & Way, S. S. Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology 126, 177–185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Conti, H. R. et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206, 299–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. O'Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hershberg, R. M. et al. Highly polarized HLA class II antigen processing and presentation by human intestinal epithelial cells. J. Clin. Invest. 102, 792–803 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Khanna, R. et al. Class I processing-defective Burkitt's lymphoma cells are recognized efficiently by CD4+ EBV-specific CTLs. J. Immunol. 158, 3619–3625 (1997).

    CAS  PubMed  Google Scholar 

  139. Alcami, A. & Koszinowski, U. H. Viral mechanisms of immune evasion. Immunol. Today 21, 447–455 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Giacomelli, R. et al. Increase of circulating γ/δ T lymphocytes in the peripheral blood of patients affected by active inflammatory bowel disease. Clin. Exp. Immunol. 98, 83–88 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kanazawa, H., Ishiguro, Y., Munakata, A. & Morita, T. Multiple accumulation of Vδ2+ γδ T-cell clonotypes in intestinal mucosa from patients with Crohn's disease. Dig. Dis. Sci. 46, 410–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Yeung, M. M. et al. Characterisation of mucosal lymphoid aggregates in ulcerative colitis: immune cell phenotype and TcR-γδ expression. Gut 47, 215–227 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kawaguchi-Miyashita, M. et al. An accessory role of TCRγδ+ cells in the exacerbation of inflammatory bowel disease in TCRα mutant mice. Eur. J. Immunol. 31, 980–988 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Mizoguchi, A. et al. Role of the CD5 molecule on TCR γδ T cell-mediated immune functions: development of germinal centers and chronic intestinal inflammation. Int. Immunol. 15, 97–108 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Park, S. G. et al. T regulatory cells maintain intestinal homeostasis by suppressing γδ T cells. Immunity 33, 791–803 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Guehler, S. R., Finch, R. J., Bluestone, J. A. & Barrett, T. A. Increased threshold for TCR-mediated signaling controls self reactivity of intraepithelial lymphocytes. J. Immunol. 160, 5341–5346 (1998).

    CAS  PubMed  Google Scholar 

  147. Cheroutre, H. In IBD eight can come before four. Gastroenterology 131, 667–670 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Tajima, M. et al. IL-6-dependent spontaneous proliferation is required for the induction of colitogenic IL-17-producing CD8+ T cells. J. Exp. Med. 205, 1019–1027 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nancey, S. et al. CD8+ cytotoxic T cells induce relapsing colitis in normal mice. Gastroenterology 131, 485–496 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Hue, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–377 (2004). Together with reference 148, references 151 and 152 describe a pathway involving IL-15 that induces pathogenic cytotoxic IELs through NKG2D signalling.

    Article  PubMed  Google Scholar 

  152. Jabri, B. & Sollid, L. M. Tissue-mediated control of immunopathology in coeliac disease. Nature Rev. Immunol. 9, 858–870 (2009).

    Article  CAS  Google Scholar 

  153. Jabri, B. et al. Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 118, 867–879 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Bodd, M. et al. HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal Immunol. 3, 594–601 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Monteleone, I. et al. Characterization of IL-17A-producing cells in celiac disease mucosa. J. Immunol. 184, 2211–2218 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Benahmed, M. et al. Inhibition of TGF-β signaling by IL-15: a new role for IL-15 in the loss of immune homeostasis in celiac disease. Gastroenterology 132, 994–1008 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Depaolo, R. W. et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471, 220–224 (2011). Reports an alternative role for retinoic acid, showing that, in the presence of IL-15, retinoic acid induces pro-inflammatory DCs, leading to the generation of pathogenic T cells in the gut.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Uhlig, H. H. et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25, 309–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Hue, S. et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med. 203, 2473–2483 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Targan, S. R. & Karp, L. C. Defects in mucosal immunity leading to ulcerative colitis. Immunol. Rev. 206, 296–305 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Saenz, S. A., Noti, M. & Artis, D. Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol. 31, 407–413 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Veillette, A., Bookman, M. A., Horak, E. M. & Bolen, J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55, 301–308 (1988).

    Article  CAS  PubMed  Google Scholar 

  166. Arcaro, A. et al. Essential role of CD8 palmitoylation in CD8 coreceptor function. J. Immunol. 165, 2068–2076 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Crooks, M. E. & Littman, D. R. Disruption of T lymphocyte positive and negative selection in mice lacking the CD8β chain. Immunity 1, 277–285 (1994).

    Article  CAS  PubMed  Google Scholar 

  168. Hayday, A. & Gibbons, D. Brokering the peace: the origin of intestinal T cells. Mucosal Immunol. 1, 172–174 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kanamori, Y. et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J. Exp. Med. 184, 1449–1459 (1996).

    Article  CAS  PubMed  Google Scholar 

  170. Saito, H. et al. Generation of intestinal T cells from progenitors residing in gut cryptopatches. Science 280, 275–278 (1998).

    Article  CAS  PubMed  Google Scholar 

  171. Lambolez, F. et al. Characterization of T cell differentiation in the murine gut. J. Exp. Med. 195, 437–449 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. De Geus, B. et al. Phenotype of intraepithelial lymphocytes in euthymic and athymic mice: implications for differentiation of cells bearing a CD3-associated γδ T cell receptor. Eur. J. Immunol. 20, 291–298 (1990).

    Article  CAS  PubMed  Google Scholar 

  173. Bandeira, A. et al. Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor γδ. Proc. Natl Acad. Sci. USA 88, 43–47 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Naito, T., Shiohara, T., Hibi, T., Suematsu, M. & Ishikawa, H. RORγt is dispensable for the development of intestinal mucosal T cells. Mucosal Immunol. 1, 198–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Lambolez, F. et al. The thymus exports long-lived fully committed T cell precursors that can colonize primary lymphoid organs. Nature Immunol. 7, 76–82 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This is the manuscript number 1364 of the La Jolla Institute for Allergy and Immunology, California, USA. We thank F. van Wijk for helpful discussions and M. Cheroutre for her contribution. Work in the H.C. laboratory is supported by the National Institutes of Health (RO1 AI050265-06) and the La Jolla Institute for Allergy and Immunology. Work in the D.M. laboratory is supported by The Rockefeller University, New York, USA, and by the Crohn's & Colitis Foundation of America.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hilde Cheroutre or Daniel Mucida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Hilde Cheroutre's homepage

Daniel Mucida's homepage

Glossary

Pathogens

Opportunistic organisms that cause acute or chronic disease following host infection. Derived from the Greek word 'pathos', which means 'suffering'.

Intraepithelial lymphocytes

(IELs). These lymphocyte populations consist mostly of T cells and are found within the epithelial layer of mammalian mucosal linings, such as the gastrointestinal tract and reproductive tract. However, unlike conventional naive T cells, IELs are antigen- experienced T cells and, on encountering antigens, they immediately release cytokines or mediate killing of infected target cells.

Thymus leukaemia antigen

(TLA). A non-polymorphic, non-classical MHC class I molecule (MHC class I-b family) with a restricted expression pattern. It is constitutively expressed on intestinal epithelial cells and can be induced on antigen-presenting cells. TLA is structurally incapable of binding or presenting peptide antigens and it does not engage with T cell receptors. However, the α3 extracellular domain of TLA interacts with CD8α. TLA displays stronger affinity for CD8αα homodimers compared with CD8αβ heterodimers, and CD8αα expression can be detected with TLA-specific tetramers.

Lamina propria

Connective tissue that underlies the epithelium of the mucosa and contains various myeloid and lymphoid cells, including macrophages, dendritic cells, T cells and B cells.

Microbiota

The microorganisms present in normal, healthy individuals. These microorganisms live mostly in the digestive tract but are also found in some other tissues.

Germ-free mice

Mice born and raised in sterile isolators. They are devoid of colonizing microorganisms, but after they have been experimentally colonized by known bacteria, they are said to be gnotobiotic.

Gut-associated lymphoid tissues

Lymphoid structures and aggregates associated with the intestinal mucosa, specifically the tonsils, Peyer's patches, lymphoid follicles, appendix and caecal patch. Enriched in lymphocytes and specialized dendritic cell and macrophage subsets.

Peyer's patches

Groups of lymphoid nodules present in the small intestine (usually the ileum). They occur in the intestinal wall, opposite the line of attachment of the mesentery. They consist of a dome area, B cell follicles and interfollicular T cell areas. High endothelial venules are present mainly in the interfollicular areas.

Mesenteric lymph nodes

Lymph nodes, located at the base of the mesentery, that collect lymph (including cells and antigens) draining from the intestinal mucosa.

Microfold cells

(M cells). Specialized antigen-sampling cells that are located in the follicle-associated epithelium of the organized mucosa-associated lymphoid tissues. M cells deliver antigens by transepithelial vesicular transport from the aero-digestive lumen directly to subepithelial lymphoid tissues of nasopharynx-associated lymphoid tissue and Peyer's patches.

NKG2D

(Natural killer group 2, member D). A lectin-type activating receptor that is encoded by the NK complex and is expressed at the surface of NK cells, NKT cells, natural and induced intraepithelial lymphocytes and conventional T cell receptor-γδ (TCRγδ) T cells, as well as some conventional cytolytic CD8αβ+TCRαβ+ T cells. The ligands for NKG2D are MHC class I polypeptide-related sequence A (MICA) and MICB in humans, and retinoic acid early transcript 1 (RAE1) and H60 in mice. Such ligands are generally expressed at the surface of infected, stressed or transformed cells.

Inflammatory bowel disease

A chronic condition of the intestine that is characterized by severe inflammation and mucosal tissue destruction. The most common forms in humans are ulcerative colitis and Crohn's disease.

Coeliac disease

Coeliac disease is a condition that damages the lining of the small intestine and interferes with nutrient absorption. The damage is due to an aberrant immune response to gluten-derived antigens, which are found in wheat, barley, rye and possibly oats.

Crohn's disease

A form of chronic inflammatory bowel disease that can affect the entire gastrointestinal tract but is most common in the colon and terminal ileum. It is characterized by transmural inflammation, strictures and granuloma formation, and it is thought to result from an abnormal T cell-mediated immune response to commensal bacteria.

Ulcerative colitis

A chronic disease that is characterized by inflammation of the mucosa and sub-mucosa tissues, mainly of the large intestine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol 11, 445–456 (2011). https://doi.org/10.1038/nri3007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing