Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetics of haematopoietic cell development

Key Points

  • Gene expression is regulated by chromatin structure, with active regions being in an open conformation and repressed genes in a closed form. This structure is determined by DNA methylation, histone modifications, nuclear localization and nucleosome positioning.

  • The immune system is generated from self-renewing haematopoietic stem cells that have a plastic chromatin structure and the potential to differentiate. Lineage commitment is associated with a more fixed chromatin structure, as genes associated with alternative lineages assume a closed conformation.

  • Lineage development takes place in distinct stages. During this process, changes in histone modification take place before alterations in gene usage and represent a primary mechanism that allows for the rapid generation of terminally differentiated cells.

  • Lineage commitment in vivo is unidirectional. This process appears to be driven by epigenetic changes (in DNA methylation, for example), which provide long-term stability to decisions made at an earlier stage.

  • Allelic choice in the immune system is controlled in a pre-programmed manner through a process that marks the two alleles separately, probably on the basis of differences in regional replication timing.

Abstract

Cells of the immune system are generated through a developmental cascade that begins in haematopoietic stem cells. During this process, gene expression patterns are programmed in a series of stages that bring about the restriction of cell potential, ultimately leading to the formation of specialized innate immune cells and mature lymphocytes that express antigen receptors. These events involve the regulation of both gene expression and DNA recombination, mainly through the control of chromatin accessibility. In this Review, we describe the epigenetic changes that mediate this complex differentiation process and try to understand the logic of the programming mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heritable epigenetic mechanisms.
Figure 2: Turning off pluripotency genes.
Figure 3: Hierarchy of differentiation in the haematopoietic system.
Figure 4: Epigenetic switches in myeloid versus lymphoid cells.
Figure 5: A model for gene priming with epigenetic marks.
Figure 6: Choreography of allelic choice in B cells.

Similar content being viewed by others

References

  1. Bergman, Y. & Cedar, H. Epigenetic control of recombination in the immune system. Semin. Immunol. 22, 323–329 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Weintraub, H. & Groudine, M. Chromosomal subunits in active genes have an altered conformation. Science 193, 848–856 (1976).

    CAS  PubMed  Google Scholar 

  3. Axel, R., Cedar, H. & Felsenfeld, G. The synthesis of globin RNA from duck reticulocyte chromatin in vitro. Proc. Natl Acad. Sci. USA 70, 2029–2032 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jhunjhunwala, S., van Zelm, M. C., Peak, M. M. & Murre, C. Chromatin architecture and the generation of antigen receptor diversity. Cell 138, 435–448 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hand, R. Eucaryotic DNA: organization of the genome for replication. Cell 15, 317–325 (1978).

    CAS  PubMed  Google Scholar 

  6. Goren, A. & Cedar, H. Replicating by the clock. Nature Rev. Mol. Cell Biol. 4, 25–32 (2003).

    CAS  Google Scholar 

  7. Kerem, B. S., Goitein, R., Diamond, G., Cedar, H. & Marcus, M. Mapping of DNase-I sensitive regions on mitotic chromosomes. Cell 38, 493–499 (1984).

    CAS  PubMed  Google Scholar 

  8. Zhang, J., Feng, X., Hashimshony, T., Keshet, I. & Cedar, H. Establishment of transcriptional competence in early and late S-phase. Nature 420, 198–202 (2002).

    CAS  PubMed  Google Scholar 

  9. Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature 371, 435–438 (1994).

    CAS  PubMed  Google Scholar 

  10. Macleod, D., Charlton, J., Mullins, J. & Bird, A. P. Sp1 sites in the mouse Aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8, 2282–2292 (1994).

    CAS  PubMed  Google Scholar 

  11. Keshet, I., Lieman-Hurwitz, J. & Cedar, H. DNA methylation affects the formation of active chromatin. Cell 44, 535–543 (1986).

    CAS  PubMed  Google Scholar 

  12. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    CAS  PubMed  Google Scholar 

  13. Campos, E. I. & Reinberg, D. Histones: annotating chromatin. Annu. Rev. Genet. 43, 559–599 (2009).

    CAS  PubMed  Google Scholar 

  14. Imhof, A. Epigenetic regulators and histone modification. Brief. Funct. Genomic. Proteomic. 5, 222–227 (2006).

    CAS  PubMed  Google Scholar 

  15. Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol. 10, 1291–1300 (2008).

    CAS  PubMed  Google Scholar 

  16. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    CAS  PubMed  Google Scholar 

  17. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu, C. et al. Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc. Natl Acad. Sci. USA 107, 19266–19271 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    CAS  PubMed  Google Scholar 

  20. Zhang, Y. et al. Intrinsic histone–DNA interactions are not the major determinant of nucleosome positions in vivo. Nature Struct. Mol. Biol. 16, 847–852 (2009).

    CAS  Google Scholar 

  21. Gao, H. et al. Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5. Proc. Natl Acad. Sci. USA 106, 11258–11263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, Y. C. et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nature Immunol. 11, 635–643 (2010).

    CAS  Google Scholar 

  24. Treiber, T. et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription-independent poising of chromatin. Immunity 32, 714–725 (2010).

    CAS  PubMed  Google Scholar 

  25. Li, L. et al. Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells. Nature Immunol. 12, 129–136 (2011). References 22–25 described the genome-wide localization of transcription factors that are key determinants in the haematopoietic system.

    CAS  Google Scholar 

  26. Feldman, N. et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nature Cell Biol. 8, 188–194 (2006).

    CAS  PubMed  Google Scholar 

  27. Epsztejn-Litman, S. et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Struct. Mol. Biol. 15, 1176–1183 (2008).

    CAS  Google Scholar 

  28. Kim, J. B. et al. Direct reprogramming of human neural stem cells by OCT4. Nature 461, 649–643 (2009).

    CAS  PubMed  Google Scholar 

  29. Chao, M. P., Seita, J. & Weissman, I. L. Establishment of a normal hematopoietic and leukemia stem cell hierarchy. Cold Spring Harb. Symp. Quant. Biol. 73, 439–449 (2008).

    CAS  PubMed  Google Scholar 

  30. Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    CAS  PubMed  Google Scholar 

  31. Christensen, J. L. & Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl Acad. Sci. USA 98, 14541–14546 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Serwold, T., Ehrlich, L. I. & Weissman, I. L. Reductive isolation from bone marrow and blood implicates common lymphoid progenitors as the major source of thymopoiesis. Blood 113, 807–815 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Karsunky, H., Inlay, M. A., Serwold, T., Bhattacharya, D. & Weissman, I. L. Flk2+ common lymphoid progenitors possess equivalent differentiation potential for the B and T lineages. Blood 111, 5562–5570 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    CAS  PubMed  Google Scholar 

  35. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    CAS  PubMed  Google Scholar 

  36. Orkin, S. H. & Zon, L. I. SnapShot: hematopoiesis. Cell 132, 712 (2008).

    CAS  PubMed  Google Scholar 

  37. Luc, S., Buza-Vidas, N. & Jacobsen, S. E. Delineating the cellular pathways of hematopoietic lineage commitment. Semin. Immunol. 20, 213–220 (2008).

    CAS  PubMed  Google Scholar 

  38. Zandi, S., Bryder, D. & Sigvardsson, M. Load and lock: the molecular mechanisms of B-lymphocyte commitment. Immunol. Rev. 238, 47–62 (2010).

    CAS  PubMed  Google Scholar 

  39. Inlay, M. A. et al. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. Genes Dev. 23, 2376–2381 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    CAS  PubMed  Google Scholar 

  41. Pronk, C. J. et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1, 428–442 (2007).

    CAS  PubMed  Google Scholar 

  42. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    CAS  PubMed  Google Scholar 

  43. Challen, G. A., Boles, N. C., Chambers, S. M. & Goodell, M. A. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1. Cell Stem Cell 6, 265–278 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Arinobu, Y. et al. Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1, 416–427 (2007).

    CAS  PubMed  Google Scholar 

  45. Laslo, P., Pongubala, J. M., Lancki, D. W. & Singh, H. Gene regulatory networks directing myeloid and lymphoid cell fates within the immune system. Semin. Immunol. 20, 228–235 (2008).

    CAS  PubMed  Google Scholar 

  46. Mandel, E. M. & Grosschedl, R. Transcription control of early B cell differentiation. Curr. Opin. Immunol. 22, 161–167 (2010).

    CAS  PubMed  Google Scholar 

  47. Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011). This paper reported a comprehensive transcriptome analysis of 38 distinct purified populations of human haematopoietic cells. These data, together with sophisticated bioinformatics analysis and high-throughput DNA binding data for multiple transcription factors, provided a resource for studying gene regulation in haematopoiesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ji, H. et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467, 338–342 (2010). This study was the first to provide comprehensive DNA methylation maps for MPPs, CLPs, CMPs, GMPs and thymocyte progenitors, revealing a programme of DNA methylation changes during lineage-specific differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Borgel, J. et al. Targets and dynamics of promoter DNA methylation during early mouse development. Nature Genet. 42, 1093–1100 (2010).

    CAS  PubMed  Google Scholar 

  50. Kirillov, A. et al. A role for nuclear NF-κB in B-cell-specific demethylation of the Igκ locus. Nature Genet. 13, 435–441 (1996).

    CAS  PubMed  Google Scholar 

  51. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, S. C. & Zhang, Y. Active DNA demethylation: many roads lead to Rome. Nature Rev. Mol. Cell Biol. 11, 607–620 (2010).

    CAS  Google Scholar 

  53. Guo, J. U., Su, Y., Zhong, C., Ming, G. L. & Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Langemeijer, S. M. et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nature Genet. 41, 838–842 (2009).

    CAS  PubMed  Google Scholar 

  55. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    PubMed  Google Scholar 

  56. Levine, R. L. & Carroll, M. A common genetic mechanism in malignant bone marrow diseases. N. Engl. J. Med. 360, 2355–2357 (2009).

    CAS  PubMed  Google Scholar 

  57. Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839–843 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Figueroa, M. E. et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17, 13–27 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pillay, L. M., Forrester, A. M., Erickson, T., Berman, J. N. & Waskiewicz, A. J. The Hox cofactors Meis1 and Pbx act upstream of gata1 to regulate primitive hematopoiesis. Dev. Biol. 340, 306–317 (2010).

    CAS  PubMed  Google Scholar 

  60. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    CAS  PubMed  Google Scholar 

  61. Broske, A. M. et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nature Genet. 41, 1207–1215 (2009).

    PubMed  Google Scholar 

  62. Trowbridge, J. J., Snow, J. W., Kim, J. & Orkin, S. H. DNA methyltransferase 1 is essential for and uniquely regulates haematopoietic stem and progenitor cells. Cell Stem Cell 5, 442–449 (2009). References 61 and 62 showed a crucial role for DNMT1 in controlling the self-renewal of HSCs and commitment to lymphoid versus myeloid differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gaudet, F. et al. Induction of tumors in mice by genomic hypomethylation. Science 300, 489–492 (2003).

    CAS  PubMed  Google Scholar 

  64. Tadokoro, Y., Ema, H., Okano, M., Li, E. & Nakauchi, H. De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J. Exp. Med. 204, 715–722 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Schwartz, Y. B. & Pirrotta, V. Polycomb complexes and epigenetic states. Curr. Opin. Cell Biol. 20, 266–273 (2008).

    CAS  PubMed  Google Scholar 

  66. Pietersen, A. M. & van Lohuizen, M. Stem cell regulation by polycomb repressors: postponing commitment. Curr. Opin. Cell Biol. 20, 201–207 (2008).

    CAS  PubMed  Google Scholar 

  67. Muller, J. & Kassis, J. A. Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr. Opin. Genet. Dev. 16, 476–484 (2006).

    PubMed  Google Scholar 

  68. Sing, A. et al. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138, 885–897 (2009).

    CAS  PubMed  Google Scholar 

  69. Woo, C. J., Kharchenko, P. V., Daheron, L., Park, P. J. & Kingston, R. E. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 140, 99–110 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Landeira, D. & Fisher, A. G. Inactive yet indispensable: the tale of Jarid2. Trends Cell Biol. 21, 74–80 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao, J. et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 40, 939–953 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kanhere, A. et al. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol. Cell 38, 675–688 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006). This study identified 'bivalent domains' as regions marked with H3K27me3 and H3K4me3 that coincide with silenced developmental genes in ES cells, and suggested that these genes are poised for activation following differentiation.

    CAS  PubMed  Google Scholar 

  74. Pan, G. et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1, 299–312 (2007).

    CAS  PubMed  Google Scholar 

  75. Zhao, X. D. et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298 (2007).

    CAS  PubMed  Google Scholar 

  76. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  Google Scholar 

  78. Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80–93 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Weishaupt, H., Sigvardsson, M. & Attema, J. L. Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells. Blood 115, 247–256 (2010). References 78 and 79 identified genome-wide changes in gene expression and histone modification during haematopoiesis, emphasizing that developmentally regulated genes are specifically epigenetically primed in HSCs for subsequent activation or repression during lineage commitment.

    CAS  PubMed  Google Scholar 

  80. Adli, M., Zhu, J. & Bernstein, B. E. Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nature Methods 7, 615–618 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Iwama, A. et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21, 843–851 (2004).

    CAS  PubMed  Google Scholar 

  82. Oguro, H. et al. Poised lineage specification in multipotential hematopoietic stem and progenitor cells by the polycomb protein Bmi1. Cell Stem Cell 6, 279–286 (2010). This paper reported that BMI1 is crucial for the multipotency of HSCs and MPPs.Loss of BMI1 results in accelerated lymphoid specification owing to premature expression of Ebf1 and Pax5 , which are bivalently marked in HSCs.

    CAS  PubMed  Google Scholar 

  83. Attema, J. L. et al. Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proc. Natl Acad. Sci. USA 104, 12371–12376 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Orford, K. et al. Differential H3K4 methylation identifies developmentally poised hematopoietic genes. Dev. Cell 14, 798–809 (2008).

    CAS  PubMed  Google Scholar 

  85. Maës, J. et al. Lymphoid-affiliated genes are associated with active histone modifications in human hematopoietic stem cells. Blood 112, 2722–2729 (2008).

    PubMed  Google Scholar 

  86. Pekowska, A., Benoukraf, T., Ferrier, P. & Spicuglia, S. A unique H3K4me2 profile marks tissue-specific gene regulation. Genome Res. 20, 1493–1502 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ramirez, J., Lukin, K. & Hagman, J. From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment. Curr. Opin. Immunol. 22, 177–184 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    PubMed  PubMed Central  Google Scholar 

  89. Decker, T. et al. Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis. Immunity 30, 508–520 (2009).

    CAS  PubMed  Google Scholar 

  90. Walter, K., Bonifer, C. & Tagoh, H. Stem cell-specific epigenetic priming and B cell-specific transcriptional activation at the mouse Cd19 locus. Blood 112, 1673–1682 (2008).

    CAS  PubMed  Google Scholar 

  91. Xu, J. et al. Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 12377–12382 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Xu, J. et al. Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes Dev. 23, 2824–2838 (2009). This study demonstrated that enhancer sequences are already epigenetically pre-marked in ES cells.These marks may be essential for maintaining competence for transcriptional activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yancopoulos, G. D., Blackwell, T. K., Suh, H., Hood, L. & Alt, F. W. Introduced T cell receptor variable region gene segments recombine in pre-B cells: evidence that B and T cells use a common recombinase. Cell 44, 251–259 (1986). This study was the first to suggest that the control of V(D)J recombination is mediated by regulating the accessibility of the different immune receptor loci.

    CAS  PubMed  Google Scholar 

  94. Maës, J. et al. Chromatin remodeling at the Ig loci prior to V(D)J recombination. J. Immunol. 167, 866–874 (2001).

    PubMed  Google Scholar 

  95. Chowdhury, D. & Sen, R. Stepwise activation of the immunoglobulin μ heavy chain gene locus. EMBO J. 20, 6394–6403 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hesslein, D. G. et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev. 17, 37–42 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Maes, J. et al. Activation of V(D)J recombination at the IgH chain JH locus occurs within a 6-kilobase chromatin domain and is associated with nucleosomal remodeling. J. Immunol. 176, 5409–5417 (2006).

    CAS  PubMed  Google Scholar 

  98. Morshead, K. B., Ciccone, D. N., Taverna, S. D., Allis, C. D. & Oettinger, M. A. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc. Natl Acad. Sci. USA 100, 11577–11582 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chakraborty, T. et al. Repeat organization and epigenetic regulation of the DH-Cμ domain of the immunoglobulin heavy-chain gene locus. Mol. Cell 27, 842–850 (2007).

    CAS  PubMed  Google Scholar 

  100. Goldmit, M. et al. Epigenetic ontogeny of the Igk locus during B cell development. Nature Immunol. 6, 198–203 (2005). This study showed that individual Igk alleles are epigenetically marked prior to recombination, suggesting a molecular basis for allelic exclusion.

    CAS  Google Scholar 

  101. Xu, C. R. & Feeney, A. J. The epigenetic profile of Ig genes is dynamically regulated during B cell differentiation and is modulated by pre-B cell receptor signaling. J. Immunol. 182, 1362–1369 (2009).

    CAS  PubMed  Google Scholar 

  102. Fitzsimmons, S. P., Bernstein, R. M., Max, E. E., Skok, J. A. & Shapiro, M. A. Dynamic changes in accessibility, nuclear positioning, recombination, and transcription at the Ig κ locus. J. Immunol. 179, 5264–5273 (2007).

    CAS  PubMed  Google Scholar 

  103. Liu, Y., Subrahmanyam, R., Chakraborty, T., Sen, R. & Desiderio, S. A plant homeodomain in RAG-2 that binds hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity 27, 561–571 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Matthews, A. G. et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 1106–1110 (2007). References 103 and 104 showed that RAG2 specifically recognizes H3K4me3. Moreover, mutations that abrogate this recognition (found in patients with immunodeficiency syndrome) severely impair V(D)J recombination in vivo . These findings highlight the link between chromatin structure and immunoglobulin gene rearrangement.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Shimazaki, N., Tsai, A. G. & Lieber, M. R. H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations. Mol. Cell 34, 535–544 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ji, Y. et al. The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell 141, 419–431 (2010). This is the first study to demonstrate stage- and lineage-specific binding of RAG1 and RAG2 in vivo . These findings provide insights into how recombination takes place during normal and abnormal development.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Degner, S. C., Wong, T. P., Jankevicius, G. & Feeney, A. J. Cutting edge: developmental stage-specific recruitment of cohesin to CTCF sites throughout immunoglobulin loci during B lymphocyte development. J. Immunol. 182, 44–48 (2009).

    CAS  PubMed  Google Scholar 

  108. Garrett, F. E. et al. Chromatin architecture near a potential 3′ end of the Igh locus involves modular regulation of histone modifications during B-cell development and in vivo occupancy at CTCF sites. Mol. Cell. Biol. 25, 1511–1525 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Phillips, J. E. & Corces, V. G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).

    PubMed  PubMed Central  Google Scholar 

  110. Jhunjhunwala, S. et al. The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 133, 265–279 (2008). This study showed that in pro-B cells the Igh locus undergoes conformational changes that position the entire repertoire of V H segments in close proximity to D H elements, thus permitting long-range genomic interactions to occur with high frequency.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu, H. et al. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev. 21, 1179–1189 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Reynaud, D. et al. Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros. Nature Immunol. 9, 927–936 (2008).

    CAS  Google Scholar 

  114. Ebert, A. et al. The distal VH gene cluster of the Igh locus contains distinct regulatory elements with Pax5 transcription factor-dependent activity in pro-B cells. Immunity 34, 175–187 (2011). This study identified a novel set of cis -regulatory sequences in the distal region of the VH locus that supported PAX5-dependent pro-B-specific generation of antisense transcripts. These elements may have a role in Igh locus V(D)J recombination.

    CAS  PubMed  Google Scholar 

  115. Lennon, G. G. & Perry, R. P. Cμ-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a novel 5′-nontranslatable exon. Nature 318, 475–478 (1985).

    CAS  PubMed  Google Scholar 

  116. Thompson, A., Timmers, E., Schuurman, R. K. & Hendriks, R. W. Immunoglobulin heavy chain germ-line JH–Cμ transcription in human precursor B lymphocytes initiates in a unique region upstream of DQ52. Eur. J. Immunol. 25, 257–261 (1995).

    CAS  PubMed  Google Scholar 

  117. Corcoran, A. E., Riddell, A., Krooshoop, D. & Venkitaraman, A. R. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature 391, 904–907 (1998).

    CAS  PubMed  Google Scholar 

  118. Martin, D. J. & van Ness, B. G. Initiation and processing of two κ immunoglobulin germ line transcripts in mouse B cells. Mol. Cell. Biol. 10, 1950–1958 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Singh, N., Bergman, Y., Cedar, H. & Chess, A. Biallelic germline transcription at the κ immunoglobulin locus. J. Exp. Med. 197, 743–750 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bolland, D. J. et al. Antisense intergenic transcription in V(D)J recombination. Nature Immunol. 5, 630–637 (2004).

    CAS  Google Scholar 

  121. Osipovich, O. A., Subrahmanyam, R., Pierce, S., Sen, R. & Oltz, E. M. Cutting edge: SWI/SNF mediates antisense Igh transcription and locus-wide accessibility in B cell precursors. J. Immunol. 183, 1509–1513 (2009).

    CAS  PubMed  Google Scholar 

  122. Featherstone, K., Wood, A. L., Bowen, A. J. & Corcoran, A. E. The mouse immunoglobulin heavy chain V-D intergenic sequence contains insulators that may regulate ordered V(D)J recombination. J. Biol. Chem. 285, 9327–9338 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Mostoslavsky, R. et al. κchain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12, 1801–1811 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Goldmit, M., Schlissel, M., Cedar, H. & Bergman, Y. Differential accessibility at the κ chain locus plays a role in allelic exclusion. EMBO J. 21, 5255–5261 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Fritz, E. L. & Papavasiliou, F. N. Cytidine deaminases: AIDing DNA demethylation? Genes Dev. 24, 2107–2114 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wossidlo, M. et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nature Commun. 2, 241 (2011).

    Google Scholar 

  127. Coleclough, C. Chance, necessity and antibody gene dynamics. Nature 303, 23–26 (1983).

    CAS  PubMed  Google Scholar 

  128. Sayegh, C., Jhunjhunwala, S., Riblet, R. & Murre, C. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev. 19, 322–327 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hewitt, S. L. et al. RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature Immunol. 10, 655–664 (2009).

    CAS  Google Scholar 

  130. Skok, J. A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nature Immunol. 2, 848–854 (2001).

    CAS  Google Scholar 

  131. Liu, Z. et al. A recombination silencer that specifies heterochromatin positioning and ikaros association in the immunoglobulin κ locus. Immunity 24, 405–415 (2006).

    PubMed  Google Scholar 

  132. Mostoslavsky, R. et al. Asynchronous replication and allelic exclusion in the immune system. Nature 414, 221–225 (2001). This was the first study to report that the immunoglobulin and Tcrb loci replicate asynchronously. This serves as an epigenetic mark for allelic exclusion, as it is almost always the early-replicating allele that is initially selected to undergo rearrangement in B cells.

    CAS  PubMed  Google Scholar 

  133. Schlimgen, R. J., Reddy, K. L., Singh, H. & Krangel, M. S. Initiation of allelic exclusion by stochastic interaction of Tcrb alleles with repressive nuclear compartments. Nature Immunol. 9, 802–809 (2008). This study showed that, in developing thymocytes, germline Tcrb alleles are associated stochastically and at high frequency with the nuclear lamina or with pericentromeric heterochromatin. The authors proposed that these interactions are crucial for the initiation of allelic exclusion.

    CAS  Google Scholar 

  134. Wang, J., Valo, Z., Smith, D. & Singer-Sam, J. Monoallelic expression of multiple genes in the CNS. PLoS ONE 2, e1293 (2007).

    PubMed  PubMed Central  Google Scholar 

  135. Gimelbrant, A., Hutchinson, J. N., Thompson, B. R. & Chess, A. Widespread monoallelic expression on human autosomes. Science 318, 1136–1140 (2007).

    CAS  PubMed  Google Scholar 

  136. Alexander, M. K. et al. Differences between homologous alleles of olfactory receptor genes require the Polycomb Group protein Eed. J. Cell Biol. 179, 269–276 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Dutta, D., Ensminger, A. W., Zucker, J. P. & Chess, A. Asynchronous replication and autosome-pair non-equivalence in human embryonic stem cells. PLoS ONE 4, e4970 (2009).

    PubMed  PubMed Central  Google Scholar 

  138. Keohane, A. M., Lavender, J. S., O'Neill, L. P. & Turner, B. M. Histone acetylation and X inactivation. Dev. Genet. 22, 65–73 (1998).

    CAS  PubMed  Google Scholar 

  139. Schlesinger, S., Selig, S., Bergman, Y. & Cedar, H. Allelic inactivation of rDNA loci. Genes Dev. 23, 2437–2447 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Israel Academy of Sciences (to H.C. and Y.B.), the US National Institutes of Health (to Y.B.), the Israel Cancer Research Foundation (to H.C. and Y.B.) and the European Community 5th Framework Quality of Life Programme (to Y.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehudit Bergman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Howard Cedar's homepage

Yehudit Bergman's homepage

Glossary

Epigenetic mechanisms

Mechanisms that confer heritable, but potentially reversible, states of gene activity that are imposed by the structure of chromatin or covalent modifications of DNA and histones.

Histone acetylation

A post-translational modification of histones that is associated with regions of actively transcribed chromatin.

CpG island

A DNA sequence of 0.5–2 kilobases that is rich in CpG dinucleotides. These sequences are located upstream of housekeeping genes and some tissue-specific genes. They are usually constitutively non-methylated in all animal cell types.

Induced pluripotent stem cells

Self-renewing, pluripotent stem cells that are derived by the transient introduction of transgenes encoding transcription factors such as OCT4, SOX2, KLF4 and MYC (or the gene products themselves) into adult somatic cells. Only transient expression of the transgenes is required because the reprogramming factors upregulate expression of their endogenous counterparts, which subsequently maintain pluripotency.

Polycomb repressive complex

A group of proteins that maintain gene expression states throughout development by regulating chromatin structure. In mammals, there are two core Polycomb complexes: Polycomb repressive complex 1 (PRC1) and PRC2. PRC1 catalyses the monoubiquitylation of histone H2A. Both complexes contribute to chromatin compaction. PRC2 harbours the EZH1 and EZH2 methyltransferases that catalyse the methylation of histone H3 at lysine 27. These two complexes are involved in differentiation, the maintenance of cell identity and proliferation, and stem cell plasticity.

Cohesin

A multiprotein complex that maintains the tight association of sister chromatids. Cohesin has also been implicated in the regulation of gene transcription by contributing to DNA loop formation. It stabilizes chromatin loops organized by the binding of factors such as CTCF or the Mediator complex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cedar, H., Bergman, Y. Epigenetics of haematopoietic cell development. Nat Rev Immunol 11, 478–488 (2011). https://doi.org/10.1038/nri2991

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2991

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing