Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The golden anniversary of the thymus

A Corrigendum to this article was published on 18 November 2011

This article has been updated

Abstract

The immunological function of the thymus was first documented 50 years ago by using neonatally thymectomized mice, while studying its role in virus-induced leukaemia. Since then, an enormous wealth of reports has helped to define the importance of this primary lymphoid organ. In this article, I summarize the key advances that have led to our current knowledge of the functions of the thymus and its T cells in immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thymus grafts in neonatally thymectomized mice.
Figure 2: An experiment demonstrating the existence and function of B and T cells.
Figure 3: The state of knowledge at the end of 1968.
Figure 4: Major events in thymus cell differentiation.

Change history

  • 18 November 2011

    In the original version of this article, in the section under the title “Lymphocyte subsets” on page 491, a key reference was unintentionally omitted. At the end of the sentence “T cells that help B cells to produce antibody (T helper (TH) cells) generally bear the CD4 marker (originally known as L3T4), whereas those that serve cytotoxic functions (cytotoxic T lymphocytes (CTLs)) are usually characterized by the presence of CD8 molecules (originally known as LYT2 and LYT3)” the following reference should have been cited: Kisielow, P. et al. Ly antigens as markers for functionally distinct subpopulations of thymus-derived lymphocytes of the mouse.

References

  1. Florey, H. General Pathology (Lloyd-Luke, London, 1954).

    Google Scholar 

  2. Medawar, P. B. in The Immunologically Competent Cell: Its Nature and Origin (eds Wolstenholme, G. & Knight, J.) 70 (Churchill, London, 1963).

    Google Scholar 

  3. Miller, J. F. A. P., Marshall, A. H. E. & White, R. G. Immunological significance of the thymus. Adv. Immunol. 2, 111–162 (1962).

    Article  CAS  Google Scholar 

  4. Gowans, J. L., McGregor, D. D., Cowen, D. M. & Ford, C. E. Initiation of immune responses by small lymphocytes. Nature 196, 651–653 (1962).

    Article  CAS  PubMed  Google Scholar 

  5. Miller, J. F. A. P. Aetiology and pathogenesis of mouse leukaemia. Adv. Cancer Res. 6, 291–368 (1961).

    Article  CAS  PubMed  Google Scholar 

  6. Gross, L. Pathogenic properties and “vertical” transmission of the mouse leukemia agent. Proc. Soc. Exp. Biol. Med. 78, 342–348 (1951).

    Article  CAS  PubMed  Google Scholar 

  7. Miller, J. F. A. P. Role of the thymus in murine leukaemia. Nature 183, 1069 (1959).

    Article  CAS  PubMed  Google Scholar 

  8. Miller, J. F. A. P. Fate of subcutaneous thymus grafts in thymectomized mice inoculated with leukaemic filtrates. Nature 184, 1809–1810 (1959).

    Article  PubMed  Google Scholar 

  9. Miller, J. F. A. P. Recovery of leukaemogenic agent from non-leukaemic tissues of thymectomized mice. Nature 187, 703 (1960).

    Article  CAS  PubMed  Google Scholar 

  10. Miller, J. F. A. P. Analysis of the thymus influence in leukaemogenesis. Nature 191, 248–249 (1961).

    Article  CAS  PubMed  Google Scholar 

  11. Miller, J. F. A. P. Immunological function of the thymus. Lancet 2, 748–749 (1961).

    Article  CAS  PubMed  Google Scholar 

  12. Miller, J. F. A. P. Effect of neonatal thymectomy on the immunological responsiveness of the mouse. Proc. R. Soc. Lond. B 156, 415–428 (1962).

    Article  Google Scholar 

  13. McIntire, K. R., Sell, S. & Miller, J. F. A. P. Pathogenesis of the post-neonatal thymectomy wasting syndrome. Nature 204, 151–155 (1964).

    Article  CAS  PubMed  Google Scholar 

  14. Miller, J. F. A. P., Law, L. W. & Ting, R. C. Influence of thymectomy on tumor induction by polyoma virus in C57BL mice. Proc. Soc. Exp. Biol. Med. 116, 323–327 (1964).

    Article  CAS  PubMed  Google Scholar 

  15. Burnet, F. M. Immunological surveillance in neoplasia. Transplant. Rev. 7, 3–25 (1971).

    CAS  PubMed  Google Scholar 

  16. Martinez, C., Kersey, J., Papermaster, B. W. & Good, R. A. Skin homograft survival in thymectomized mice. Proc. Soc. Exp. Biol. Med. 109, 193–196 (1962).

    Article  CAS  PubMed  Google Scholar 

  17. Arnason, B. G., Jankovic, B. D. & Waksman, B. H. Effect of thymectomy on “delayed” hypersensitive reactions. Nature 194, 99–100 (1962).

    Article  CAS  PubMed  Google Scholar 

  18. Miller, J. F. A. P. Immunological significance of the thymus of the adult mouse. Nature 195, 1318–1319 (1962).

    Article  Google Scholar 

  19. Miller, J. F. A. P., Doak, S. M. A. & Cross, A. M. Role of the thymus in the recovery of the immune mechanism in the irradiated adult mouse. Proc. Soc. Exp. Biol. Med. 112, 785–792 (1963).

    Article  Google Scholar 

  20. Nishizuka, Y. & Sakahura, T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166, 753–755 (1969).

    Article  CAS  PubMed  Google Scholar 

  21. Parrott, D. M. V., de Sousa, M. A. B. & East, J. Thymus-dependent areas in the lymphoid organs of neonatally thymectomized mice. J. Exp. Med. 123, 191–204 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Glick, B., Chang, T. S. & Japp, R. G. The bursa of Fabricius and antibody production. Poult. Sci. 35, 224–225 (1956).

    Article  Google Scholar 

  23. Szenberg, A. & Warner, N. L. Dissociation of immunological responsiveness in fowls with a hormonally arrested development of lymphoid tissue. Nature 194, 146–147 (1962).

    Article  Google Scholar 

  24. Claman, H. N., Chaperon, E. A. & Triplett, R. F. Thymus-marrow cell combinations. Synergism in antibody production. Proc. Soc. Exp. Biol. Med. 122, 1167–1171 (1966).

    Article  CAS  PubMed  Google Scholar 

  25. Mitchell, G. F. & Miller, J. F. A. P. Immunological activity of thymus and thoracic duct lymphocytes. Proc. Natl Acad. Sci. USA 59, 296–303 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miller, J. F. A. P. & Mitchell, G. F. Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J. Exp. Med. 128, 801–820 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mitchell, G. F. & Miller, J. F. A. P. Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J. Exp. Med. 128, 821–837 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sprent, J. Circulating T and B lymphocytes of the mouse. I. Migratory properties. Cell. Immunol. 7, 10–39 (1973).

    Article  CAS  PubMed  Google Scholar 

  29. Sprent, J., Miller, J. F. A. P. & Mitchell, G. F. Antigen-induced selective recruitment of circulating lymphocytes. Cell. Immunol. 2, 171–181 (1971).

    Article  CAS  PubMed  Google Scholar 

  30. Reif, A. E. & Allen, J. M. V. The AKR thymic antigen and its distribution in leukemias and nervous tissues. J. Exp. Med. 120, 413–433 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Möller, G. Demonstration of mouse isoantigens at the cellular level by the fluorescent antibody technique. J. Exp. Med. 114, 415–434 (1961).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Raff, M. C. Surface antigenic markers for distinguishing T and B lymphocytes in mice. Transplant. Rev. 6, 52–80 (1971).

    CAS  PubMed  Google Scholar 

  33. Basten, A., Miller, J. F. A. P., Sprent, J. & Pye, J. A receptor for antibody on B lymphocytes. I. Method of detection and functional significance. J. Exp. Med. 135, 610–626 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cantor, H. & Boyse, E. A. Functional subclasses of T-lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen. J. Exp. Med. 141, 1376–1389 (1975).

    Article  CAS  PubMed  Google Scholar 

  35. Dialynas, D. P. et al. Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody GK1.5: expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen-reactivity. Immunol. Rev. 74, 29–56 (1983).

    Article  CAS  PubMed  Google Scholar 

  36. Owens, T., Fazekas de St. Groth, B. & Miller, J. F. A. P. Coaggregation of the T cell receptor with CD4 and other T cell surface molecules enhances T cell activation. Proc. Natl Acad. Sci. USA 84, 9209–9213 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hedrick, S. M., Cohen, D. I., Nielsen, E. A. & Davis, M. M. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308, 149–153 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Yoshika, Y. et al. Sequence and expression of transcripts of the human T-cell receptor-chain genes. Nature 312, 521–524 (1984).

    Article  Google Scholar 

  39. Hein, W. R. & Mackay, C. R. Prominence of γδ T cells in the ruminant immune system. Immunol. Today 12, 30–34 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Steinman, R. M. & Cohn, Z. A., Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137, 1142–1162 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zinkernagel, R. M. & Doherty, D. C. Immunological surveillance against self components by sensitized T lymphocytes in lymphocytic chorio-meningitis. Nature 251, 547–548 (1974).

    Article  CAS  PubMed  Google Scholar 

  42. Townsend, A. R. et al. The epitopes of influenza nucleoprotein recognised by cytotoxic T lymphocytes can be defined by short synthetic peptides. Cell 44, 959–968 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, L., Antica, M., Johnson, G. R., Scollay, R. & Shortman, K. Developmental potential of the earliest precursor cells from the adult mouse thymus. J. Exp. Med. 174, 1617–1627 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Shortman, K., Egerton, M., Spangrude, G. M. & Scollay, R. The generation and fate of thymocytes. Semin. Immunol. 2, 3–12 (1990).

    CAS  PubMed  Google Scholar 

  45. Boyd, R. L. & Hugo, P. Towards an integrated view of thymopoiesis. Immunol. Today 12, 71–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Bevan, M. J. In a radiation chimera host H-2 antigens determine immune responsiveness of donor cytotoxic cells. Nature 269, 417–418 (1977).

    Article  CAS  PubMed  Google Scholar 

  47. Kisielow, P., Teh, H.-S., Bluthmann, H. & von Boehmer, H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335, 730–733 (1988).

    Article  CAS  PubMed  Google Scholar 

  48. Zijlstra, M. et al. β2-microglobulin deficient mice lack CD48+ cytolytic T cells. Nature 344, 742–746 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Cosgrove, D. et al. Mice lacking MHC class II molecules. Cell 66, 105–166 (1991).

    Article  Google Scholar 

  50. Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Naeher, D. et al. A constant affinity threshold for T cell tolerance. J. Exp. Med. 204, 2553–2559 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Benoist, C. & Mathis, D. Positive selection of the T cell repertoire: where and when does it occur? Cell 58, 1027–1033 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Sprent, J., Gao, E. K. & Webb, S. R. T cell reactivity to MHC molecules: immunity versus tolerance. Science 248, 1357–1363 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Ernst, B. B., Surh, C. C. & Sprent, J. Bone marrow-derived cells fail to induce positive selection in thymus reaggregation cultures. J. Exp. Med. 183, 1235–1240 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Brocker, T. The role of dendritic cells in T cell selection and survival. J. Leukoc. Biol. 66, 331–335 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Surh, C. D. & Sprent, J. Homeostasis of naïve and memory T cells. Immunity 29, 848–862 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Kappler, J. W., Roehm, M. & Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 49, 273–280 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. van Meerwijk, J. P. et al. Quantitative impact of thymic clonal deletion on the T cell repertoire. J. Exp. Med. 185, 377–383 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nature Immunol. 2, 1032–1039 (2001).

    Article  CAS  Google Scholar 

  61. Salaün, J. et al. Thymic epithelium tolerizes for histocompatibility antigens. Science 247, 1471–1474 (1990).

    Article  PubMed  Google Scholar 

  62. Hoffmann, M. W., Allison, J. & Miller, J. F. A. P. Tolerance induction by thymic medullary epithelium. Proc. Natl Acad. Sci. USA 89, 2526–2530 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Surh, C. D. & Sprent, J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372, 100–103 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C. C. Aire regulates negative selection of organ-specific T cells. Nature Immunol. 4, 350–354 (1994).

    Article  CAS  Google Scholar 

  65. Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Gershon, R. K. T-cell control of antibody production. Contemp. Top. Immunobiol. 3, 1–40 (1974).

    CAS  PubMed  Google Scholar 

  67. Sakaguchi, S., Fukuma, K., Kuribayashi, K. & Masuda, T. Organ-specific autoimmune disease induced in mice by elimination of T-cell subset. I. Evidence for active participation of T cells in natural self-tolerance; deficit of a T-cell subset as a possible cause of autoimmune disease. J. Exp. Med. 161, 72–87 (1985).

    Article  CAS  PubMed  Google Scholar 

  68. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunol. 4, 337–342 (2003).

    Article  CAS  Google Scholar 

  70. Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol. 4, 301–306 (2001).

    Article  CAS  Google Scholar 

  71. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nature Immunol. 3, 756–763 (2002).

    Article  CAS  Google Scholar 

  72. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  73. Billingham, R. E., Brent, L. & Medawar, P. B. 'Actively acquired tolerance' of foreign cells. Nature 172, 603–606 (1953).

    Article  CAS  PubMed  Google Scholar 

  74. Maini, R. N. & Feldmann, M. Cytokine therapy in rheumatoid arthritis. Lancet 348, 824–825 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Boyman, O., Kovar, M., Rubinstein, M., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody–cytokine immune complexes. Science 311, 1924–1927 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Mitchison, N. A. The carrier effect in the secondary response to hapten protein conjugates. II. Cellular cooperation. Eur. J. Immunol. 1, 18–27 (1971).

    Article  CAS  PubMed  Google Scholar 

  77. Rajewsky, K. The carrier effect and cellular cooperation in the induction of antibodies. Proc. R. Soc. Lond. B 176, 385–392 (1971).

    Article  CAS  PubMed  Google Scholar 

  78. von Boehmer, H. The developmental biology of T lymphocytes. Ann. Rev. Immunol. 6, 309–326 (1988).

    Article  CAS  Google Scholar 

  79. von Boehmer, H. & Fehling, H. J. Structure and function of the pre-T cell repertoire. Ann. Rev. Immunol. 15, 433–452 (1997).

    Article  CAS  Google Scholar 

  80. Jameson, S. C., Hogquist, K. A. & Bevan, M. J. Positive selection of thymocytes. Ann. Rev. Immunol. 13, 93–126 (1995).

    Article  CAS  Google Scholar 

  81. Palmer, E. Negative selection — clearing out the bad apples from the T-cell repertoire. Nature Rev. Immunol. 3, 383–391 (2003).

    Article  CAS  Google Scholar 

  82. Hayes, S. M., Li, L. & Love, P. E. TCR signal strength influences αβ/γδ lineage fate. Immunity 22, 583–593 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Bendelac, A., Rivera, M. N., Park, S. H. & Roark, J. H. Mouse CD1-specific NK1T cells: development, specificity and function. Ann. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  Google Scholar 

  84. Carpenter, A. C. & Bosselut, R. Decision checkpoints in the thymus. Nature Immunol. 11, 666–673 (2010).

    Article  CAS  Google Scholar 

  85. Radtke, F. et al.Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Kisielow, P. et al. Ly antigens as markers for functionally distinct subpopulations of thymus-derived lymphocytes of the mouse. Nature 253, 219–220 (1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to many of my colleagues, including L. Wu, K. Shortman, T. Basten and, in particular, J. Sprent, for fruitful suggestions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J. The golden anniversary of the thymus. Nat Rev Immunol 11, 489–495 (2011). https://doi.org/10.1038/nri2993

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2993

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing