Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immunity to fungal infections

Key Points

  • Fungi can interact with humans in multiple ways, establishing symbiotic, commensal, latent or pathogenic relationships. Although the burdens of fungal diseases may rival those of many of the best-known bacterial diseases, humans have evolved with ubiquitous or commensal fungi in host–fungus relationships that for the most part are positive or neutral.

  • The co-evolution of humans and fungi suggests that complex mechanisms exist to allow the host immune system to respond to fungi and, likewise, that fungi have developed sophisticated mechanisms to antagonize immune responses. Indeed, fungal diseases represent an important paradigm in immunology, as they can result either from lack of recognition or from overactivation of the inflammatory response.

  • We are entering an exciting period of transition from studying the molecular and cellular bases of the virulence of fungal pathogens to determining the mechanisms of immune adaptations that maintain homeostasis with fungi.

  • As the immune system cannot ignore fungi, a fine balance between pro- and anti-inflammatory signals is required for a stable host–fungus relationship, the disruption of which leads to pathological consequences. Thus, the challenge for future studies is to gain a better understanding of the control of inflammation, the molecular bases of regulation and rupture, and the way in which innocuous but opportunistic fungal pathogens maintain 'friendly' relationships, or evade or subvert host inflammation.

  • The use of multidisciplinary approaches, including functional genomics, proteomics and bioinformatics, will have important biomedical implications. These may include the identification of new susceptibility genes, the identification of more accurate biomarkers that predict inflammatory fungal disorders, and the development of multi-pronged therapeutic approaches that target specific inflammatory or metabolic end points in fungal infections and diseases.

Abstract

Fungal diseases represent an important paradigm in immunology, as they can result from either a lack of recognition by the immune system or overactivation of the inflammatory response. Research in this field is entering an exciting period of transition from studying the molecular and cellular bases of fungal virulence to determining the cellular and molecular mechanisms that maintain immune homeostasis with fungi. The fine line between these two research areas is central to our understanding of tissue homeostasis and its possible breakdown in fungal infections and diseases. Recent insights into immune responses to fungi suggest that functionally distinct mechanisms have evolved to achieve optimal host−fungus interactions in mammals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signalling pathways in innate recognition of fungi.
Figure 2: CD4+T cell subsets in fungal infections.
Figure 3: Resistance and tolerance to fungi and the regulation of these processes.

References

  1. Hube, B. Fungal adaptation to the host environment. Curr. Opin. Microbiol. 12, 347–349 (2009).

    Article  PubMed  Google Scholar 

  2. Brown, A. J., Odds, F. C. & Gow, N. A. Infection-related gene expression in Candida albicans. Curr. Opin. Microbiol. 10, 307–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Cooney, N. M. & Klein, B. S. Fungal adaptation to the mammalian host: it is a new world, after all. Curr. Opin. Microbiol. 11, 511–516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Richie, D. L. et al. A role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus. PLoS Pathog. 5, e1000258 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pappas, P. G. Opportunistic fungi: a view to the future. Am. J. Med. Sci. 340, 253–257 (2010).

    Article  PubMed  Google Scholar 

  6. Vinh, D. C., Sugui, J. A., Hsu, A. P., Freeman, A. F. & Holland, S. M. Invasive fungal disease in autosomal-dominant hyper-IgE syndrome. J. Allergy Clin. Immunol. 125, 1389–1390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garcia-Solache, M. A. & Casadevall, A. Global warming will bring new fungal diseases for mammals. MBio 1, e00061-10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cushion, M. T. et al. Transcriptome of Pneumocystis carinii during fulminate infection: carbohydrate metabolism and the concept of a compatible parasite. PLoS ONE 2, e423 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Schneider, D. S. & Ayres, J. S. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nature Rev. Immunol. 8, 889–895 (2008).

    Article  CAS  Google Scholar 

  10. Romani, L. Immunity to fungal infections. Nature Rev. Immunol. 4, 1–23 (2004).

    Article  CAS  Google Scholar 

  11. Jouault, T. et al. Host responses to a versatile commensal: PAMPs and PRRs interplay leading to tolerance or infection by Candida albicans. Cell. Microbiol. 11, 1007–1015 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. van de Veerdonk, F. L., Kullberg, B. J., van der Meer, J. W., Gow, N. A. & Netea, M. G. Host–microbe interactions: innate pattern recognition of fungal pathogens. Curr. Opin. Microbiol. 11, 305–312 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Bourgeois, C., Majer, O., Frohner, I. E., Tierney, L. & Kuchler, K. Fungal attacks on mammalian hosts: pathogen elimination requires sensing and tasting. Curr. Opin. Microbiol. 13, 401–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, M. et al. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. J. Clin. Invest. 120, 1914–1924 (2010). This paper describes a unique susceptibility of patients with diabetic ketoacidosis to mucormycosis and provides a foundation for the development of new therapeutic interventions aimed at targeting the receptor 78 kDa glucose-regulated protein in endothelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Latge, J. P. Tasting the fungal cell wall. Cell. Microbiol. 12, 863–872 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Brown, G. D. Innate antifungal immunity: the key role of phagocytes. Annu. Rev. Immunol. 29, 1–21 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Geijtenbeek, T. B. & Gringhuis, S. I. Signalling through C-type lectin receptors: shaping immune responses. Nature Rev. Immunol. 9, 465–479 (2009).

    Article  CAS  Google Scholar 

  18. Ferwerda, B. et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361, 1760–1767 (2009). The first study to describe the association between the Tyr238X mutation in dectin 1 and mucocutaneous candidiasis owing to defective IL-17, IL-6 and TNF production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saijo, S. et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nature Immunol. 8, 39–46 (2007).

    Article  CAS  Google Scholar 

  20. Taylor, P. R. et al. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nature Immunol. 8, 31–38 (2007). References 19 and 20 were the first two studies to indicate a function for β-glucan recognition by dectin 1 in antifungal immunity and demonstrate that a non-TLR signalling pathway is required for the induction of protective immune responses.

    Article  CAS  Google Scholar 

  21. Glocker, E. O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009). The first study to show an association between susceptibility to chronic mucocutaneous candidiasis and homozygous mutations in CARD9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Puel, A. et al. Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines? Curr. Opin. Immunol. 22, 467–474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Robinson, M. J. et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med. 206, 2037–2051 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saijo, S. et al. Dectin-2 recognition of α-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32, 681–691 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Yamasaki, S. et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc. Natl Acad. Sci. USA 106, 1897–1902 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wells, C. A. et al. The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J. Immunol. 180, 7404–7413 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Lam, J. S., Huang, H. & Levitz, S. M. Effect of differential N-linked and O-linked mannosylation on recognition of fungal antigens by dendritic cells. PLoS ONE 2, e1009 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Cambi, A. et al. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J. Biol. Chem. 283, 20590–20599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van de Veerdonk, F. L. et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5, 329–340 (2009). This study identifies the macrophage mannose receptor as the specific PRR that triggers T H 17 cell responses to C. albicans in humans.

    Article  CAS  PubMed  Google Scholar 

  30. Tateno, H. et al. Dual specificity of Langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J. Biol. Chem. 285, 6390–6400 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Heinsbroek, S. E. et al. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathog. 4, e1000218 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dan, J. M., Kelly, R. M., Lee, C. K. & Levitz, S. M. Role of the mannose receptor in a murine model of Cryptococcus neoformans infection. Infect. Immun. 76, 2362–2367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gales, A. et al. PPARγ controls dectin-1 expression required for host antifungal defense against Candida albicans. PLoS Pathog. 6, e1000714 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bochud, P. Y. et al. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N. Engl. J. Med. 359, 1766–1777 (2008). This report provides strong evidence for the association between a donor TLR4 polymorphism and the risk of invasive aspergillosis among recipients of haematopoietic cell transplants from unrelated donors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carvalho, A. et al. Polymorphisms in Toll-like receptor genes and susceptibility to infections in allogeneic stem cell transplantation. Exp. Hematol. 37, 1022–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Carvalho, A. et al. Polymorphisms in Toll-like receptor genes and susceptibility to pulmonary aspergillosis. J. Infect. Dis. 197, 618–621 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Van der Graaf, C. A. et al. Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur. Cytokine Netw. 17, 29–34 (2006).

    CAS  PubMed  Google Scholar 

  38. Blander, J. M. & Medzhitov, R. On regulation of phagosome maturation and antigen presentation. Nature Immunol. 7, 1029–1035 (2006).

    Article  CAS  Google Scholar 

  39. Moretti, S. et al. The contribution of PARs to inflammation and immunity to fungi. Mucosal Immunol. 1, 156–168 (2008). This study shows that recognition of fungi occurs through a dual sensor system involving crosstalk between TLRs that sense fungal PAMPs and PARs that sense fungal virulence.

    Article  CAS  PubMed  Google Scholar 

  40. Gottar, M. et al. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127, 1425–1437 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ellis, J. G., Dodds, P. N. & Lawrence, G. J. The role of secreted proteins in diseases of plants caused by rust, powdery mildew and smut fungi. Curr. Opin. Microbiol. 10, 326–331 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Joly, S. et al. Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J. Immunol. 183, 3578–3581 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Said-Sadier, N., Padilla, E., Langsley, G. & Ojcius, D. M. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS ONE 5, e10008 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006). This study defines a new innate immune pathway involving CARD9 as a key transducer of dectin 1 signalling and mediator of innate antifungal immunity.

    Article  CAS  PubMed  Google Scholar 

  45. Gross, O. et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433–436 (2009). This study describes the molecular basis for IL-1β production in candidiasis and identifies a crucial function for the NLRP3 inflammasome in antifungal host defence in vivo.

    Article  CAS  PubMed  Google Scholar 

  46. Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rehaume, L. M., Jouault, T. & Chamaillard, M. Lessons from the inflammasome: a molecular sentry linking Candida and Crohn's disease. Trends Immunol. 31, 171–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Sorci, G. et al. The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS Pathog. (in the press).

  50. Tsitsigiannis, D. I. & Keller, N. P. Oxylipins as developmental and host–fungal communication signals. Trends Microbiol. 15, 109–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Haas-Stapleton, E. J. et al. Candida albicans modulates host defense by biosynthesizing the pro-resolving mediator resolvin E1. PLoS ONE 2, e1316 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Rappleye, C. A. & Goldman, W. E. Fungal stealth technology. Trends Immunol. 29, 18–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Levitz, S. M. Innate recognition of fungal cell walls. PLoS Pathog. 6, e1000758 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Rappleye, C. A., Eissenberg, L. G. & Goldman, W. E. Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor. Proc. Natl Acad. Sci. USA 104, 1366–1370 (2007). This work highlights that α-(1,3)-glucans contribute to the pathogenesis of histoplasmosis by concealing immunostimulatory β-glucans from dectin 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aimanianda, V. et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460, 1117–1121 (2009). This work shows that surface hydrophobins on dormant airborne fungal conidia mask their recognition by the immune system and prevent immune responses.

    Article  CAS  PubMed  Google Scholar 

  56. Stringer, J. R. Antigenic variation in Pneumocystis. J. Eukaryot. Microbiol. 54, 8–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Vecchiarelli, A. Fungal capsular polysaccharide and T-cell suppression: the hidden nature of poor immunogenicity. Crit. Rev. Immunol. 27, 547–557 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Alvarez, M. & Casadevall, A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr. Biol. 16, 2161–2165 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Charlier, C. et al. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect. Immun. 77, 120–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Yoshitomi, H. et al. A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949–960 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Koning, H. D. et al. A comprehensive analysis of pattern recognition receptors in normal and inflamed human epidermis: upregulation of Dectin-1 in psoriasis. J. Invest. Dermatol. 130, 2611–2620 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Manicassamy, S. et al. Toll-like receptor 2-dependent induction of vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nature Med. 15, 401–409 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Rizzetto, L. & Cavalieri, D. A systems biology approach to the mutual interaction between yeast and the immune system. Immunobiology 215, 762–769 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Huang, H. et al. Distinct patterns of dendritic cell cytokine release stimulated by fungal β-glucans and Toll-like receptor agonists. Infect. Immun. 77, 1774–1781 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dan, J. M., Wang, J. P., Lee, C. K. & Levitz, S. M. Cooperative stimulation of dendritic cells by Cryptococcus neoformans mannoproteins and CpG oligodeoxynucleotides. PLoS ONE 3, e2046 (2008). This study provides a rationale for combining mannosylated antigens with TLR ligands in the design of immune modulators and vaccines against fungi.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bonifazi, P. et al. Intranasally delivered siRNA targeting PI3K/Akt/mTOR inflammatory pathways protects from aspergillosis. Mucosal Immunol. 3, 193–205 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Bonifazi, P. et al. Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunol. 2, 362–374 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Ersland, K., Wuthrich, M. & Klein, B. S. Dynamic interplay among monocyte-derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi. Cell Host Microbe 7, 474–487 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Paul, W. E. & Zhu, J. How are TH2-type immune responses initiated and amplified? Nature Rev. Immunol. 10, 225–235 (2010).

    Article  CAS  Google Scholar 

  70. de Luca, A. et al. Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO. Cell. Mol. Immunol. 7, 459–470 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. de Oliveira, L. L., Coltri, K. C., Cardoso, C. R., Roque-Barreira, M. C. & Panunto-Castelo, A. T helper 1-inducing adjuvant protects against experimental paracoccidioidomycosis. PLoS Negl. Trop. Dis. 2, e183 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Nesbit, L., Johnson, S. M., Pappagianis, D. & Ampel, N. M. Polyfunctional T lymphocytes are in the peripheral blood of donors naturally immune to coccidioidomycosis and are not induced by dendritic cells. Infect. Immun. 78, 309–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, Y. et al. Robust Th1 and Th17 immunity supports pulmonary clearance but cannot prevent systemic dissemination of highly virulent Cryptococcus neoformans H99. Am. J. Pathol. 175, 2489–2500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Spellberg, B. et al. Antibody titer threshold predicts anti-candidal vaccine efficacy even though the mechanism of protection is induction of cell-mediated immunity. J. Infect. Dis. 197, 967–971 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Yauch, L. E., Lam, J. S. & Levitz, S. M. Direct inhibition of T-cell responses by the Cryptococcus capsular polysaccharide glucuronoxylomannan. PLoS Pathog. 2, e120 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Pinzan, C. F., Ruas, L. P., Casabona-Fortunato, A. S., Carvalho, F. C. & Roque-Barreira, M. C. Immunological basis for the gender differences in murine Paracoccidioides brasiliensis infection. PLoS ONE 5, e10757 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Bozzi, A. et al. Analysis of memory T cells in the human paracoccidioidomycosis before and during chemotherapy treatment. Immunol. Lett. 114, 23–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Brasch, J. Pathogenesis of tinea. J. Dtsch Dermatol. Ges. 8, 780–786 (2010).

    PubMed  Google Scholar 

  79. Muller, U. et al. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans. J. Immunol. 179, 5367–5377 (2007).

    Article  PubMed  Google Scholar 

  80. Szymczak, W. A. & Deepe, G. S. Jr. The CCL7–CCL2–CCR2 axis regulates IL-4 production in lungs and fungal immunity. J. Immunol. 183, 1964–1974 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Kreindler, J. L. et al. Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. J. Clin. Invest. 120, 3242–3254 (2010). This study suggests that the induction of T Reg cells by vitamin D3 may prevent or treat ABPA in patients with cystic fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kling, H. M. et al. Relationship of Pneumocystis jiroveci humoral immunity to prevention of colonization and chronic obstructive pulmonary disease in a primate model of HIV infection. Infect. Immun. 78, 4320–4330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guimaraes, A. J., Frases, S., Gomez, F. J., Zancope-Oliveira, R. M. & Nosanchuk, J. D. Monoclonal antibodies to heat shock protein 60 alter the pathogenesis of Histoplasma capsulatum. Infect. Immun. 77, 1357–1367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Subramaniam, K. S. et al. The absence of serum IgM enhances the susceptibility of mice to pulmonary challenge with Cryptococcus neoformans. J. Immunol. 184, 5755–5767 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Shi, L. et al. A monoclonal antibody to Histoplasma capsulatum alters the intracellular fate of the fungus in murine macrophages. Eukaryot. Cell 7, 1109–1117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. McClelland, E. E., Nicola, A. M., Prados-Rosales, R. & Casadevall, A. Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J. Clin. Invest. 120, 1355–1361 (2010). This paper describes a new mode of action for antibody-mediated immunity based on the modulation of microbial gene expression and metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rapaka, R. R. et al. Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina. J. Exp. Med. 207, 2907–2919 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ostrosky-Zeichner, L., Casadevall, A., Galgiani, J. N., Odds, F. C. & Rex, J. H. An insight into the antifungal pipeline: selected new molecules and beyond. Nature Rev. Drug Discov. 9, 719–727 (2010).

    Article  CAS  Google Scholar 

  89. Casadevall, A. & Pirofski, L. A. A reappraisal of humoral immunity based on mechanisms of antibody-mediated protection against intracellular pathogens. Adv. Immunol. 91, 1–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Vinh, D. C., Masannat, F., Dzioba, R. B., Galgiani, J. N. & Holland, S. M. Refractory disseminated coccidioidomycosis and mycobacteriosis in interferon-γ receptor 1 deficiency. Clin. Infect. Dis. 49, e62–e65 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Hardison, S. E., Wozniak, K. L., Kolls, J. K. & Wormley, F. L. Jr. Interleukin-17 is not required for classical macrophage activation in a pulmonary mouse model of Cryptococcus neoformans infection. Infect. Immun. 78, 5341–5351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Murdock, B. J. et al. Coevolution of TH1, TH2, and TH17 responses during repeated pulmonary exposure to Aspergillus fumigatus conidia. Infect. Immun. 79, 125–135 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Zelante, T. et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur. J. Immunol. 37, 2695–2706 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Chamilos, G. et al. Generation of IL-23 producing dendritic cells (DCs) by airborne fungi regulates fungal pathogenicity via the induction of TH-17 responses. PLoS ONE 5, e12955 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Deepe, G. S. Jr & Gibbons, R. S. Interleukins 17 and 23 influence the host response to Histoplasma capsulatum. J. Infect. Dis. 200, 142–151 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Kroetz, D. N. & Deepe, G. S. Jr. CCR5 dictates the equilibrium of proinflammatory IL-17+ and regulatory Foxp3+ T cells in fungal infection. J. Immunol. 184, 5224–5231 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Armstrong-James, D. P. et al. Impaired interferon-γ responses, increased interleukin-17 expression, and a tumor necrosis factor-α transcriptional program in invasive aspergillosis. J. Infect. Dis. 200, 1341–1351 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. De Luca, A. et al. Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc. J. Immunol. 179, 5999–6008 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. De Luca, A. et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol. 3, 361–373 (2010). This work defines a staged response in mucosal candidiasis, involving an early IL-22-dominated response that provides antifungal resistance, followed by a T H 1 or T Reg cell response that prevents fungal dissemination and provides immunological memory.

    Article  CAS  PubMed  Google Scholar 

  100. Kleinschek, M. A. et al. IL-23 enhances the inflammatory cell response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J. Immunol. 176, 1098–1106 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Leibundgut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nature Immunol. 8, 630–638 (2007).

    Article  CAS  Google Scholar 

  102. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nature Immunol. 8, 639–646 (2007).

    Article  CAS  Google Scholar 

  103. Bozza, S. et al. Immune sensing of Aspergillus fumigatus proteins, glycolipids, and polysaccharides and the impact on Th immunity and vaccination. J. Immunol. 183, 2407–2414 (2009). In contrast to reference 54, this study shows that A. fumigatus α-(1,3)-glucans induce immune activation in aspergillosis. Therefore, evasion of this recognition may contribute to the pathogenic potential of dimorphic fungal pathogens but not opportunistic fungi.

    Article  CAS  PubMed  Google Scholar 

  104. Chai, L. Y. et al. Anti-Aspergillus human host defence relies on type 1 T helper (Th1), rather than type 17 T helper (Th17), cellular immunity. Immunology 130, 46–54 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wuthrich, M. et al. Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. J. Clin. Invest. 121, 554–568 (2010).

    Article  CAS  Google Scholar 

  106. Ryan, K. R. et al. Impaired dendritic cell maturation and cytokine production in patients with chronic mucocutanous candidiasis with or without APECED. Clin. Exp. Immunol. 154, 406–414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Conti, H. R. et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206, 299–311 (2009). This study shows the importance of the T H 17 cell pathway in the control of oropharyngeal candidiasis. The work in reference 99 describes that T H 17 cells are not essential in gastric candidiasis. These studies raise the question as to whether the activity of the T H 17 cell subset is compartmentalized.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huang, W., Na, L., Fidel, P. L. & Schwarzenberger, P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J. Infect. Dis. 190, 624–631 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Lin, L. et al. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog. 5, e1000703 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Cheng, S. C. et al. Candida albicans dampens host defense by downregulating IL-17 production. J. Immunol. 185, 2450–2457 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Loures, F. V., Pina, A., Felonato, M. & Calich, V. L. TLR2 is a negative regulator of Th17 cells and tissue pathology in a pulmonary model of fungal infection. J. Immunol. 183, 1279–1290 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Ahlgren, K. M. et al. Increased IL-17A secretion in response to Candida albicans in autoimmune polyendocrine syndrome type 1 and its animal model. Eur. J. Immunol. 41, 235–245 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Romani, L. & Puccetti, P. Protective tolerance to fungi: the role of IL-10 and tryptophan catabolism. Trends Microbiol. 14, 183–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Ferreira, M. C., de Oliveira, R. T., da Silva, R. M., Blotta, M. H. & Mamoni, R. L. Involvement of regulatory T cells in the immunosuppression characteristic of patients with paracoccidioidomycosis. Infect. Immun. 78, 4392–4401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dillon, S. et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest. 116, 916–928 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Baker, B. S. The role of microorganisms in atopic dermatitis. Clin. Exp. Immunol. 144, 1–9 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Romani, L., Zelante, T., De Luca, A., Fallarino, F. & Puccetti, P. IL-17 and therapeutic kynurenines in pathogenic inflammation to fungi. J. Immunol. 180, 5157–5162 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Zelante, T., Fallarino, F., Bistoni, F., Puccetti, P. & Romani, L. Indoleamine 2,3-dioxygenase in infection: the paradox of an evasive strategy that benefits the host. Microbes Infect. 11, 133–141 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Grohmann, U. et al. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature Med. 13, 579–586 (2007). This paper indicates that the induction of IDO expression could be an important mechanism underlying the anti-inflammatory action of corticosteroids in fungal allergy.

    Article  CAS  PubMed  Google Scholar 

  120. Wolk, K. & Sabat, R. Interleukin-22: a novel T- and NK-cell derived cytokine that regulates the biology of tissue cells. Cytokine Growth Factor Rev. 17, 367–380 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Pickert, G. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206, 1465–1472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Milner, J. D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008). This work reports that T H 17 cell responses to C. albicans are defective in patients with autosomal dominant hyper-IgE syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yano, J., Lilly, E., Barousse, M. & Fidel, P. L. Jr. Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect. Immun. 78, 5126–5137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu, Y. et al. Memory IL-22-producing CD4+ T cells specific for Candida albicans are present in humans. Eur. J. Immunol. 39, 1472–1479 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Eyerich, K., Eyerich, S., Hiller, J., Behrendt, H. & Traidl-Hoffmann, C. Chronic mucocutaneous candidiasis, from bench to bedside. Eur. J. Dermatol. 20, 260–265 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Bjeldanes, L. F., Kim, J. Y., Grose, K. R., Bartholomew, J. C. & Bradfield, C. A. Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc. Natl Acad. Sci. USA 88, 9543–9547 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH17, TH1 and TH2 cells. Nature Immunol. 10, 864–871 (2009).

    Article  CAS  Google Scholar 

  128. Heath-Pagliuso, S. et al. Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry 37, 11508–11515 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Zelante, T., De Luca, A., D'Angelo, C., Moretti, S. & Romani, L. IL-17/Th17 in anti-fungal immunity: what's new? Eur. J. Immunol. 39, 645–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Harrington, L. et al. Deficiency of indoleamine 2,3-dioxygenase enhances commensal-induced antibody responses and protects against Citrobacter rodentium-induced colitis. Infect. Immun. 76, 3045–3053 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kagami, S., Rizzo, H. L., Kurtz, S. E., Miller, L. S. & Blauvelt, A. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J. Immunol. 185, 5453–5462 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Cassone, A. Fungal vaccines: real progress from real challenges. Lancet Infect. Dis. 8, 114–124 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Cutler, J. E., Deepe, G. S. Jr & Klein, B. S. Advances in combating fungal diseases: vaccines on the threshold. Nature Rev. Microbiol. 5, 13–28 (2007). References 132 and 133 are comprehensive reviews summarizing how the elucidation of the mechanisms of protective immunity against fungal diseases has renewed interest in the development of vaccines against the mycoses.

    Article  CAS  Google Scholar 

  134. Mezger, M., Einsele, H. & Loeffler, J. Genetic susceptibility to infections with Aspergillus fumigatus. Crit. Rev. Microbiol. 36, 168–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Legrand, F. et al. Adjuvant corticosteroid therapy for chronic disseminated candidiasis. Clin. Infect. Dis. 46, 696–702 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Romani, L. et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451, 211–215 (2008). The first direct demonstration of the causal link between defective tryptophan catabolism and susceptibility to fungal infections owing to uncontrolled inflammatory responses.

    Article  CAS  PubMed  Google Scholar 

  137. Singh, N. & Perfect, J. R. Immune reconstitution syndrome and exacerbation of infections after pregnancy. Clin. Infect. Dis. 45, 1192–1199 (2007). A comprehensive overview of clinical conditions in which immunological recovery and an imbalance characterized by either suboptimal or excessive immune responses can also be harmful to the host by adversely affecting the resolution of infection.

    Article  PubMed  Google Scholar 

  138. Mezger, M. et al. Polymorphisms in the chemokine (C-X-C motif) ligand 10 are associated with invasive aspergillosis after allogeneic stem-cell transplantation and influence CXCL10 expression in monocyte-derived dendritic cells. Blood 111, 534–536 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Plantinga, T. S. et al. Genetic variation of innate immune genes in HIV-infected african patients with or without oropharyngeal candidiasis. J. Acquir. Immune Defic. Syndr. 55, 87–94 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cunha, C. et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood 116, 5394–5402 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Plantinga, T. S. et al. Early stop polymorphism in human DECTIN-1 is associated with increased Candida colonization in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 49, 724–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Jurevic, R. J., Bai, M., Chadwick, R. B., White, T. C. & Dale, B. A. Single-nucleotide polymorphisms (SNPs) in human β-defensin 1: high-throughput SNP assays and association with Candida carriage in type I diabetics and nondiabetic controls. J. Clin. Microbiol. 41, 90–96 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sambatakou, H., Pravica, V., Hutchinson, I. V. & Denning, D. W. Cytokine profiling of pulmonary aspergillosis. Int. J. Immunogenet. 33, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Sainz, J., Perez, E., Gomez-Lopera, S. & Jurado, M. IL1 gene cluster polymorphisms and its haplotypes may predict the risk to develop invasive pulmonary aspergillosis and modulate C-reactive protein level. J. Clin. Immunol. 28, 473–485 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Choi, E. H. et al. Association between chronic disseminated candidiasis in adult acute leukemia and common IL4 promoter haplotypes. J. Infect. Dis. 187, 1153–1156 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Babula, O. et al. Frequency of interleukin-4 (IL-4) -589 gene polymorphism and vaginal concentrations of IL-4, nitric oxide, and mannose-binding lectin in women with recurrent vulvovaginal candidiasis. Clin. Infect. Dis. 40, 1258–1262 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Bozzi, A., Reis, B. S., Pereira, P. P., Pedroso, E. P. & Goes, A. M. Interferon-γ and interleukin-4 single nucleotide gene polymorphisms in paracoccidioidomycosis. Cytokine 48, 212–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Knutsen, A. P., Kariuki, B., Consolino, J. D. & Warrier, M. R. IL-4 alpha chain receptor (IL-4Rα) polymorphisms in allergic bronchopulmonary aspergillosis. Clin. Mol. Allergy 4, 3 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Sainz, J. et al. Interleukin-10 promoter polymorphism as risk factor to develop invasive pulmonary aspergillosis. Immunol. Lett. 109, 76–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Seo, K. W. et al. Protective role of interleukin-10 promoter gene polymorphism in the pathogenesis of invasive pulmonary aspergillosis after allogeneic stem cell transplantation. Bone Marrow Transplant. 36, 1089–1095 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Brouard, J. et al. Influence of interleukin-10 on Aspergillus fumigatus infection in patients with cystic fibrosis. J. Infect. Dis. 191, 1988–1991 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Carvalho, A. et al. Prognostic significance of genetic variants in the IL-23/Th17 pathway for the outcome of T cell-depleted allogeneic stem cell transplantation. Bone Marrow Transplant. 45, 1645–1652 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Granell, M. et al. Mannan-binding lectin pathway deficiencies and invasive fungal infections following allogeneic stem cell transplantation. Exp. Hematol. 34, 1435–1441 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Donders, G. G., Babula, O., Bellen, G., Linhares, I. M. & Witkin, S. S. Mannose-binding lectin gene polymorphism and resistance to therapy in women with recurrent vulvovaginal candidiasis. BJOG 115, 1225–1231 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Kaur, S. et al. Elevated levels of mannan-binding lectin (MBL) and eosinophilia in patients of bronchial asthma with allergic rhinitis and allergic bronchopulmonary aspergillosis associate with a novel intronic polymorphism in MBL. Clin. Exp. Immunol. 143, 414–419 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lev-Sagie, A. et al. Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome. Am. J. Obstet. Gynecol. 200, 303.e1–303.e6 (2009).

    Article  CAS  Google Scholar 

  157. Zaas, A. K. et al. Plasminogen alleles influence susceptibility to invasive aspergillosis. PLoS Genet. 4, e1000101 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Saxena, S., Madan, T., Shah, A., Muralidhar, K. & Sarma, P. U. Association of polymorphisms in the collagen region of SP-A2 with increased levels of total IgE antibodies and eosinophilia in patients with allergic bronchopulmonary aspergillosis. J. Allergy Clin. Immunol. 111, 1001–1007 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Vaid, M. et al. Distinct alleles of mannose-binding lectin (MBL) and surfactant proteins A (SP-A) in patients with chronic cavitary pulmonary aspergillosis and allergic bronchopulmonary aspergillosis. Clin. Chem. Lab. Med. 45, 183–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Kesh, S. et al. TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann. NY Acad. Sci. 1062, 95–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Sainz, J. et al. TNFR1 mRNA expression level and TNFR1 gene polymorphisms are predictive markers for susceptibility to develop invasive pulmonary aspergillosis. Int. J. Immunopathol. Pharmacol. 23, 423–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Sainz, J. et al. Variable number of tandem repeats of TNF receptor type 2 promoter as genetic biomarker of susceptibility to develop invasive pulmonary aspergillosis. Hum. Immunol. 68, 41–50 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank the large number of researchers who have contributed to this field and whose work was not cited or was cited through the review articles of others because of space limitations. This work is supported by the EU Specific Targeted Research Projects SYBARIS (FP7-Health-2009-single-stage, contract number 242220) and ALLFUN (FP7-Health-2010-single-stage, contract number 260338) and by the Fondazione per la Ricerca sulla Fibrosi Cistica (project number FFC21/2010). I also thank C. Massi Benedetti of the University of Perugia for editorial assistance and my numerous collaborators for their dedicated work in my laboratory.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

FURTHER INFORMATION

European Project ALLFUN

Glossary

Yeast

A unicellular form of a fungus, consisting of oval or spherical cells, usually about 3 to 5 μm in diameter, that reproduce asexually by a process termed blastoconidia formation (budding) or by fission.

Spore

An asexual or sexual reproductive element of a fungus.

Toll-like receptors

(TLRs). A family of membrane-spanning proteins that recognize pathogen-associated molecular patterns (which are shared by various microorganisms), as well as damaged host cell components. TLRs signal to the host that a microbial pathogen is present or that tissue damage has occurred. They are characterized by an ectodomain that has varying numbers of leucine-rich repeat motifs and a cytoplasmic Toll/IL-1 receptor (TIR) domain that recruits adaptors, such as the myeloid differentiation primary response protein 88 (MYD88) and TIR domain-containing adaptor protein inducing IFNβ (TRIF; also known as TICAM1).

C-type lectin receptors

(CLRs). A large family of proteins that have one or more carbohydrate-recognition domains. CLRs exist as transmembrane and soluble proteins, and include the mannose receptor, dectin 1, dectin 2 and DC-SIGN, as well as soluble molecules, such as the complement-activating mannose-binding lectins, which are involved in antifungal immunity.

Inflammasome

A large multiprotein complex that contains certain NOD-like receptors, RIGI-like receptors and IFI200 proteins, the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC; also known as PYCARD) and pro-caspase 1. Assembly of the inflammasome leads to the activation of caspase 1, which cleaves pro-interleukin-1β (pro-IL-1β) and pro-IL-18 to generate the active cytokines.

Allergic bronchopulmonary aspergillosis

(ABPA). A condition that is characterized by an exaggerated airway inflammation (hypersensitivity response) to Aspergillus spp. (most commonly Aspergillus fumigatus). It occurs most often in patients with asthma or cystic fibrosis.

Protease-activated receptors

(PARs). A family of four G protein-coupled receptors. Proteolytic cleavage within the extracellular amino terminus exposes a tethered ligand domain, which activates the receptors to initiate multiple signalling cascades. Many proteases that activate PARs are produced during tissue damage, and PARs make important contributions to tissue responses to injury, including haemostasis, repair, cell survival, inflammation and pain.

NOD-like receptors

(NLRs). A family of cytosolic proteins that recognize pathogen-associated molecular patterns and endogenous ligands. The recognition of ligands induces a signalling cascade leading to activation of nuclear factor-κB, or the inflammasome, to produce pro-inflammatory cytokines. NLRs are also involved in signalling for cell death.

Hyphae

In moulds, spores germinate to produce branching filaments called hyphae, which are 2–10 Î¼m in diameter and which may form a mass of intertwining strands called a mycelium.

Hydrophobins

A family of small, moderately hydrophobic proteins that are characterized by the conserved spacing of eight cysteine residues. Hydrophobins are present on the surface of many fungal conidia, and are responsible for the rodlet configuration of the outer conidial layer.

Delayed-type hypersensitivity response

A cellular immune response to antigen that develops over a period of ∼24–72 hours. The response is characterized by the infiltration of T cells and monocytes and depends on the production of T helper 1-type cytokines.

Paracoccidioidomycosis

A chronic granulomatous disease involving the lungs, skin, mucous membranes, lymph nodes and internal organs that is caused by Paracoccidioides brasiliensis. Symptoms include skin ulcers, adenitis and pain owing to abdominal organ involvement.

Symbiont

An intestinal microorganism that contributes to host nutrition and fitness through a mutualistic, beneficial interaction.

Pathobiont

A microbial symbiont that can cause diseases as a consequence of the perturbation of intestinal homeostasis.

Dysbiosis

Alteration of the symbiont microbial community.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romani, L. Immunity to fungal infections. Nat Rev Immunol 11, 275–288 (2011). https://doi.org/10.1038/nri2939

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing