Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Peptidoglycan recognition proteins: modulators of the microbiome and inflammation

Key Points

  • All multicellular eukaryotes live in symbiotic associations with microorganisms, and the immune system accommodates host colonization by symbiotic microorganisms, maintains microbiota–host homeostasis and defends against pathogens.

  • One family of antibacterial pattern recognition molecules — the peptidoglycan recognition proteins (PGRPs) — has evolved a variety of mechanisms to control host interactions with mutualistic, commensal and parasitic microorganisms to benefit both invertebrate and vertebrate hosts.

  • PGRPs are antibacterial proteins of the innate immune system that are conserved from insects to mammals. In invertebrates, PGRPs function as soluble or cell-surface pattern recognition receptors and hydrolyse peptidoglycan, whereas in vertebrates they also directly kill bacteria.

  • In Drosophila melanogaster, PGRPs are upstream pattern recognition molecules that activate the IMD and Toll pathways and induce the production of antimicrobial peptides, which control intestinal bacteria and defend against infections. PGRPs also control the level of pro-inflammatory peptidoglycan through their amidase activity.

  • In mosquitoes, PGRPs not only defend the insect against bacterial infections, but also regulate symbiotic bacteria, as well as the host response to malaria parasites. In tsetse flies, PGRPs control endosymbiotic bacteria and trypanosome parasites.

  • In squid, PGRPs control the winnowing and establishment of symbiotic luminescent bacteria in the squid light organ. In zebrafish, PGRPs protect the embryos from infections and enable their survival.

  • In mammals, PGRPs control the acquisition and maintenance of normal gut microorganisms, which protect the host from enhanced inflammation, tissue damage and colitis.

Abstract

All animals, including humans, live in symbiotic association with microorganisms. The immune system accommodates host colonization by the microbiota, maintains microbiota–host homeostasis and defends against pathogens. This Review analyses how one family of antibacterial pattern recognition molecules — the peptidoglycan recognition proteins — has evolved a fascinating variety of mechanisms to control host interactions with mutualistic, commensal and parasitic microorganisms to benefit both invertebrate and vertebrate hosts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of PGRPs.
Figure 2: Insect PGRPs recognize peptidoglycan and regulate multiple defence pathways.
Figure 3: Drosophila melanogaster PGRPs protect the gut from infections and maintain gut microbiome homeostasis.
Figure 4: In blood-sucking insects, PGRPs maintain the balance between symbiotic bacteria and protozoal parasites.
Figure 5: Euprymna scolopes PGRPs control colonization and maintenance of the luminescent bacterium Vibrio fischeri within the light organ of the squid.
Figure 6: Vertebrate PGRPs are bactericidal, defend against infections, regulate intestinal microorganisms and protect mammals against colitis.

Similar content being viewed by others

References

  1. Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, Y. K. & Mazmanian, S. K. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330, 1768–1773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nature Rev. Immunol. 9, 313–323 (2009).

    Article  CAS  Google Scholar 

  5. Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl Acad. Sci. USA 108, 3047–3052 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  6. Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26, 5–11 (2010).

    Article  PubMed  Google Scholar 

  7. Chung, H. & Kasper, D. L. Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr. Opin. Immunol. 22, 455–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Wen, L. et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455, 1109–1113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Cerf-Bensussan, N. & Gaboriau-Routhiau, V. The immune system and the gut microbiota: friends or foes? Nature Rev. Immunol. 10, 735–744 (2010).

    Article  CAS  Google Scholar 

  12. Royet, J. & Dziarski, R. Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nature Rev. Microbiol. 5, 264–277 (2007).

    Article  CAS  Google Scholar 

  13. Yoshida, H., Kinoshita, K. & Ashida, M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 271, 13854–13860 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Kang, D., Liu, G., Lundstrom, A., Gelius, E. & Steiner, H. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl Acad. Sci. USA 95, 10078–10082 (1998). This was the first description of cloning of insect and mammalian PGRP genes, showing that PGRPs are conserved in evolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dziarski, R. & Gupta, D. The peptidoglycan recognition proteins (PGRPs). Genome Biol. 7, 232 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Werner, T. et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 13772–13777 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Christophides, G. K. et al. Immunity-related genes and gene families in Anopheles gambiae. Science 298, 159–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, C., Xu, Z., Gupta, D. & Dziarski, R. Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. 276, 34686–34694 (2001). This study identified a family of PGRPs in mammals.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, M.-S., Byun, M. & Oh, B.-H. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nature Immunol. 4, 787–793 (2003). This was the first reported crystal structure of a PGRP protein.

    Article  CAS  Google Scholar 

  20. Guan, R. et al. Structural basis for peptidoglycan binding by peptidoglycan recognition proteins. Proc. Natl Acad. Sci. USA 101, 17168–17173 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mellroth, P. et al. Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro. Proc. Natl Acad. Sci. USA 102, 6455–6460 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang, C. I. et al. Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc. Natl Acad. Sci. USA 102, 10279–10284 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, C., Gelius, E., Liu, G., Steiner, H. & Dziarski, R. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils and inhibits bacterial growth. J. Biol. Chem. 275, 24490–24499 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Tydell, C. C., Yuan, J., Tran, P. & Selsted, M. E. Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion and binding properties. J. Immunol. 176, 1154–1162 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Sharma, P. et al. Structural basis of recognition of pathogen-associated molecular patterns and inhibition of proinflammatory cytokines by camel peptidoglycan recognition protein. J. Biol. Chem. 286, 16208–16217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, X. et al. Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J. Biol. Chem. 281, 5895–5907 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Michel, T., Reichhart, J. M., Hoffmann, J. A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756–759 (2001). This study presented the first in vivo evidence that PGRP molecules can function as PRRs in insects.

    Article  CAS  PubMed  Google Scholar 

  28. Choe, K. M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K. V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359–362 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R. A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002). References 28–30 demonstrated that a D. melanogaster PGRP functions both as a PRR and as a signalling transmembrane receptor upstream of the IMD pathway.

    Article  CAS  PubMed  Google Scholar 

  31. Gobert, V. et al. Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302, 2126–2130 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Bischoff, V. et al. Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nature Immunol. 5, 1175–1180 (2004).

    Article  CAS  Google Scholar 

  33. Wang, L. et al. Peptidoglycan recognition protein-SD provides versatility of receptor formation in Drosophila immunity. Proc. Natl Acad. Sci. USA 105, 11881–11886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rutschmann, S. et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12, 569–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Takehana, A. et al. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates Imd/Relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl Acad. Sci. USA 99, 13705–13710 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leulier, F. et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature Immunol. 4, 478–484 (2003). A demonstration that D. melanogaster can distinguish between different bacterial peptidoglycans. Lys-type peptidoglycans activate the Toll pathway, whereas DAP-type peptidoglycans activate the IMD pathway.

    Article  CAS  Google Scholar 

  37. Choe, K. M., Lee, H. & Anderson, K. V. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc. Natl Acad. Sci. USA 102, 1122–1126 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Werner, T., Borge-Renberg, K., Mellroth, P., Steiner, H. & Hultmark, D. Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J. Biol. Chem. 278, 26319–26322 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Kaneko, T. et al. Monomeric and polymeric Gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20, 637–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Chang, C. I., Chelliah, Y., Borek, D., Mengin-Lecreulx, D. & Deisenhofer, J. Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311, 1761–1764 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Maillet, F., Bischoff, V., Vignal, C., Hoffmann, J. & Royet, J. The Drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation. Cell Host Microbe 3, 293–303 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Basbous, N. et al. The Drosophila peptidoglycan-recognition protein LF interacts with peptidoglycan-recognition protein LC to downregulate the Imd pathway. EMBO Rep. 12, 327–333 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yano, T. et al. Autophagic control of Listeria through intracellular innate immune mechanism. Nature Immunol. 9, 908–916 (2008). A demonstration that PGRP-LE functions as a PRR for bacteria in the cytoplasm.

    Article  CAS  Google Scholar 

  44. Kaneko, T. et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nature Immunol. 7, 715–723 (2006).

    CAS  Google Scholar 

  45. Mellroth, P. & Steiner, H. PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochem. Biophys. Res. Commun. 350, 994–999 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Park, J. W. et al. Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proc. Natl Acad. Sci. USA 104, 6602–6607 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nehme, N. T. et al. A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog. 3, e173 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Liehl, P., Blight, M., Vodovar, N., Boccard, F. & Lemaitre, B. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog. 2, e56 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Corby-Harris, V. et al. Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster. Appl. Environ. Microbiol. 73, 3470–3479 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cox, C. R. & Gilmore, M. S. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect. Immun. 75, 1565–1576 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ren, C., Webster, P., Finkel, S. E. & Tower, J. Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab. 6, 144–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Ryu, J. H. et al. Innate immune homeostasis by the homeobox gene Caudal and commensal–gut mutualism in Drosophila. Science 319, 777–782 (2008). A demonstration of immune tolerance in the D. melanogaster gut and the participation of Caudal in this process.

    Article  CAS  PubMed  Google Scholar 

  53. Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR dependent nutrient sensing. Cell Metab. 14, 403–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Sharon, G. et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 107, 20051–20056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bischoff, V. et al. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog. 2, e14 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zaidman-Remy, A. et al. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24, 463–473 (2006). References 55 and 56 showed that PGRPs with amidase activity dampen the D. melanogaster immune response.

    Article  CAS  PubMed  Google Scholar 

  57. Gendrin, M., Welchman, D. P., Poidevin, M., Hervé, M. & Lemaitre, B. Long-range activation of systemic immunity through peptidoglycan diffusion in Drosophila. PLoS Pathog. 5, e1000694 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kleino, A. et al. Pirk is a negative regulator of the Drosophila Imd pathway. J. Immunol. 180, 5413–5422 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Lhocine, N. et al. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 4, 147–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Aggarwal, K. et al. Rudra interrupts receptor signaling complexes to negatively regulate the IMD pathway. PLoS Pathog. 4, e1000120 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. Buchon, N., Broderick, N. A., Chakrabarti, S. & Lemaitre, B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev. 23, 2333–2344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847–850 (2005). A demonstration that ROS production has an essential role in the gut immune response in D. melanogaster.

    Article  CAS  PubMed  Google Scholar 

  63. Ha, E. M. et al. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in Drosophila gut. Nature Immunol. 10, 949–957 (2009).

    Article  CAS  Google Scholar 

  64. Meister, S. et al. Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. PLoS Pathog. 5, e1000542 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Dong, Y., Manfredini, F. & Dimopoulos, G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 5, e1000423 (2009). A demonstration that the PGRP-LC-mediated response to the gut microbiota in mosquitoes has an indirect effect on parasite transmission.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pais, R., Lohs, C., Wu, Y., Wang, J. & Aksoy, S. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl. Environ. Microbiol. 74, 5965–5974 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, J., Wu, Y., Yang, G. & Aksoy, S. Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proc. Natl Acad. Sci. USA 106, 12133–12138 (2009). A demonstration of the role of PGRP-LB in tolerance towards symbiotic bacteria and in trypanosome transmission in tsetse flies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Anselme, C., Vallier, A., Balmand, S., Fauvarque, M. O. & Heddi, A. Host PGRP gene expression and bacterial release in endosymbiosis of the weevil Sitophilus zeamais. Appl. Environ. Microbiol. 72, 6766–6772 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Itoh, N. & Takahashi, K. G. Distribution of multiple peptidoglycan recognition proteins in the tissues of Pacific oyster, Crassostrea gigas. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 150, 409–417 (2008).

    Article  CAS  Google Scholar 

  70. Su, J., Ni, D., Song, L., Zhao, J. & Qiu, L. Molecular cloning and characterization of a short type peptidoglycan recognition protein (CfPGRP-S1) cDNA from Zhikong scallop Chlamys farreri. Fish Shellfish Immunol. 23, 646–656 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Yang, J. et al. Peptidoglycan recognition protein of Chlamys farreri (CfPGRP-S1) mediates immune defenses against bacterial infection. Dev. Comp. Immunol. 34, 1300–1307 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Goodson, M. S. et al. Identifying components of the NF-κB pathway in the beneficial Euprymna scolopes–Vibrio fischeri light organ symbiosis. Appl. Environ. Microbiol. 71, 6934–6946 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Troll, J. V. et al. Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal–bacterial symbiosis. Cell. Microbiol. 11, 1114–1127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Troll, J. V. et al. Taming the symbiont for coexistence: a host PGRP neutralizes a bacterial symbiont toxin. Environ. Microbiol. 12, 2190–2203 (2010). This study identified the role of PGRP2 in Euprymna scolopes Vibrio fischeri symbiosis.

    CAS  PubMed  Google Scholar 

  75. Koropatnick, T. A. et al. Microbial factor-mediated development in a host–bacterial mutualism. Science 306, 1186–1188 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Nyholm, S. V. & McFall-Ngai, M. J. The winnowing: establishing the squid–vibrio symbiosis. Nature Rev. Microbiol. 2, 632–642 (2004).

    Article  CAS  Google Scholar 

  77. Zhang, S. M., Zeng, Y. & Loker, E. S. Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and Gram-negative bacteria binding protein. Immunogenetics 59, 883–898 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Coteur, G. et al. Peptidoglycan recognition proteins with amidase activity in early deuterostomes (Echinodermata). Dev. Comp. Immunol. 31, 790–804 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Li, X. et al. Zebrafish peptidoglycan recognition proteins are bactericidal amidases essential for defense against bacterial infections. Immunity 27, 518–529 (2007). In this study, zebrafish PGRP genes were cloned and the amidase and bactericidal activities of these PGRPs and their role in the protection of embryos from bacterial infections were identified.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kim, M. Y., Jang, J. H., Lee, J. W. & Cho, J. H. Molecular cloning and characterization of peptidoglycan recognition proteins from the rockfish, Sebastes schlegeli. Fish Shellfish Immunol. 28, 632–639 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Mao, Y., Wang, J., Zhang, Z., Ding, S. & Su, Y. Cloning, mRNA expression, and recombinant expression of peptidoglycan recognition protein II gene from large yellow croaker (Pseudosciaena crocea). Mol. Biol. Rep. 37, 3897–3908 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Chang, M. X. & Nie, P. RNAi suppression of zebrafish peptidoglycan recognition protein 6 (zfPGRP6) mediated differentially expressed genes involved in Toll-like receptor signaling pathway and caused increased susceptibility to Flavobacterium columnare. Vet. Immunol. Immunopathol. 124, 295–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Chang, M. X., Wang, Y. P. & Nie, P. Zebrafish peptidoglycan recognition protein SC (zfPGRP-SC) mediates multiple intracellular signaling pathways. Fish Shellfish Immunol. 26, 264–274 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, M. et al. Human peptidoglycan recognition proteins require zinc to kill both Gram-positive and Gram-negative bacteria and are synergistic with antibacterial peptides. J. Immunol. 178, 3116–3125 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Kashyap, D. R. et al. Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nature Med. 17, 676–683 (2011). A demonstration that PGRPs kill bacteria through a novel mechanism based on the overactivation of bacterial two-component systems.

    Article  CAS  PubMed  Google Scholar 

  86. Wang, Z.-M. et al. Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J. Biol. Chem. 278, 49044–49052 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Gelius, E., Persson, C., Karlsson, J. & Steiner, H. A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity. Biochem. Biophys. Res. Commun. 306, 988–994 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Tydell, C. C., Yount, N., Tran, D., Yuan, J. & Selsted, M. Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. J. Biol. Chem. 277, 19658–19664 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Dziarski, R., Platt, K. A., Gelius, E., Steiner, H. & Gupta, D. Defect in neutrophil killing and increased susceptibility to infection with non-pathogenic Gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice. Blood 102, 689–697 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Cho, J. H. et al. Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. Blood 106, 2552–2558 (2005).

    Article  CAS  Google Scholar 

  91. Xu, M., Wang, Z. & Locksley, R. M. Innate immune responses in peptidoglycan recognition protein L-deficient mice. Mol. Cell. Biol. 24, 7949–7957 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, Y. et al. Identification of serum N-acetylmuramoyl-L-alanine amidase as liver peptidoglycan recognition protein 2. Biochim. Biophys. Acta 1752, 34–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, H., Gupta, D., Li, X. & Dziarski, R. Peptidoglycan recognition protein 2 (N-acetylmuramoyl-L-Ala amidase) is induced in keratinocytes by bacteria through the p38 kinase pathway. Infect. Immun. 73, 7216–7225 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Uehara, A. et al. Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via Toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cell. Microbiol. 7, 675–686 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Li, X., Wang, S., Wang, H. & Gupta, D. Differential expression of peptidoglycan recognition protein 2 in the skin and liver requires different transcription factors. J. Biol. Chem. 281, 20738–20748 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Mathur, P. et al. Murine peptidoglycan recognition proteins PglyrpIα and PglyrpIβ are encoded in the epidermal differentiation complex and are expressed in epidermal and hematopoietic tissues. Genomics 83, 1151–1163 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Saha, S. et al. Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-γ. Cell Host Microbe 8, 147–162 (2010). A demonstration that mammalian PGRPs protect the host from colitis by maintaining the beneficial, normal gut microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kappeler, S. R., Heuberger, C., Farah, Z. & Puhan, Z. Expression of the peptidoglycan recognition protein, PGRP, in the lactating mammary gland. J. Dairy Sci. 87, 2660–2668 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Rehman, A. et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut 60, 1354–1362 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Saha, S. et al. PGLYRP-2 and Nod2 are both required for peptidoglycan-induced arthritis and local inflammation. Cell Host Microbe 5, 137–150 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Budarf, M. L., Labbé, C., David, G. & Rioux, J. D. GWA studies: rewriting the story of IBD. Trends Genet. 25, 137–146 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Rioux, J. D. et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am. J. Hum. Genet. 66, 1863–1870 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lakatos, P. L., Fischer, S., Lakatos, L., Gal, I. & Papp, J. Current concept on the pathogenesis of inflammatory bowel disease-crosstalk between genetic and microbial factors: pathogenic bacteria and altered bacterial sensing or changes in mucosal integrity take “toll”? World J. Gastroenterol. 12, 1829–1841 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hyyryläinen, H. L. et al. A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol. Microbiol. 41, 1159–1172 (2001).

    Article  PubMed  Google Scholar 

  105. Kohanski, M. A., Dwyer, D. J., Wierzbowski, J., Cottarel, G. & Collins, J. J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135, 679–690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lim, J. H. et al. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem. 281, 8286–8295 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the authors' laboratories is supported by the National Institutes of Health (D.G. and R.D.) and the Action Concertée Insitative, Fondation pour la Recherche Médicale, Institut Universitaire de France, and Agence Nationale de la Recherche (J.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julien Royet or Roman Dziarski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Julien Royet's homepage

Dipika Gupta's homepage

Roman Dziarski's homepage

Glossary

Eukaryotes

Organisms (such as animals, plants and fungi) whose cells contain genetic material contained within a membrane-enclosed nucleus.

Symbiotic

Symbiosis is a physical association between two organisms and includes mutualism, commensalism and parasitism. In common (non-scientific) usage it is often assumed to be beneficial to both organisms.

Mutualistic

A form of symbiosis that is beneficial to both organisms involved.

Commensal

A form of symbiosis in which one organism benefits and the other derives neither benefit nor harm.

Microbiome

The microbiome is the entire community of microorganisms that live in or on the body of a multicellular eukaryotic organism. Because in many cases these microorganisms can only be characterized by genetic methods, the term microbiome is often used to refer to the collective genomes present in all microorganisms in a given microbial community.

Prokaryotes

Simple organisms (such as bacteria) whose cells lack a membrane-enclosed nucleus and membrane-enclosed organelles.

Pattern recognition molecules

Proteins that recognize molecular patterns that are characteristic of microbial molecules but not present in the host, such as peptidoglycan (which is found in the cell walls of all bacteria) or lipopolysaccharide (which is found in the cell walls of Gram-negative bacteria). Some pattern recognition molecules are found on the surface of host cells and function as pattern recognition receptors to activate host cells, whereas others are secreted and function to trigger pro-inflammatory cascades or help to remove microorganisms.

Parasitic

A form of symbiosis that is beneficial to one organism and detrimental to the other.

Prophenoloxidase cascade

A cascade of enzymatic reactions that generates quinones, which are toxic to microorganisms, and melanin pigments, which restrict the spreading of microorganisms within the host. It is an important component of the innate immune response in invertebrates.

Toll pathway

A signalling cascade in insects that regulates the expression of antimicrobial peptides after infection by fungi or Gram-positive bacteria. Detection of fungi by GNBP3 and of bacteria by circulating peptidoglycan recognition proteins (PGRPs) triggers the cleavage of the cytokine Spätzle, which then activates the Toll receptor, and this initiates the activation of the NF-κB-like transcription factors Dif and Dorsal and their translocation into the nucleus. This pathway also controls dorsoventral patterning during embryogenesis.

Antimicrobial peptides

(AMPs). Polypeptides that are typically less than 100 amino acids and that have an important role in innate immune responses by providing broad-spectrum antimicrobial activity against pathogenic microorganisms. There are different types of AMP that promote microbial killing by various mechanisms, but many function by disrupting the membranes of microorganisms.

IMD pathway

A signalling cascade in insects (named after 'immunodeficiency' mutant flies) that corresponds closely to the mammalian tumour necrosis factor receptor signalling pathway. This cascade is mainly activated by Gram-negative bacteria, which are recognized by the upstream receptors PGRP-LC and PGRP-LE. Intracellular signalling involves the death domain-containing protein IMD, IκB kinase, FADD, Dredd, TAK1 and the NF-κB-like protein Relish. In contrast to the Toll pathway, the IMD pathway has no known role in development.

Autophagy

Autophagocytosis that involves the degradation of the cell's own components through the lysosomal machinery. This process has a role in normal cell growth and development, and also has a protective role against infection with intracellular pathogens.

Reactive oxygen species

(ROS). Aerobic organisms derive their energy from the reduction of oxygen. The metabolism of oxygen, and in particular its reduction through the mitochondrial electron-transfer chain, generates by-products such as superoxide (O2), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH). These three species and the unstable intermediates that are formed by lipid peroxidation are known as ROS. ROS can damage important intracellular targets such as DNA, carbohydrates and proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royet, J., Gupta, D. & Dziarski, R. Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat Rev Immunol 11, 837–851 (2011). https://doi.org/10.1038/nri3089

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing