Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Helminth-derived immunomodulators: can understanding the worm produce the pill?

Abstract

Helminths may protect humans against allergic and autoimmune diseases and, indeed, defined helminth-derived products have recently been shown to prevent the development of such inflammatory diseases in mouse models. Here, we propose that helminth-derived products not only have therapeutic potential but can also be used as unique tools for defining key molecular events in the induction of an anti-inflammatory response and, therefore, for defining new therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential Toll-like receptor 4 signalling by helminth products subverts antigen-presenting cell responses.
Figure 2: Proposed mechanism of subversion of Toll-like receptor 4 signalling in mast cells by ES62.

Similar content being viewed by others

References

  1. de Silva, N. R. et al. Soil-transmitted helminth infections: updating the global picture. Trends Parasitol. 19, 547–551 (2003).

    Article  Google Scholar 

  2. Ruyssers, N. E. et al. Worms and the treatment of inflammatory bowel disease: are molecules the answer? Clin. Dev. Immunol. 2008, 567314–567320 (2008).

    Article  Google Scholar 

  3. Cooper, P. J. Interactions between helminth parasites and allergy. Curr. Opin. Allergy Clin. Immunol. 9, 29–37 (2009).

    Article  Google Scholar 

  4. van Riet, E., Hartgers, F. C. & Yazdanbakhsh, M. Chronic helminth infections induce immunomodulation: consequences and mechanisms. Immunobiology 212, 475–490 (2007).

    Article  CAS  Google Scholar 

  5. Maizels, R. M. Infections and allergy — helminths, hygiene and host immune regulation. Curr. Opin. Immunol. 17, 656–661 (2005).

    Article  CAS  Google Scholar 

  6. Carvalho, L. et al. Review series on helminths, immune modulation and the hygiene hypothesis: mechanisms underlying helminth modulation of dendritic cell function. Immunology 126, 28–34 (2009).

    Article  CAS  Google Scholar 

  7. Anthony, R. M., Rutitzky, L. I., Urban, J. F. Jr, Stadecker, M. J. & Gause, W. C. Protective immune mechanisms in helminth infection. Nature Rev. Immunol. 7, 975–987 (2007).

    Article  CAS  Google Scholar 

  8. David, T., Thomas, C., Zaccone, P., Dunne, D. W. & Cooke, A. The impact of infection on the incidence of autoimmune disease. Curr. Top. Med. Chem. 4, 521–529 (2004).

    Article  CAS  Google Scholar 

  9. Cooke, A. Review series on helminths, immune modulation and the hygiene hypothesis: how might infection modulate the onset of type 1 diabetes? Immunology 126, 12–17 (2009).

    Article  CAS  Google Scholar 

  10. Harnett, W. & Harnett, M. M. Therapeutic immunomodulators from nematode parasites. Expert Rev. Mol. Med. 10, e18 (2008).

    Article  Google Scholar 

  11. Fallon, P. G. & Mangan, N. E. Suppression of TH2-type allergic reactions by helminth infection. Nature Rev. Immunol. 7, 220–230 (2007).

    Article  CAS  Google Scholar 

  12. Helmby, H. Helminths and our immune system: friend or foe? Parasitol. Int. 58, 121–127 (2009).

    Article  CAS  Google Scholar 

  13. Erb, K. J. Can helminths or helminth-derived products be used in humans to prevent or treat allergic diseases? Trends Immunol. 30, 75–82 (2009).

    Article  CAS  Google Scholar 

  14. Elliott, D. E., Summers, R. W. & Weinstock, J. V. Helminths as governors of immune-mediated inflammation. Int. J. Parasitol. 37, 457–464 (2007).

    Article  CAS  Google Scholar 

  15. van der Kleij, D. et al. A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates Toll-like receptor 2 and affects immune polarization. J. Biol. Chem. 277, 48122–48129 (2002).

    Article  CAS  Google Scholar 

  16. Harn, D. A., McDonald, J., Atochina, O. & Da'dara, A. A. Modulation of host immune responses by helminth glycans. Immunol. Rev. 230, 247–257 (2009).

    Article  CAS  Google Scholar 

  17. Aksoy, E. et al. Double-stranded RNAs from the helminth parasite Schistosoma activate TLR3 in dendritic cells. J. Biol. Chem. 280, 277–283 (2005).

    Article  CAS  Google Scholar 

  18. Vanhoutte, F. et al. Toll-like receptor (TLR)2 and TLR3 sensing is required for dendritic cell activation, but dispensable to control Schistosoma mansoni infection and pathology. Microbes Infect. 9, 1606–1613 (2007).

    Article  CAS  Google Scholar 

  19. van Riet, E. et al. Combined TLR2 and TLR4 ligation in the context of bacterial or helminth extracts in human monocyte derived dendritic cells: molecular correlates for Th1/Th2 polarization. BMC Immunol. 10, 9 (2009).

    Article  Google Scholar 

  20. Goodridge, H. S. et al. Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62. J. Immunol. 174, 284–293 (2005).

    Article  CAS  Google Scholar 

  21. Melendez, A. J. et al. Inhibition of FcɛRI-mediated mast cell responses by ES-62, a product of parasitic filarial nematodes. Nature Med. 13, 1375–1381 (2007).

    Article  CAS  Google Scholar 

  22. Donnelly, S. et al. Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages. FASEB J. 22, 4022–4032 (2008).

    Article  CAS  Google Scholar 

  23. Atochina, O. & Harn, D. Prevention of psoriasis-like lesions development in fsn/fsn mice by helminth glycans. Exp. Dermatol. 15, 461–468 (2006).

    Article  CAS  Google Scholar 

  24. Thomas, P. G. et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism. J. Immunol. 171, 5837–5841 (2003).

    Article  CAS  Google Scholar 

  25. Van Liempt, E. et al. Molecular basis of the differences in binding properties of the highly related C-type lectins DC-SIGN and L-SIGN to Lewis X trisaccharide and Schistosoma mansoni egg antigens. J. Biol. Chem. 279, 33161–33167 (2004).

    Article  CAS  Google Scholar 

  26. van Liempt, E. et al. Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Mol. Immunol. 44, 2605–2615 (2007).

    Article  CAS  Google Scholar 

  27. Kane, C. M., Jung, E. & Pearce, E. J. Schistosoma mansoni egg antigen-mediated modulation of Toll-like receptor (TLR)-induced activation occurs independently of TLR2, TLR4, and MyD88. Infect. Immun. 76, 5754–5759 (2008).

    Article  CAS  Google Scholar 

  28. Goodridge, H. S., Deehan, M. R., Harnett, W. & Harnett, M. M. Subversion of immunological signalling by a filarial nematode phosphorylcholine-containing secreted product. Cell Signal. 17, 11–16 (2005).

    Article  CAS  Google Scholar 

  29. Goodridge, H. S., Stepek, G., Harnett, W. & Harnett, M. M. Signalling mechanisms underlying subversion of the immune response by the filarial nematode secreted product ES-62. Immunology 115, 296–304 (2005).

    Article  CAS  Google Scholar 

  30. Harnett, M. M., Melendez, A. J. & Harnett, W. The therapeutic potential of the filarial nematode-derived immunomodulator, ES-62, in inflammatory disease. Clin. Exp. Immunol. 159, 256–267 (2010).

    Article  CAS  Google Scholar 

  31. Harnett, M. M. et al. The phosphorycholine moiety of the filarial nematode immunomodulator ES-62 is responsible for its anti-inflammatory action in arthritis. Ann. Rheum. Dis. 67, 518–523 (2008).

    Article  CAS  Google Scholar 

  32. McInnes, I. B. et al. A novel therapeutic approach targeting articular inflammation using the filarial nematode-derived phosphorylcholine-containing glycoprotein ES-62. J. Immunol. 171, 2127–2133 (2003).

    Article  CAS  Google Scholar 

  33. Rigano, R. et al. Echinococcus granulosus antigen B impairs human dendritic cell differentiation and polarizes immature dendritic cell maturation towards a Th2 cell response. Infect. Immun. 75, 1667–1678 (2007).

    Article  CAS  Google Scholar 

  34. Kean, D. E. et al. Dissecting Ascaris glycosphingolipids for immunomodulatory moieties — the use of synthetic structural glycosphingolipid analogues. Parasite Immunol. 28, 69–76 (2006).

    Article  CAS  Google Scholar 

  35. Deehan, M. R. et al. Immunomodulatory properties of Ascaris suum glycosphingolipids — phosphorylcholine and non-phosphorylcholine-dependent effects. Parasite Immunol. 24, 463–469 (2002).

    Article  CAS  Google Scholar 

  36. Brannstrom, K., Sellin, M. E., Holmfeldt, P., Brattsand, M. & Gullberg, M. The Schistosoma mansoni protein Sm16/SmSLP/SmSPO-1 assembles into a nine-subunit oligomer with potential To inhibit Toll-like receptor signaling. Infect. Immun. 77, 1144–1154 (2009).

    Article  Google Scholar 

  37. Donnelly, S. et al. Helminth cysteine proteases inhibit TRIF-dependent activation of macrophages via degradation of TLR3. J. Biol. Chem. 285, 3383–3392 (2010).

    Article  CAS  Google Scholar 

  38. Kanzler, H., Barrat, F. J., Hessel, E. M. & Coffman, R. L. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nature Med. 13, 552–559 (2007).

    Article  CAS  Google Scholar 

  39. Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nature Rev. Immunol. 7, 179–190 (2007).

    Article  CAS  Google Scholar 

  40. O'Neill, L. A. & Bowie, A. G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  Google Scholar 

  41. Goodridge, H. S. et al. Phosphorylcholine mimics the effects of ES-62 on macrophages and dendritic cells. Parasite Immunol. 29, 127–137 (2007).

    Article  CAS  Google Scholar 

  42. Thomas, P. G., Carter, M. R., Da'dara, A. A., Desimone, T. M. & Harn, D. A. A helminth glycan induces APC maturation via alternative NF-κB activation independent of IκBα degradation. J. Immunol. 175, 2082–2090 (2005).

    Article  CAS  Google Scholar 

  43. Agrawal, S. et al. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J. Immunol. 171, 4984–4989 (2003).

    Article  CAS  Google Scholar 

  44. Dillon, S. et al. A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J. Immunol. 172, 4733–4743 (2004).

    Article  CAS  Google Scholar 

  45. Goodridge, H. S., Harnett, W., Liew, F. Y. & Harnett, M. M. Differential regulation of interleukin-12 p40 and p35 induction via Erk mitogen-activated protein kinase-dependent and -independent mechanisms and the implications for bioactive IL-12 and IL-23 responses. Immunology 109, 415–425 (2003).

    Article  CAS  Google Scholar 

  46. Kane, C. M. et al. Helminth antigens modulate TLR-initiated dendritic cell activation. J. Immunol. 173, 7454–7461 (2004).

    Article  CAS  Google Scholar 

  47. Breuilh, L. et al. Galectin-3 modulates immune and inflammatory responses during helminthic infection: impact of galectin-3 deficiency on the functions of dendritic cells. Infect. Immun. 75, 5148–5157 (2007).

    Article  CAS  Google Scholar 

  48. Dillon, S. et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest. 116, 916–928 (2006).

    Article  CAS  Google Scholar 

  49. Kubo-Murai, M. et al. Protein kinase Cδ binds TIRAP/Mal to participate in TLR signaling. Mol. Immunol. 44, 2257–2264 (2007).

    Article  CAS  Google Scholar 

  50. Lai, W. Q. et al. The role of sphingosine kinase in a murine model of allergic asthma. J. Immunol. 180, 4323–4329 (2008).

    Article  CAS  Google Scholar 

  51. Lai, W. Q. et al. Distinct roles of sphingosine kinase 1 and 2 in murine collagen-induced arthritis. J. Immunol. 183, 2097–2103 (2009).

    Article  CAS  Google Scholar 

  52. Pushparaj, P. N. et al. Sphingosine kinase1 is pivotal for FcɛRI-mediated mast cell signaling and functional responses in vitro and in vivo. J. Immunol. 183, 221–227 (2009).

    Article  CAS  Google Scholar 

  53. Watts, C. Location, location, location: identifying the neighborhoods of LPS signaling. Nature Immunol. 9, 343–345 (2008).

    Article  CAS  Google Scholar 

  54. Kagan, J. C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nature Immunol. 9, 361–368 (2008).

    Article  CAS  Google Scholar 

  55. Halaas, O., Husebye, H. & Espevik, T. The journey of Toll-like receptors in the cell. Adv. Exp. Med. Biol. 598, 35–48 (2007).

    Article  Google Scholar 

  56. Husebye, H. et al. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J. 25, 683–692 (2006).

    Article  CAS  Google Scholar 

  57. Kutuzova, G. D., Albrecht, R. M., Erickson, C. M. & Qureshi, N. Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of lipopolysaccharide in RAW 264.7 cells. J. Immunol. 167, 482–489 (2001).

    Article  CAS  Google Scholar 

  58. Szabo, G., Dolganiuc, A., Dai, Q. & Pruett, S. B. TLR4, ethanol, and lipid rafts: a new mechanism of ethanol action with implications for other receptor-mediated effects. J. Immunol. 178, 1243–1249 (2007).

    Article  CAS  Google Scholar 

  59. Grange, P. A. et al. Production of superoxide anions by keratinocytes initiates P. acnes-induced inflammation of the skin. PLoS Pathog. 5, e1000527 (2009).

    Article  Google Scholar 

  60. Cervi, L., MacDonald, A. S., Kane, C., Dzierszinski, F. & Pearce, E. J. Cutting edge: dendritic cells copulsed with microbial and helminth antigens undergo modified maturation, segregate the antigens to distinct intracellular compartments, and concurrently induce microbe-specific Th1 and helminth-specific Th2 responses. J. Immunol. 172, 2016–2020 (2004).

    Article  CAS  Google Scholar 

  61. Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nature Rev. Mol. Cell Biol. 8, 947–956 (2007).

    Article  CAS  Google Scholar 

  62. Lin, A. E. & Mak, T. W. The role of E3 ligases in autoimmunity and the regulation of autoreactive T cells. Curr. Opin. Immunol. 19, 665–673 (2007).

    Article  Google Scholar 

  63. Semnani, R. T. et al. Inhibition of TLR3 and TLR4 function and expression in human dendritic cells by helminth parasites. Blood 112, 1290–1298 (2008).

    Article  CAS  Google Scholar 

  64. Babu, S., Blauvelt, C. P., Kumaraswami, V. & Nutman, T. B. Regulatory networks induced by live parasites impair both Th1 and Th2 pathways in patent lymphatic filariasis: implications for parasite persistence. J. Immunol. 176, 3248–3256 (2006).

    Article  CAS  Google Scholar 

  65. Taylor, J. J., Krawczyk, C. M., Mohrs, M. & Pearce, E. J. Th2 cell hyporesponsiveness during chronic murine schistosomiasis is cell intrinsic and linked to GRAIL expression. J. Clin. Invest. 119, 1019–1028 (2009).

    Article  CAS  Google Scholar 

  66. Bachmaier, K. et al. E3 ubiquitin ligase Cblb regulates the acute inflammatory response underlying lung injury. Nature Med. 13, 920–926 (2007).

    Article  CAS  Google Scholar 

  67. Qu, X. et al. Negative regulation of FcɛRI-mediated mast cell activation by a ubiquitin-protein ligase Cbl-b. Blood 103, 1779–1786 (2004).

    Article  CAS  Google Scholar 

  68. Hartmann, S. & Lucius, R. Modulation of host immune responses by nematode cystatins. Int. J. Parasitol. 33, 1291–1302 (2003).

    Article  CAS  Google Scholar 

  69. Schnoeller, C. et al. A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J. Immunol. 180, 4265–4272 (2008).

    Article  CAS  Google Scholar 

  70. Rzepecka, J. et al. Calreticulin from the intestinal nematode Heligmosomoides polygyrus is a Th2-skewing protein and interacts with murine scavenger receptor-A. Mol. Immunol. 46, 1109–1119 (2009).

    Article  CAS  Google Scholar 

  71. Imai, S. & Fujita, K. Molecules of parasites as immunomodulatory drugs. Curr. Top. Med. Chem. 4, 539–552 (2004).

    Article  CAS  Google Scholar 

  72. Schramm, G. et al. Cutting edge: IPSE/alpha-1, a glycoprotein from Schistosoma mansoni eggs, induces IgE-dependent, antigen-independent IL-4 production by murine basophils in vivo. J. Immunol. 178, 6023–6027 (2007).

    Article  CAS  Google Scholar 

  73. Steinfelder, S. et al. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J. Exp. Med. 206, 1681–1690 (2009).

    Article  CAS  Google Scholar 

  74. Perrigoue, J. G. et al. MHC class II-dependent basophil-CD4+ T cell interactions promote TH2 cytokine-dependent immunity. Nature Immunol. 10, 697–705 (2009).

    Article  CAS  Google Scholar 

  75. Everts, B. et al. Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses. J. Exp. Med. 206, 1673–1680 (2009).

    Article  CAS  Google Scholar 

  76. Smith, P. et al. Schistosoma mansoni secretes a chemokine binding protein with antiinflammatory activity. J. Exp. Med. 202, 1319–1325 (2005).

    Article  CAS  Google Scholar 

  77. Roelofs, M. F., Abdollahi-Roodsaz, S., Joosten, L. A., van den Berg, W. B. & Radstake, T. R. The orchestra of Toll-like receptors and their potential role in frequently occurring rheumatic conditions. Arthritis Rheum. 58, 338–348 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the American Asthma Foundation, the Arthritis Research Campaign, the Biotechnology and Biological Sciences Research Council, the Medical Research Council and the Wellcome Trust for their support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

William Harnett's homepage

Margaret M. Harnett's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harnett, W., Harnett, M. Helminth-derived immunomodulators: can understanding the worm produce the pill?. Nat Rev Immunol 10, 278–284 (2010). https://doi.org/10.1038/nri2730

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2730

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing