Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Awakening dormant haematopoietic stem cells

Abstract

Haematopoietic stem cells (HSCs) in mouse bone marrow are located in specialized niches as single cells. During homeostasis, signals from this environment keep some HSCs dormant, which preserves long-term self-renewal potential, while other HSCs actively self renew to maintain haematopoiesis. In response to haematopoietic stress, dormant HSCs become activated and rapidly replenish the haematopoietic system. Interestingly, three factors — granulocyte colony-stimulating factor, interferon-α and arsenic trioxide — have been shown to efficiently activate dormant stem cells and thereby could break their resistance to anti-proliferative chemotherapeutics. Thus, we propose that two-step strategies could target resistant leukaemic stem cells by priming tumours with activators of dormancy followed by chemotherapy or targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model of dormant and homeostatic haematopoietic stem cells and their dynamic behaviour in response to haematopoietic injury.
Figure 2: Interferon-α promotes cell cycle entry of dormant and homeostatic haematopoietic stem cells.
Figure 3: Leukaemic stem cells may be targeted by a two-step strategy.

Similar content being viewed by others

References

  1. Dzierzak, E. & Speck, N. A. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nature Immunol. 9, 129–136 (2008).

    Article  CAS  Google Scholar 

  2. Yoshimoto, M. & Yoder, M. C. Developmental biology: birth of the blood cell. Nature 457, 801–803 (2009).

    Article  CAS  Google Scholar 

  3. Wilson, A. & Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nature Rev. Immunol. 6, 93–106 (2006).

    Article  CAS  Google Scholar 

  4. Arai, F. et al. Niche regulation of hematopoietic stem cells in the endosteum. Ann. NY Acad. Sci. 1176, 36–46 (2009).

    Article  CAS  Google Scholar 

  5. Kiel, M. J. & Morrison, S. J. Uncertainty in the niches that maintain haematopoietic stem cells. Nature Rev. Immunol. 8, 290–301 (2008).

    Article  CAS  Google Scholar 

  6. Essers, M. A. et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature 458, 904–908 (2009).

    Article  CAS  Google Scholar 

  7. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    Article  CAS  Google Scholar 

  8. Jorgensen, H. G. et al. Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate. Clin. Cancer Res. 12, 626–633 (2006).

    Article  CAS  Google Scholar 

  9. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Article  CAS  Google Scholar 

  10. Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1, 218–229 (2007).

    Article  CAS  Google Scholar 

  11. Camargo, F. D., Chambers, S. M., Drew, E., McNagny, K. M. & Goodell, M. A. Hematopoietic stem cells do not engraft with absolute efficiencies. Blood 107, 501–507 (2006).

    Article  CAS  Google Scholar 

  12. Ema, H. et al. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev. Cell 8, 907–914 (2005).

    Article  CAS  Google Scholar 

  13. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  Google Scholar 

  14. Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    Article  CAS  Google Scholar 

  15. Cheshier, S. H., Morrison, S. J., Liao, X. & Weissman, I. L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl Acad. Sci. USA 96, 3120–3125 (1999).

    Article  CAS  Google Scholar 

  16. Yamazaki, S. et al. TGF-β as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113, 1250–1256 (2009).

    Article  CAS  Google Scholar 

  17. Passegue, E., Wagers, A. J., Giuriato, S., Anderson, W. C. & Weissman, I. L. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202, 1599–1611 (2005).

    Article  CAS  Google Scholar 

  18. Yoshihara, H. et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1, 685–697 (2007).

    Article  CAS  Google Scholar 

  19. Foudi, A. et al. Analysis of histone 2B–GFP retention reveals slowly cycling hematopoietic stem cells. Nature Biotechnol. 27, 84–90 (2009).

    Article  CAS  Google Scholar 

  20. van der Wath, R. C., Wilson, A., Laurenti, E., Trumpp, A. & Lio, P. Estimating dormant and active hematopoietic stem cell kinetics through extensive modeling of bromodeoxyuridine label-retaining cell dynamics. PLoS ONE 4, e6972 (2009).

    Article  Google Scholar 

  21. Cheshier, S. H., Prohaska, S. S. & Weissman, I. L. The effect of bleeding on hematopoietic stem cell cycling and self-renewal. Stem Cells Dev. 16, 707–717 (2007).

    Article  CAS  Google Scholar 

  22. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  Google Scholar 

  23. Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 18, 2747–2763 (2004).

    Article  CAS  Google Scholar 

  24. Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    Article  CAS  Google Scholar 

  25. Lo Celso, C. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457, 92–96 (2009).

    Article  CAS  Google Scholar 

  26. Xie, Y. et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457, 97–101 (2009).

    Article  CAS  Google Scholar 

  27. Arai, F. & Suda, T. Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann. NY Acad. Sci. 1106, 41–53 (2007).

    Article  CAS  Google Scholar 

  28. Lane, S. W., Scadden, D. T. & Gilliland, D. G. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114, 1150–1157 (2009).

    Article  CAS  Google Scholar 

  29. Hooper, A. T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274 (2009).

    Article  CAS  Google Scholar 

  30. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    Article  CAS  Google Scholar 

  31. Bhattacharya, D. et al. Niche recycling through division-independent egress of hematopoietic stem cells. J. Exp. Med. 206, 2837–2850 (2009).

    Article  CAS  Google Scholar 

  32. Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature Med. 12, 446–451 (2006).

    Article  CAS  Google Scholar 

  33. Jang, Y. Y. & Sharkis, S. J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056–3063 (2007).

    Article  CAS  Google Scholar 

  34. Kaushansky, K. The molecular mechanisms that control thrombopoiesis. J. Clin. Invest. 115, 3339–3347 (2005).

    Article  CAS  Google Scholar 

  35. Bowie, M. B. et al. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J. Clin. Invest. 116, 2808–2816 (2006).

    Article  CAS  Google Scholar 

  36. Kim, I., He, S., Yilmaz, O. H., Kiel, M. J. & Morrison, S. J. Enhanced purification of fetal liver hematopoietic stem cells using SLAM family receptors. Blood 108, 737–744 (2006).

    Article  CAS  Google Scholar 

  37. Bowie, M. B. et al. Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc. Natl Acad. Sci. USA 104, 5878–5882 (2007).

    Article  CAS  Google Scholar 

  38. Kim, I., Saunders, T. L. & Morrison, S. J. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 130, 470–483 (2007).

    Article  CAS  Google Scholar 

  39. Morrison, S. J., Wright, D. E. & Weissman, I. L. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc. Natl Acad. Sci. USA 94, 1908–1913 (1997).

    Article  CAS  Google Scholar 

  40. Broxmeyer, H. E. Chemokines in hematopoiesis. Curr. Opin. Hematol. 15, 49–58 (2008).

    Article  CAS  Google Scholar 

  41. Petit, I. et al. G.-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunol. 3, 687–694 (2002).

    Article  CAS  Google Scholar 

  42. Borden, E. C. et al. Interferons at age 50: past, current and future impact on biomedicine. Nature Rev. Drug Discov. 6, 975–990 (2007).

    Article  CAS  Google Scholar 

  43. Jonasch, E. & Haluska, F. G. Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 6, 34–55 (2001).

    Article  CAS  Google Scholar 

  44. de Veer, M. J. et al. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukoc. Biol. 69, 912–920 (2001).

    CAS  Google Scholar 

  45. Holmes, C. & Stanford, W. L. Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 25, 1339–1347 (2007).

    Article  CAS  Google Scholar 

  46. Ito, C. Y., Li, C. Y., Bernstein, A., Dick, J. E. & Stanford, W. L. Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood 101, 517–23 (2003).

    Article  CAS  Google Scholar 

  47. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  CAS  Google Scholar 

  48. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  Google Scholar 

  49. Gothert, J. R. et al. In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 105, 2724–2732 (2005).

    Article  Google Scholar 

  50. Sato, T. et al. Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nature Med. 15, 696–700 (2009).

    Article  CAS  Google Scholar 

  51. Venezia, T. A. et al. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol. 2, e301 (2004).

    Article  Google Scholar 

  52. Feng, C. G., Weksberg, D. C., Taylor, G. A., Sher, A. & Goodell, M. A. The p47 GTPase Lrg-47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2, 83–89 (2008).

    Article  CAS  Google Scholar 

  53. George, C. X., Das, S. & Samuel, C. E. Organization of the mouse RNA-specific adenosine deaminase Adar1 gene 5′-region and demonstration of STAT1-independent, STAT2-dependent transcriptional activation by interferon. Virology 380, 338–343 (2008).

    Article  CAS  Google Scholar 

  54. George, C. X. & Samuel, C. E. Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc. Natl Acad. Sci. USA 96, 4621–4626 (1999).

    Article  CAS  Google Scholar 

  55. George, C. X., Wagner, M. V. & Samuel, C. E. Expression of interferon-inducible RNA adenosine deaminase ADAR1 during pathogen infection and mouse embryo development involves tissue-selective promoter utilization and alternative splicing. J. Biol. Chem. 280, 15020–15028 (2005).

    Article  CAS  Google Scholar 

  56. Hartner, J. C., Walkley, C. R., Lu, J. & Orkin, S. H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nature Immunol. 10, 109–115 (2009).

    Article  CAS  Google Scholar 

  57. Wilson, A., Laurenti, E. & Trumpp, A. Balancing dormant and self-renewing hematopoietic stem cells. Curr. Opin. Genet. Dev. 19, 461–468 (2009).

    Article  CAS  Google Scholar 

  58. Orford, K. W. & Scadden, D. T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nature Rev. Genet. 9, 115–128 (2008).

    Article  CAS  Google Scholar 

  59. Goldman, J. M. et al. Chronic myeloproliferative diseases with and without the Ph chromosome: some unresolved issues. Leukemia 23, 1708–1715 (2009).

    Article  CAS  Google Scholar 

  60. Cortes, J., O'Brien, S. & Kantarjian, H. Discontinuation of imatinib therapy after achieving a molecular response. Blood 104, 2204–2205 (2004).

    Article  CAS  Google Scholar 

  61. Baccarani, M. et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J. Clin. Oncol. 27, 6041–6051 (2009).

    Article  CAS  Google Scholar 

  62. Roeder, I. et al. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nature Med. 12, 1181–1184 (2006).

    Article  CAS  Google Scholar 

  63. Foo, J., Drummond, M. W., Clarkson, B., Holyoake, T. & Michor, F. Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib. PLoS Comput. Biol. 5, e1000503 (2009).

    Article  Google Scholar 

  64. Ito, K. et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453, 1072–1078 (2008).

    Article  CAS  Google Scholar 

  65. Nasr, R. et al. Eradication of acute promyelocytic leukemia-initiating cells through PML–RARA degradation. Nature Med. 14, 1333–1342 (2008).

    Article  CAS  Google Scholar 

  66. Nasr, R., Lallemand-Breitenbach, V., Zhu, J., Guillemin, M. C. & de The, H. Therapy-induced PML/RARA proteolysis and acute promyelocytic leukemia cure. Clin. Cancer Res. 15, 6321–6326 (2009).

    Article  CAS  Google Scholar 

  67. Drummond, M. W. et al. A pilot study of continuous imatinib vs pulsed imatinib with or without G-CSF in CML patients who have achieved a complete cytogenetic response. Leukemia 23, 1199–1201 (2009).

    Article  CAS  Google Scholar 

  68. Kujawski, L. A. & Talpaz, M. The role of interferon-α in the treatment of chronic myeloid leukemia. Cytokine Growth Factor Rev. 18, 459–471 (2007).

    Article  CAS  Google Scholar 

  69. Hochhaus, A. First-line management of CML: a state of the art review. J. Natl Compr. Canc. Netw. 6, S1–S10 (2008).

    Article  CAS  Google Scholar 

  70. Johansson, M., Denardo, D. G. & Coussens, L. M. Polarized immune responses differentially regulate cancer development. Immunol. Rev. 222, 145–154 (2008).

    Article  CAS  Google Scholar 

  71. Adams, G. B. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439, 599–603 (2006).

    Article  CAS  Google Scholar 

  72. Ogawa, M. et al. CD34 expression by murine hematopoietic stem cells. Developmental changes and kinetic alterations. Ann. NY Acad. Sci. 938, 139–145 (2001).

    Article  CAS  Google Scholar 

  73. Randall, T. D., Lund, F. E., Howard, M. C. & Weissman, I. L. Expression of murine CD38 defines a population of long-term reconstituting hematopoietic stem cells. Blood 87, 4057–4067 (1996).

    CAS  PubMed  Google Scholar 

  74. Chen, C. Z. et al. Identification of endoglin as a functional marker that defines long-term repopulating hematopoietic stem cells. Proc. Natl Acad. Sci. USA 99, 15468–15473 (2002).

    Article  CAS  Google Scholar 

  75. Chen, C. Z., Li, L., Li, M. & Lodish, H. F. The endoglinpositive sca-1positive rhodaminelow phenotype defines a near-homogeneous population of long-term repopulating hematopoietic stem cells. Immunity 19, 525–533 (2003).

    Article  Google Scholar 

  76. Okada, S. et al. In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80, 3044–3050 (1992).

    CAS  PubMed  Google Scholar 

  77. Balazs, A. B., Fabian, A. J., Esmon, C. T. & Mulligan, R. C. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107, 2317–2321 (2006).

    Article  CAS  Google Scholar 

  78. Kent, D. G. et al. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113, 6342–6350 (2009).

    Article  CAS  Google Scholar 

  79. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    Article  CAS  Google Scholar 

  80. Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants awarded to A.T. from the European Union 7th Framework Programme 'EuroSyStem' and the BioRN Spitzencluster 'Molecular and Cell Based Medicine' funded by the German 'Bundesministerium für Bildung und Forschung' (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Trumpp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Andreas Trumpp's homepage

Glossary

5-Fluorouracil

(5-FU). A pyrimidine analogue, which is used as a drug in the treatment of cancer. It belongs to the familiy of drugs called anti-metabolites and mainly functions as a thymidylate synthase inhibitor. One of its main side effects is myelosuppression, shown by a massive loss of bone marrow and peripheral haematopoietic cells in 5-FU treated mice. This induces a feedback loop that activates previously dormant and therefore resistant HSCs to proliferate and self renew.

Bromodeoxyuridine

(BrdU). A thymidine analogue that is incorporated into DNA during DNA replication. In vivo or in vitro treatment with BrdU can allow the detection of dividing cells by intracellular staining with fluorescence-labelled BrdU-specific antibodies followed by flow cytometry.

Chronic myeloid leukaemia

(CML). A cancer of the white blood cells. This form of leukaemia is a clonal bone marrow stem cell disorder, which is characterized by the proliferation of mature granulocytes and their precursors in the bone marrow, followed by accumulation of these cells in the blood. CML is associated with a characteristic chromosomal translocation, the Philadelphia chromosome, generating an aberrant constitutively active tyrosine kinase called BCR–ABL. Treatment with the tyrosine kinase inhibitor imatinib mesylate has dramatically improved the survival of patients with CML over the past decade.

Competitive-repopulation assay

A functional assay for measuring the activity of mouse HSCs. The HSC content of an undefined population of cells is determined by mixing the cells with a defined number of fresh bone marrow cells from another source. After transplantation into lethally irradiated mice, genetic markers are used to distinguish progeny from the two HSC sources in blood and haematopoietic organs. These measurements allow the assessment of HSC activity.

Imatinib mesylate

(Gleevec/Glivec; Novartis). A tyrosine kinase inhibitor used to treat CML, gastrointestinal stromal tumours and other cancers caused by constitutively active tyrosine kinases, including BCR–ABL and KIT. In CML, imatinib mesylate binds to the site of tyrosine kinase activity of the fusion protein BCR–ABL and therefore prevents its activity.

Mx1–Cre allele

An allele expressed in Mx1–Cre transgenic mice, in which the type I IFN-inducible Mx1 promoter controls expression of the Cre recombinase. By injection of polyinosinic–polycytidylic acid (polyI:C), type I IFNs are produced, which induces Cre recombinase expression. This induces highly efficient excision of loxP-flanked genes in HSCs and other blood cells, as well as hepatocytes.

Side population

The ability of a cell to efflux the Hoechst 33342 dye by a multi-drug resistant-like transporter expressed on the cell surface. This can be measured by flow cytometry and used to enrich for murine HSCs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trumpp, A., Essers, M. & Wilson, A. Awakening dormant haematopoietic stem cells. Nat Rev Immunol 10, 201–209 (2010). https://doi.org/10.1038/nri2726

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2726

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing