Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates

Key Points

  • The nematode Caenorhabditis elegans was developed as a model for studying bacterial virulence and innate immunity in 1999. C. elegans does not have circulating cells and seems to rely almost exclusively on epithelial immunity to combat pathogen attack. Several parallel immune response pathways have been identified that activate distinct but partially overlapping sets of immune effectors. Despite its simplicity, the C. elegans immune response is highly pathogen specific and different pathogens activate distinct immune response pathways.

  • Although C. elegans has a single Toll-like receptor (TLR), myeloid differentiation primary-response protein 88 (MYD88) and nuclear factor-κB (NF-κB) are not encoded in the C. elegans genome or in the genomes of other nematode species. Moreover, the single C. elegans TLR does not seem to have an important role in the immune response. Because some cnidaria (such as the sea anemone Nematostella vectensis) have TLRs, MYD88 and NF-κB, it seems that TLR signalling has been lost in the nematode lineage.

  • A highly conserved p38 mitogen-activated protein kinase (MAPK) signalling cascade has a central role in the C. elegans immune response as it does in mammals. The p38 MAPK pathway is required for the activation of a set of immune effectors that are required to maintain a basal level of immune function.

  • The p38 MAPK signalling pathway is active during both infection and wounding and functions in at least the intestine, neurons and epidermis in response to pathogen infection.

  • Several highly conserved metazoan signalling pathways have dual roles, functioning as important components of the C. elegans immune response. It is of interest to determine whether the same pathways function in immune signalling throughout metazoan evolution, including acting in concert with TLR pathways in mammals.

  • In addition to its role in stress resistance, lifespan extension and metabolic regulation in C. elegans, the DAF-2–DAF-16 insulin signalling pathway confers resistance to a wide variety of pathogens when DAF-16 is constitutively activated.

  • The C. elegans β-catenin homologue β-catenin/armadillo-related family member 1 (BAR-1) and the downstream homoebox protein egg laying defective protein 5 (EGL-5) have central roles in activating the C. elegans immune response to infection by Staphylococcus aureus but not Pseudomonas aeruginosa. Roles for β-catenin and homeobox proteins in immune signalling in flies and mammals have also been recently shown.

  • The G protein-coupled receptor FSHR-1 is the first candidate immune receptor to be identified in C. elegans.

Abstract

The genetically tractable model organism Caenorhabditis elegans was first used to model bacterial virulence in vivo a decade ago. Since then, great strides have been made in identifying the host response pathways that are involved in its defence against infection. Strikingly, C. elegans seems to detect, and respond to, infection without the involvement of its homologue of Toll-like receptors, in contrast to the well-established role for these proteins in innate immunity in mammals. What, therefore, do we know about host defence mechanisms in C. elegans and what can they tell us about innate immunity in higher organisms?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Caenorhabditis elegans intestine.
Figure 2: Mitogen-activated protein kinase signalling is conserved in Caenorhabditis elegans.
Figure 3: Components of Toll-like receptor signalling in bilateria and cnidaria.
Figure 4: Parallel signalling pathways in the induction of Caenorhabditis elegans host defence.

Similar content being viewed by others

References

  1. Hemmrich, G., Miller, D. J. & Bosch, T. C. G. The evolution of immunity: a low-life perspective. Trends Immunol. 28, 449–454 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Salzet, M. Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol. 22, 285–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Waterfield, N. R., Wren, B. W. & Ffrench-Constant, R. H. Invertebrates as a source of emerging human pathogens. Nature Rev. Microbiol. 2, 833–841 (2004).

    Article  CAS  Google Scholar 

  4. Adams, B. et al. Biodiversity and systematics of nematode–bacterium entomopathogens. Biol. Control 37, 32–49 (2006).

    Article  Google Scholar 

  5. Lee, D. G. et al. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol. 7, R90 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pedersen, A. L., Nybroe, O., Winding, A., Ekelund, F. & Bjørnlund, L. Bacterial feeders, the nematode Caenorhabditis elegans and the flagellate Cercomonas longicauda, have different effects on outcome of competition among the Pseudomonas biocontrol strains CHA0 and DSS73. Microb. Ecol. 57, 501–509 (2009).

    Article  PubMed  Google Scholar 

  7. Hilbi, H., Weber, S. S., Ragaz, C., Nyfeler, Y. & Urwyler, S. Environmental predators as models for bacterial pathogenesis. Environ. Microbiol. 9, 563–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Ruvkun, G. & Hobert, O. The taxonomy of developmental control in Caenorhabditis elegans. Science 282, 2033–2041 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Schulenburg, H., Hoeppner, M. P., Weiner, J. & Bornberg-Bauer, E. Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. Immunobiology 213, 237–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, X. & Zhang, Y. Neural–immune communication in Caenorhabditis elegans. Cell Host Microbe 5, 425–429 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Shivers, R. P., Youngman, M. J. & Kim, D. H. Transcriptional responses to pathogens in Caenorhabditis elegans. Curr. Opin. Microbiol. 11, 251–256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brenner, S. In the beginning was the worm. Genetics 182, 413–415 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Powell, J. R. & Ausubel, F. M. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens. Methods Mol. Biol. 415, 403–427 (2008).

    CAS  PubMed  Google Scholar 

  14. Aballay, A. & Ausubel, F. M. Caenorhabditis elegans as a host for the study of host–pathogen interactions. Curr. Opin. Microbiol. 5, 97–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Couillault, C. & Ewbank, J. J. Diverse bacteria are pathogens of Caenorhabditis elegans. Infect. Immun. 70, 4705–4707 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurz, C. L. & Ewbank, J. J. Caenorhabditis elegans for the study of host–pathogen interactions. Trends Microbiol. 8, 142–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Sifri, C. D., Begun, J. & Ausubel, F. M. The worm has turned — microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol. 13, 119–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Tan, M. W., Mahajan-Miklos, S. & Ausubel, F. M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl Acad. Sci. USA 96, 715–720 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hodgkin, J., Kuwabara, P. E. & Corneliussen, B. A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr. Biol. 10, 1615–1618 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Pujol, N. et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol. 11, 809–821 (2001). Reverse genetic study of the Toll signalling pathway in C. elegans , showing that diverse mutants do not have defective survival after infection with Serratia marcescens but have a pathogen avoidance phenotype.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y., Lu, H. & Bargmann, C. I. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438, 179–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Aballay, A., Yorgey, P. & Ausubel, F. M. Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr. Biol. 10, 1539–1542 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Troemel, E. R. et al. p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet. 2, e183 (2006). Extensive global transcriptional profiling of an early infection with P. aeruginosa , showing the relationship between p38 MAPK signalling and insulin signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Irazoqui, J. E., Ng, A., Xavier, R. J. & Ausubel, F. M. Role for β-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial–pathogen interactions. Proc. Natl Acad. Sci. USA 105, 17469–17474 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan, M. W., Rahme, L. G., Sternberg, J. A., Tompkins, R. G. & Ausubel, F. M. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl Acad. Sci. USA 96, 2408–2413 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mahajan-Miklos, S., Tan, M. W., Rahme, L. G. & Ausubel, F. M. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell 96, 47–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Darby, C., Cosma, C. L., Thomas, J. H. & Manoil, C. Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 96, 15202–15207 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DeNardo, D. G., Johansson, M. & Coussens, L. M. Inflaming gastrointestinal oncogenic programming. Cancer Cell 14, 7–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Karin, M. The IκB kinase — a bridge between inflammation and cancer. Cell Res. 18, 334–342 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Ferrandon, D., Imler, J.-L., Hetru, C. & Hoffmann, J. A. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nature Rev. Immunol. 7, 862–874 (2007).

    Article  CAS  Google Scholar 

  31. Anderson, K. V., Jürgens, G. & Nüsslein-Volhard, C. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42, 779–789 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Carty, M. et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nature Immunol. 7, 1074–1081 (2006).

    Article  CAS  Google Scholar 

  36. Liberati, N. T. et al. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc. Natl Acad. Sci. USA 101, 6593–6598 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Couillault, C. et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nature Immunol. 5, 488–494 (2004).

    Article  CAS  Google Scholar 

  38. Shivers, R. P., Kooistra, T., Chu, S. W., Pagano, D. J. & Kim, D. H. Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans. Cell Host Microbe 6, 321–330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zugasti, O. & Ewbank, J. J. Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-β signaling pathway in Caenorhabditis elegans epidermis. Nature Immunol. 10, 249–256 (2009). An excellent example of characterization of tissue-specific signalling pathways involved in defence against fungal infection.

    Article  CAS  Google Scholar 

  40. Tenor, J. L. & Aballay, A. A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity. EMBO Rep. 9, 103–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Zhong, J. et al. GCK is essential to systemic inflammation and pattern recognition receptor signaling to JNK and p38. Proc. Natl Acad. Sci. USA 106, 4372–4377 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dong, C., Davis, R. J. & Flavell, R. A. MAP kinases in the immune response. Annu. Rev. Immunol. 20, 55–72 (2002).

    CAS  PubMed  Google Scholar 

  43. Lu, H. T. et al. Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J. 18, 1845–1857 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tobiume, K. et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2, 222–228 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, D. H. et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297, 623–626 (2002). This report identified the PMK-1 p38 MAPK pathway using forward genetic identification and showed that the pathway is essential for defence against P. aeruginosa.

    Article  CAS  PubMed  Google Scholar 

  46. Kim, D. H. et al. Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proc. Natl Acad. Sci. USA 101, 10990–10994 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mizuno, T. et al. The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response. EMBO J. 23, 2226–2234 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takeda, K., Noguchi, T., Naguro, I. & Ichijo, H. Apoptosis signal-regulating kinase 1 in stress and immune response. Annu. Rev. Pharmacol. Toxicol. 48, 199–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Aballay, A. & Ausubel, F. M. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc. Natl Acad. Sci. USA 98, 2735–2739 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, D. H. & Ausubel, F. M. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr. Opin. Immunol. 17, 4–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Miller, D. J. et al. The innate immune repertoire in cnidaria — ancestral complexity and stochastic gene loss. Genome Biol. 8, R59 (2007). A phylogenetic perspective on the evolution of innate immune signalling pathways in primitive invertebrates. Representatives of the Toll or TLR and IL-1R signalling pathways are identified, as well as a complement system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abad, P. et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnol. 26, 909–915 (2008).

    Article  CAS  Google Scholar 

  54. Wong, D., Bazopoulou, D., Pujol, N., Tavernarakis, N. & Ewbank, J. J. Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biol. 8, R194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, R. E. & Thorner, J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1773, 1311–1340 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bischof, L. J. et al. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS Pathog. 4, e1000176 (2008). This report describes UPR activation during exposure to the bacterial pore-forming toxin Cry5B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huffman, D. L. et al. Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc. Natl Acad. Sci. USA 101, 10995–11000 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huffman, D. L., Bischof, L. J., Griffitts, J. S. & Aroian, R. V. Pore worms: using Caenorhabditis elegans to study how bacterial toxins interact with their target host. Int. J. Med. Microbiol. 293, 599–607 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Gal-Mor, O. & Finlay, B. B. Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell. Microbiol. 8, 1707–1719 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Jansson, H. B. Adhesion of conidia of Drechmeria coniospora to Caenorhabditis elegans wild type and mutants. J. Nematol. 26, 430–435 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pujol, N. et al. Distinct innate immune responses to infection and wounding in the C. elegans epidermis. Curr. Biol. 18, 481–489 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ren, M., Feng, H., Fu, Y., Land, M. & Rubin, C. S. Protein kinase D is an essential regulator of C. elegans innate immunity. Immunity 30, 521–532 (2009). A good example of the use of genetics to identify new components of innate immune signalling pathways, followed by the biochemical characterization of PKD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shirai, Y. & Saito, N. Activation mechanisms of protein kinase C: maturation, catalytic activation, and targeting. J. Biochem. 132, 663–668 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Ziegler, K. et al. Antifungal innate immunity in C. elegans: PKCδ links G protein signaling and a conserved p38 MAPK cascade. Cell Host Microbe 5, 341–352 (2009). An excellent study of the signalling pathways upstream of PMK-1 in the epidermis of C. elegans during fungal infection.

    Article  CAS  PubMed  Google Scholar 

  65. Pujol, N. et al. Anti-fungal innate immunity in C. elegans is enhanced by evolutionary diversification of antimicrobial peptides. PLoS Pathog. 4, e1000105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tong, A. et al. Negative regulation of Caenorhabditis elegans epidermal damage responses by death-associated protein kinase. Proc. Natl Acad. Sci. USA 106, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zeuthen, L. H., Fink, L. N. & Frokiaer, H. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-β. Immunology 123, 197–208 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wahl, S. M. Transforming growth factor-β: innately bipolar. Curr. Opin. Immunol. 19, 55–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Wolkow, C. A., Kimura, K. D., Lee, M. S. & Ruvkun, G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290, 147–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Garsin, D. A. et al. Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300, 1921 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Antebi, A. Genetics of aging in Caenorhabditis elegans. PLoS Genet. 3, 1565–1571 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Lee, S. S., Kennedy, S., Tolonen, A. C. & Ruvkun, G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 300, 644–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Murphy, C. T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–283 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Miyata, S., Begun, J., Troemel, E. R. & Ausubel, F. M. DAF-16-dependent suppression of immunity during reproduction in Caenorhabditis elegans. Genetics 178, 903–918 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Evans, E. A., Chen, W. C. & Tan, M.-W. The DAF-2 insulin-like signaling pathway independently regulates aging and immunity in C. elegans. Aging Cell 7, 879–893 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. McElwee, J. J., Schuster, E., Blanc, E., Thomas, J. H. & Gems, D. Shared transcriptional signature in Caenorhabditis elegans dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J. Biol. Chem. 279, 44533–44543 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Evans, E. A., Kawli, T. & Tan, M.-W. Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog. 4, e1000175 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Anyanful, A., Easley, K. A., Benian, G. M. & Kalman, D. Conditioning protects C. elegans from lethal effects of enteropathogenic E. coli by activating genes that regulate lifespan and innate immunity. Cell Host Microbe 5, 450–462 (2009). The first identification that DAF-16 activation is involved in the 'conditioned' phenotype resulting from previous exposure to attenuated pathogenic E. coli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shapira, M. et al. A conserved role for a GATA transcription factor in regulating epithelial innate immune responses. Proc. Natl Acad. Sci. USA 103, 14086–14091 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. O'Rourke, D., Baban, D., Demidova, M., Mott, R. & Hodgkin, J. Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res. 16, 1005–1016 (2006). An excellent study of the transcriptional response to infection with the nematode-specific bacterial pathogen M. nematophilum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eisenmann, D. M. Wnt signaling. WormBook 25, 1–17 (2005).

    Google Scholar 

  82. Eisenmann, D. M. & Kim, S. K. Protruding vulva mutants identify novel loci and Wnt signaling factors that function during Caenorhabditis elegans vulva development. Genetics 156, 1097–1116 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Eisenmann, D. M., Maloof, J. N., Simske, J. S., Kenyon, C. & Kim, S. K. The β-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development. Development 125, 3667–3680 (1998).

    CAS  PubMed  Google Scholar 

  84. Nicholas, H. R. & Hodgkin, J. The C. elegans Hox gene egl-5 is required for correct development of the hermaphrodite hindgut and for the response to rectal infection by Microbacterium nematophilum. Dev. Biol. 329, 16–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Gravato-Nobre, M. J. et al. Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 171, 1033–1045 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nicholas, H. R. & Hodgkin, J. The ERK MAP kinase cascade mediates tail swelling and a protective response to rectal infection in C. elegans. Curr. Biol. 14, 1256–1261 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Powell, J. R., Kim, D. H. & Ausubel, F. M. The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response. Proc. Natl Acad. Sci. USA 106, 2782–2787 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Haskins, K. A., Russell, J. F., Gaddis, N., Dressman, H. K. & Aballay, A. Unfolded protein response genes regulated by CED-1 are required for Caenorhabditis elegans innate immunity. Dev. Cell 15, 87–97 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sieburth, D. et al. Systematic analysis of genes required for synapse structure and function. Nature 436, 510–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Cho, S., Rogers, K. W. & Fay, D. S. The C. elegans glycopeptide hormone receptor ortholog, FSHR-1, regulates germline differentiation and survival. Curr. Biol. 17, 203–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Means, T. K. et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J. Exp. Med. 206, 637–653 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chung, S., Gumienny, T. L., Hengartner, M. O. & Driscoll, M. A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nature Cell Biol. 2, 931–937 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Mohri-Shiomi, A. & Garsin, D. A. Insulin signaling and the heat shock response modulate protein homeostasis in the Caenorhabditis elegans intestine during infection. J. Biol. Chem. 283, 194–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Singh, V. & Aballay, A. Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc. Natl Acad. Sci. USA 103, 13092–13097 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Medzhitov, R. Approaching the asymptote: 20 years later. Immunity 30, 766–775 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Moy, T. I. et al. High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem. Biol. 4, 527–533 (2009). This is an example of the use of C. elegans infection models for the identification of new antimicrobial compounds.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Boutros, M. & Ahringer, J. The art and design of genetic screens: RNA interference. Nature Rev. Genet. 9, 554–566 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Trivedi, C. M., Patel, R. C. & Patel, C. V. Differential regulation of HOXA9 expression by nuclear factor κB (NF-κB) and HOXA9. Gene 408, 187–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Trivedi, C. M., Patel, R. C. & Patel, C. V. Homeobox gene HOXA9 inhibits nuclear factor-κB dependent activation of endothelium. Atherosclerosis 195, e50–e60 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Sun, J. et al. Crosstalk between NF-κB and β-catenin pathways in bacterial-colonized intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G129–G137 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Sun, J., Hobert, M. E., Rao, A. S., Neish, A. S. & Madara, J. L. Bacterial activation of β-catenin signaling in human epithelia. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G220–G227 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Franco, A. T. et al. Activation of β-catenin by carcinogenic Helicobacter pylori. Proc. Natl Acad. Sci. USA 102, 10646–10651 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ye, Z., Petrof, E. O., Boone, D., Claud, E. C. & Sun, J. Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. Am. J. Pathol. 171, 882–892 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Deng, J. et al. Crossregulation of NF-κB by the APC/GSK-3β/β-catenin pathway. Mol. Carcinog. 39, 139–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Pereira, C., Schaer, D. J., Bachli, E. B., Kurrer, M. O. & Schoedon, G. Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler. Thromb. Vasc. Biol. 28, 504–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Kumar, A. et al. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J. 26, 4457–4466 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Blumenthal, A. et al. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood 108, 965–973 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Gregorieff, A. et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129, 626–638 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Koslowski, M. J. et al. Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn's disease. PLoS ONE 4, e4496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wehkamp, J. et al. The Paneth cell α-defensin deficiency of ileal Crohn's disease is linked to Wnt/Tcf-4. J. Immunol. 179, 3109–3118 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. van Es, J. H. et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nature Cell Biol. 7, 381–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Andreu, P. et al. Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development 132, 1443–1451 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Simms, L. A. et al. Reduced α-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn's disease. Gut 57, 903–910 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Lengerke, C. et al. BMP and Wnt specify hematopoietic fate by activation of the Cdx–Hox pathway. Cell Stem Cell 2, 72–82 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Lickert, H. et al. Wnt/β-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine. Development 127, 3805–3813 (2000).

    CAS  PubMed  Google Scholar 

  116. Benahmed, F. et al. Multiple regulatory regions control the complex expression pattern of the mouse Cdx2 homeobox gene. Gastroenterology 135, 1238–1247. e3 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, M.-L. et al. Regulation of RELM/FIZZ isoform expression by Cdx2 in response to innate and adaptive immune stimulation in the intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1074–G1083 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Ryu, J.-H. et al. The homeobox gene Caudal regulates constitutive local expression of antimicrobial peptide genes in Drosophila epithelia. Mol. Cell Biol. 24, 172–185 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ryu, J.-H. et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Aris-Brosou, S. & Yang, Z. Bayesian models of episodic evolution support a late Precambrian explosive diversification of the metazoa. Mol. Biol. Evol. 20, 1947–1954 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Peterson, K. J. et al. Estimating metazoan divergence times with a molecular clock. Proc. Natl Acad. Sci. USA 101, 6536–6541 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The unpublished observations cited in this review were funded by US National Institutes of Health grants R01 AI64332 and PO1 AI44220 awarded to F.M.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick M. Ausubel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Frederick M. Ausubel's homepage

Javier E. Irazoqui's homepage

Glossary

Hermaphrodite

An organism that has both male and female reproductive organs.

RNA interference

The silencing of gene expression by the introduction of double-stranded RNA that triggers the specific degradation of a homologous target mRNA, often accompanied by a concomitant decrease in production of the encoded protein.

Microarray

A technique for measuring the transcription of genes. It involves the hybridization of fluorescently labelled cDNA prepared from a cell or tissue of interest to glass slides or other surfaces dotted with oligodeoxynucleotides or cDNA that represents all genes in the species.

Quantitative reverse transcription PCR

(qRT-PCR). A quantitative PCR method that is used to measure relative or absolute mRNA concentrations.

Scaffold protein

A protein that functions as a support to assemble a multiprotein complex.

Coelomate

An animal that has an internal body cavity derived from the mesoderm.

Bilateria

Members of the animal kingdom that have bilateral symmetry — the property of having two similar sides, with definite upper and lower surfaces, and anterior and posterior ends.

Neuropeptide-like peptides

A family of short peptides with sequence homology to YGGW-amide neuropeptides, which can be induced during infection.

Caenacins

A family of peptides related to neuropeptide-like peptides, which can be induced during infection.

Epistasis

An interaction between non-allelic genes, such that one gene masks, interferes with or enhances the expression of the other gene.

Reverse genetic approach

A genetic approach that proceeds from genotype to phenotype by gene manipulation techniques, such as homologous recombination in embryonic stem cells and RNA interference.

Homeobox transcription factors

The genes encoding these factors contain a 180-base pair sequence encoding the homeodomain and are involved in the regulation of animal and plant development. This sequence encodes a DNA-binding helix–turn–helix motif (the homeodomain), indicating that homeodomain-containing gene products function as transcription factors.

Leucine-rich repeat (LRR) domains

Domains that contain LRRs have a conserved solenoid structure, typically 20–29 residues in length and containing an 11 amino acid consensus sequence, LXXLXLXX(N or C)XL, in which X denotes any amino acid. These domains lack considerable identity or similarity in the amino acids surrounding this structure, both between and among families. Sequence substitutions in LRR-containing proteins are associated with changes in specificity and relative affinity towards LRR domain-binding partners.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irazoqui, J., Urbach, J. & Ausubel, F. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 10, 47–58 (2010). https://doi.org/10.1038/nri2689

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2689

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing