Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

IBD—what role do Proteobacteria play?

Abstract

The gastrointestinal microbiota has come to the fore in the search for the causes of IBD. This shift has largely been driven by the finding of genetic polymorphisms involved in gastrointestinal innate immunity (particularly polymorphisms in NOD2 and genes involved in autophagy) and alterations in the composition of the microbiota that might result in inflammation (so-called dysbiosis). Microbial diversity studies have continually demonstrated an expansion of the Proteobacteria phylum in patients with IBD. Individual Proteobacteria, in particular (adherent-invasive) Escherichia coli, Campylobacter concisus and enterohepatic Helicobacter, have all been associated with the pathogenesis of IBD. In this Review, we comprehensively describe the various associations of Proteobacteria and IBD. We also examine the importance of pattern recognition in the extracellular innate immune response of the host with particular reference to Proteobacteria, and postulate that Proteobacteria with adherent and invasive properties might exploit host defenses, drive proinflammatory change, alter the intestinal microbiota in favor of dysbiosis and ultimately lead to the development of IBD.

Key Points

  • The current paradigm of the pathogenesis of IBD involves a genetically and/or immunologically predisposed host responding inappropriately to an altered gastrointestinal microbiota, which leads to a protracted immune response and chronic inflammation

  • Proteobacteria are intricately involved in these luminal dysbiotic changes, wherein there is a breakdown in the balance of putative pathogenic bacteria and protective commensal bacteria

  • A subset of Proteobacteria with adherent-invasive capabilities potentially exploit the genetic defects of pathogen recognition and bacterial clearance, allowing them to perpetuate unchecked and providing the trigger that drives inflammation

  • The known genetic defects of pattern recognition receptors associated with susceptibility in developing IBD may paradoxically tilt the balance of the luminal microbiota towards pathogenic Gram-negative bacteria, in particular members of the Proteobacteria phylum

  • Studies correlating the genetic makeup of the host and the composition of the luminal microbiota will elucidate the relationship of Proteobacteria and the host immune system and the extent of its disruption in IBD

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The role of Proteobacteria in the postulated pathogenesis of IBD.

Similar content being viewed by others

References

  1. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hugot, J. P. et al. Mapping of a susceptibility locus for Crohn's disease on chromosome 16. Nature 379, 821–823 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Feller, M. et al. Mycobacterium avium subspecies paratuberculosis and Crohn's disease: a systematic review and meta-analysis. Lancet Infect. Dis. 7, 607–613 (2007).

    Article  PubMed  Google Scholar 

  7. Abubakar, I., Myhill, D., Aliyu, S. H. & Hunter, P. R. Detection of Mycobacterium avium subspecies paratuberculosis from patients with Crohn's disease using nucleic acid-based techniques: a systematic review and meta-analysis. Inflamm. Bowel Dis. 14, 401–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Mann, E. A. & Saeed, S. A. Gastrointestinal infection as a trigger for inflammatory bowel disease. Curr. Opin. Gastroenterol. 28, 24–29 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Willing, B. et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm. Bowel Dis. 15, 653–660 (2009).

    Article  PubMed  Google Scholar 

  10. Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15, 1183–1189 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tamboli, C. P., Neut, C., Desreumaux, P. & Colombel, J. F. Dysbiosis in inflammatory bowel disease. Gut 53, 1–4 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Joossens, M. et al. Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut 60, 631–637 (2011).

    Article  PubMed  Google Scholar 

  14. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Barnich, N., Denizot, J. & Darfeuille-Michaud, A. E. coli-mediated gut inflammation in genetically predisposed Crohn's disease patients. Pathol. Biol. (Paris) http://dx.doi.org/10.1016/j.patbio.2010.01.004.

  16. Boudeau, J., Glasser, A. L., Masseret, E., Joly, B. & Darfeuille-Michaud, A. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease. Infect. Immun. 67, 4499–4509 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Darfeuille-Michaud, A. et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127, 412–421 (2004).

    Article  PubMed  Google Scholar 

  18. Darfeuille-Michaud, A. et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology 115, 1405–1413 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Mahendran, V. et al. Prevalence of Campylobacter species in adult Crohn's disease and the preferential colonization sites of Campylobacter species in the human intestine. PLoS ONE 6, e25417 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Man, S. M. et al. Host attachment, invasion, and stimulation of proinflammatory cytokines by Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species. J. Infect. Dis. 202, 1855–1865 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Mukhopadhya, I. et al. Detection of Campylobacter concisus and other Campylobacter species in colonic biopsies from adults with ulcerative colitis. PLoS ONE 6, e21490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, L. et al. Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn's disease. J. Clin. Microbiol. 47, 453–455 (2009).

    Article  PubMed  Google Scholar 

  23. Kersters, K. et al. in The Prokaryotes (eds Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. & Dworkin, M.) 3–37 (Springer, New York, 2006).

    Book  Google Scholar 

  24. Stackebrandt, E., Murray, R. G. E. & Trüper, H. G. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int. J. Syst. Bacteriol. 38, 321–325 (1988).

    Article  Google Scholar 

  25. Mignot, T. The elusive engine in Myxococcus xanthus gliding motility. Cell. Mol. Life Sci. 64, 2733–2745 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Bryant, D. A. & Frigaard, N. U. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 14, 488–496 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Vesteinsdottir, H., Reynisdottir, D. B. & Orlygsson, J. Thiomonas islandica sp. nov., a moderately thermophilic, hydrogen- and sulfur-oxidizing betaproteobacterium isolated from a hot spring. Int. J. Syst. Evol. Microbiol. 61, 132–137 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Irgens, R. L., Gosink, J. J. & Staley, J. T. Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int. J. Syst. Bacteriol. 46, 822–826 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Martin, W. & Muller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Singer, E. et al. Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PLoS ONE 6, e25386 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rehman, A. et al. Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. J. Med. Microbiol. 59, 1114–1122 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gophna, U., Sommerfeld, K., Gophna, S., Doolittle, W. F. & Veldhuyzen van Zanten, S. J. Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J. Clin. Microbiol. 44, 4136–4141 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khan, K. J. et al. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am. J. Gastroenterol. 106, 661–673 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Massei, F., Massimetti, M., Messina, F., Macchia, P. & Maggiore, G. Bartonella henselae and inflammatory bowel disease. Lancet 356, 1245–1246 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Ventura, A. et al. Systemic Bartonella henselae infection with hepatosplenic involvement. J. Pediatr. Gastroenterol. Nutr. 29, 52–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Baldwin, C. L. & Winter, A. J. Macrophages and Brucella. Immunol. Ser. 60, 363–380 (1994).

    CAS  PubMed  Google Scholar 

  40. Musso, T. et al. Interaction of Bartonella henselae with the murine macrophage cell line J774: infection and proinflammatory response. Infect. Immun. 69, 5974–5980 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sim, W. H. et al. Novel Burkholderiales 23S rRNA genes identified in ileal biopsy samples from children: preliminary evidence that a subtype is associated with perianal Crohn's disease. J. Clin. Microbiol. 48, 1939–1942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Frank, D. N. et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 179–184 (2011).

    Article  PubMed  Google Scholar 

  43. Walker, A. W. et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 11, 7 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shulman, S. T., Friedmann, H. C. & Sims, R. H. Theodor Escherich: the first pediatric infectious diseases physician? Clin. Infect. Dis. 45, 1025–1029 (2007).

    Article  PubMed  Google Scholar 

  45. Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Rolhion, N. & Darfeuille-Michaud, A. Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm. Bowel Dis. 13, 1277–1283 (2007).

    Article  PubMed  Google Scholar 

  47. Tabaqchali, S., O'Donoghue, D. P. & Bettelheim, K. A. Escherichia coli antibodies in patients with inflammatory bowel disease. Gut 19, 108–113 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Swidsinski, A. et al. Mucosal flora in inflammatory bowel disease. Gastroenterology 122, 44–54 (2002).

    Article  PubMed  Google Scholar 

  49. Martin, H. M. et al. Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology 127, 80–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Sepehri, S. et al. Characterization of Escherichia coli isolated from gut biopsies of newly diagnosed patients with inflammatory bowel disease. Inflamm. Bowel Dis. 17, 1451–1463 (2011).

    Article  PubMed  Google Scholar 

  51. Arnott, I. D. et al. Sero-reactivity to microbial components in Crohn's disease is associated with disease severity and progression, but not NOD2/CARD15 genotype. Am. J. Gastroenterol. 99, 2376–2384 (2004).

    Article  PubMed  Google Scholar 

  52. Mow, W. S. et al. High-level serum antibodies to bacterial antigens are associated with antibiotic-induced clinical remission in Crohn's disease: a pilot study. Dig. Dis. Sci. 49, 1280–1286 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Mow, W. S. et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn's disease. Gastroenterology 126, 414–424 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Beaven, S. W. & Abreu, M. T. Biomarkers in inflammatory bowel disease. Curr. Opin. Gastroenterol. 20, 318–327 (2004).

    Article  PubMed  Google Scholar 

  55. Landers, C. J. et al. Selected loss of tolerance evidenced by Crohn's disease-associated immune responses to auto- and microbial antigens. Gastroenterology 123, 689–699 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Rolhion, N., Carvalho, F. A. & Darfeuille-Michaud, A. OmpC and the sigma(E) regulatory pathway are involved in adhesion and invasion of the Crohn's disease-associated Escherichia coli strain LF82. Mol. Microbiol. 63, 1684–1700 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Giaffer, M. H., Holdsworth, C. D. & Duerden, B. I. Virulence properties of Escherichia coli strains isolated from patients with inflammatory bowel disease. Gut 33, 646–650 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, Y. et al. Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn's disease. Gastroenterology 108, 1396–1404 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Boudeau, J., Barnich, N. & Darfeuille-Michaud, A. Type 1 pili-mediated adherence of Escherichia coli strain LF82 isolated from Crohn's disease is involved in bacterial invasion of intestinal epithelial cells. Mol. Microbiol. 39, 1272–1284 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Barnich, N., Boudeau, J., Claret, L. & Darfeuille-Michaud, A. Regulatory and functional co-operation of flagella and type 1 pili in adhesive and invasive abilities of AIEC strain LF82 isolated from a patient with Crohn's disease. Mol. Microbiol. 48, 781–794 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Barnich, N. et al. CEACAM6 acts as a receptor for adherent-invasive, E. coli, supporting ileal mucosa colonization in Crohn disease. J. Clin. Invest. 117, 1566–1574 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kleessen, B., Kroesen, A. J., Buhr, H. J. & Blaut, M. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand. J. Gastroenterol. 37, 1034–1041 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Glasser, A. L. et al. Adherent invasive Escherichia coli strains from patients with Crohn's disease survive and replicate within macrophages without inducing host cell death. Infect. Immun. 69, 5529–5537 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chassaing, B. et al. Crohn disease--associated adherent-invasive E. coli bacteria target mouse and human Peyer's patches via long polar fimbriae. J. Clin. Invest. 121, 966–975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Meconi, S. et al. Adherent-invasive Escherichia coli isolated from Crohn's disease patients induce granulomas in vitro. Cell. Microbiol. 9, 1252–1261 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Simpson, K. W. et al. Adherent and invasive Escherichia coli is associated with granulomatous colitis in boxer dogs. Infect. Immun. 74, 4778–4792 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mansfield, C. S. et al. Remission of histiocytic ulcerative colitis in Boxer dogs correlates with eradication of invasive intramucosal Escherichia coli. J. Vet. Intern. Med. 23, 964–969 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Nash, J. H. et al. Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other, E. coli pathotypes. BMC Genomics 11, 667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miquel, S. et al. Complete genome sequence of Crohn's disease-associated adherent-invasive E. coli strain LF82. PLoS ONE 5, e12714 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garrett, W. S. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8, 292–300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, I. A. & Kim, D. H. Klebsiella pneumoniae increases the risk of inflammation and colitis in a murine model of intestinal bowel disease. Scand. J. Gastroenterol. 46, 684–693 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Gutierrez, A. et al. Cytokine association with bacterial DNA in serum of patients with inflammatory bowel disease. Inflamm. Bowel Dis. 15, 508–514 (2009).

    Article  PubMed  Google Scholar 

  73. Kang, S. et al. Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm. Bowel Dis. 16, 2034–2042 (2010).

    Article  PubMed  Google Scholar 

  74. Lamps, L. W. et al. Pathogenic Yersinia DNA is detected in bowel and mesenteric lymph nodes from patients with Crohn's disease. Am. J. Surg. Pathol. 27, 220–227 (2003).

    Article  PubMed  Google Scholar 

  75. Zippi, M. et al. Mesenteric adenitis caused by Yersinia pseudotubercolosis in a patient subsequently diagnosed with Crohn's disease of the terminal ileum. World J. Gastroenterol. 12, 3933–3935 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Saebo, A., Vik, E., Lange, O. J. & Matuszkiewicz, L. Inflammatory bowel disease associated with Yersinia enterocolitica O:3 infection. Eur. J. Intern. Med. 16, 176–182 (2005).

    Article  PubMed  Google Scholar 

  77. Safa, G., Loppin, M., Tisseau, L. & Lamoril, J. Cutaneous aseptic neutrophilic abscesses and Yersinia enterocolitica infection in a case subsequently diagnosed as Crohn's disease. Dermatology 217, 340–342 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Gradel, K. O. et al. Increased short- and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterology 137, 495–501 (2009).

    Article  PubMed  Google Scholar 

  79. Jess, T. et al. Enteric Salmonella or Campylobacter infections and the risk of inflammatory bowel disease. Gut 60, 318–324 (2010).

    Article  PubMed  Google Scholar 

  80. Parent, K. & Mitchell, P. Pseudomonas-like group Va bacteria in Crohn's disease. Gastroenterology 75, 765 (1978).

    Article  CAS  PubMed  Google Scholar 

  81. Parent, K. & Mitchell, P. Cell wall-defective variants of Pseudomonas-like (group Va) bacteria in Crohn's disease. Gastroenterology 75, 368–372 (1978).

    Article  CAS  PubMed  Google Scholar 

  82. Graham, D. Y., Yoshimura, H. H. & Estes, M. K. DNA hybridization studies of the association of Pseudomonas maltophilia with inflammatory bowel diseases. J. Lab. Clin. Med. 101, 940–954 (1983).

    CAS  PubMed  Google Scholar 

  83. Wagner, J. et al. Identification and characterisation of Pseudomonas 16S ribosomal DNA from ileal biopsies of children with Crohn's disease. PLoS ONE 3, e3578 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wei, B. et al. Pseudomonas fluorescens encodes the Crohn's disease-associated I2 sequence and T-cell superantigen. Infect. Immun. 70, 6567–6575 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sutton, C. L. et al. Identification of a novel bacterial sequence associated with Crohn's disease. Gastroenterology 119, 23–31 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Suchodolski, J. S., Xenoulis, P. G., Paddock, C. G., Steiner, J. M. & Jergens, A. E. Molecular analysis of the bacterial microbiota in duodenal biopsies from dogs with idiopathic inflammatory bowel disease. Vet. Microbiol. 142, 394–400 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Kangro, H. O., Chong, S. K., Hardiman, A., Heath, R. B. & Walker-Smith, J. A. A prospective study of viral and mycoplasma infections in chronic inflammatory bowel disease. Gastroenterology 98, 549–553 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. Verma, R., Verma, A. K., Ahuja, V. & Paul, J. Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India. J. Clin. Microbiol. 48, 4279–4282 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Duffy, M. et al. Sulfate-reducing bacteria colonize pouches formed for ulcerative colitis but not for familial adenomatous polyposis. Dis. Colon Rectum 45, 384–388 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Pitcher, M. C. & Cummings, J. H. Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut 39, 1–4 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Goodman, M. J., Pearson, K. W., McGhie, D., Dutt, S. & Deodhar, S. G. Campylobacter and Giardia lamblia causing exacerbation of inflammatory bowel disease. Lancet 2, 1247 (1980).

    Article  CAS  PubMed  Google Scholar 

  92. Newman, A. & Lambert, J. R. Campylobacter jejuni causing flare-up in inflammatory bowel disease. Lancet 2, 919 (1980).

    Article  CAS  PubMed  Google Scholar 

  93. Kalischuk, L. D., Inglis, G. D. & Buret, A. G. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts. Gut Pathog. 1, 2 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Man, S. M. et al. Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn's disease. Inflamm. Bowel Dis. 16, 1008–1016 (2010).

    Article  PubMed  Google Scholar 

  95. Zhang, L. et al. Isolation and detection of Campylobacter concisus from saliva of healthy individuals and patients with inflammatory bowel disease. J. Clin. Microbiol. 48, 2965–2967 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Istivan, T. S., Smith, S. C., Fry, B. N. & Coloe, P. J. Characterization of Campylobacter concisus hemolysins. FEMS Immunol. Med. Microbiol. 54, 224–235 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Istivan, T. S., Coloe, P. J., Fry, B. N., Ward, P. & Smith, S. C. Characterization of a haemolytic phospholipase A(2) activity in clinical isolates of Campylobacter concisus. J. Med. Microbiol. 53, 483–493 (2004).

    CAS  PubMed  Google Scholar 

  98. Engberg, J. et al. Campylobacter concisus: an evaluation of certain phenotypic and genotypic characteristics. Clin. Microbiol. Infect. 11, 288–295 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Kaakoush, N. O. et al. The secretome of Campylobacter concisus. FEBS J. 277, 1606–1617 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Aabenhus, R., On, S. L., Siemer, B. L., Permin, H. & Andersen, L. P. Delineation of Campylobacter concisus genomospecies by amplified fragment length polymorphism analysis and correlation of results with clinical data. J. Clin. Microbiol. 43, 5091–5096 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kalischuk, L. D. & Inglis, G. D. Comparative genotypic and pathogenic examination of Campylobacter concisus isolates from diarrheic and non-diarrheic humans. BMC Microbiol. 11, 53 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. El-Omar, E. et al. Low prevalence of Helicobacter pylori in inflammatory bowel disease: association with sulphasalazine. Gut 35, 1385–1388 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vare, P. O. et al. Seroprevalence of Helicobacter pylori infection in inflammatory bowel disease: is Helicobacter pylori infection a protective factor? Scand. J. Gastroenterol. 36, 1295–1300 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Feeney, M. A. et al. A case-control study of childhood environmental risk factors for the development of inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 14, 529–534 (2002).

    Article  PubMed  Google Scholar 

  105. Guslandi, M., Fanti, L. & Testoni, P. A. Helicobacter pylori seroprevalence in Crohn's disease: lack of influence by pharmacological treatment. Hepatogastroenterology 49, 1296–1297 (2002).

    CAS  PubMed  Google Scholar 

  106. Luther, J., Dave, M., Higgins, P. D. & Kao, J. Y. Association between Helicobacter pylori infection and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Inflamm. Bowel Dis. 16, 1077–1084 (2010).

    Article  PubMed  Google Scholar 

  107. Rad, R. et al. CD25+/Foxp3+ T cells regulate gastric inflammation and Helicobacter pylori colonization in vivo. Gastroenterology 131, 525–537 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Luther, J. et al. Helicobacter pylori DNA decreases pro-inflammatory cytokine production by dendritic cells and attenuates dextran sodium sulphate-induced colitis. Gut 60, 1479–1486 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Elliott, D. E., Urban, J. J., Argo, C. K. & Weinstock, J. V. Does the failure to acquire helminthic parasites predispose to Crohn's disease? FASEB J. 14, 1848–1855 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Mendall, M. A. et al. Childhood living conditions and Helicobacter pylori seropositivity in adult life. Lancet 339, 896–897 (1992).

    Article  CAS  PubMed  Google Scholar 

  111. Lemke, L. B. et al. Concurrent Helicobacter bilis infection in C57BL/6 mice attenuates proinflammatory, H. pylori-induced gastric pathology. Infect. Immun. 77, 2147–2158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hansen, R., Thomson, J. M., El-Omar, E. M. & Hold, G. L. The role of infection in the aetiology of inflammatory bowel disease. J. Gastroenterol. 45, 266–276 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Chalifoux, L. V. & Bronson, R. T. Colonic adenocarcinoma associated with chronic colitis in cotton top marmosets, Saguinus oedipus. Gastroenterology 80, 942–946 (1981).

    Article  CAS  PubMed  Google Scholar 

  114. Cahill, R. J. et al. Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus. Infect. Immun. 65, 3126–3131 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kullberg, M. C. et al. Helicobacter hepaticus-induced colitis in interleukin-10-deficient mice: cytokine requirements for the induction and maintenance of intestinal inflammation. Infect. Immun. 69, 4232–4241 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jergens, A. E. et al. Helicobacter bilis triggers persistent immune reactivity to antigens derived from the commensal bacteria in gnotobiotic C3H/HeN mice. Gut 56, 934–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Bell, S. J., Chisholm, S. A., Owen, R. J., Borriello, S. P. & Kamm, M. A. Evaluation of Helicobacter species in inflammatory bowel disease. Aliment. Pharmacol. Ther. 18, 481–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Grehan, M., Danon, S., Lee, A., Daskalopoulos, G. & Mitchell, H. Absence of mucosa-associated colonic Helicobacters in an Australian urban population. J. Clin. Microbiol. 42, 874–876 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bohr, U. R. et al. Identification of enterohepatic Helicobacter species in patients suffering from inflammatory bowel disease. J. Clin. Microbiol. 42, 2766–2768 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Thomson, J. M. et al. Enterohepatic Helicobacter in ulcerative colitis: potential pathogenic entities? PLoS ONE 6, e17184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, L., Day, A., McKenzie, G. & Mitchell, H. Nongastric Helicobacter species detected in the intestinal tract of children. J. Clin. Microbiol. 44, 2276–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Man, S. M., Zhang, L., Day, A. S., Leach, S. & Mitchell, H. Detection of enterohepatic and gastric Helicobacter species in fecal specimens of children with Crohn's disease. Helicobacter 13, 234–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Kaakoush, N. O. et al. Detection of Helicobacteraceae in intestinal biopsies of children with Crohn's disease. Helicobacter 15, 549–557 (2010).

    Article  PubMed  Google Scholar 

  124. Laharie, D. et al. Association between entero-hepatic Helicobacter species and Crohn's disease: a prospective cross-sectional study. Aliment. Pharmacol. Ther. 30, 283–293 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Keenan, J. I. et al. Helicobacter species in the human colon. Colorectal Dis. 12, 48–53 (2008).

    Article  Google Scholar 

  126. Hansen, R., Thomson, J. M., Fox, J. G., El-Omar, E. M. & Hold, G. L. Could Helicobacter organisms cause inflammatory bowel disease? FEMS Immunol. Med. Microbiol. 61, 1–14 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Wells, J. M., Rossi, O., Meijerink, M. & van Baarlen, P. Epithelial crosstalk at the microbiota-mucosal interface. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4607–4614 (2011).

    Article  PubMed  Google Scholar 

  128. Hedayat, M., Netea, M. G. & Rezaei, N. Targeting of Toll-like receptors: a decade of progress in combating infectious diseases. Lancet Infect. Dis. 11, 702–712 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Uematsu, S. & Fujimoto, K. The innate immune system in the intestine. Microbiol. Immunol. 54, 645–657 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Hold, G. L., Mukhopadhya, I. & Monie, T. P. Innate immune sensors and gastrointestinal bacterial infections. Clin. Dev. Immunol. 2011, 579650 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Cullen, T. W. & Trent, M. S. A link between the assembly of flagella and lipooligosaccharide of the Gram-negative bacterium Campylobacter jejuni. Proc. Natl Acad. Sci. USA 107, 5160–5165 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hold, G. L. & Bryant, C. E. in Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells (eds Knirel, Y. A. & Valvano, M. A.) 371–388 (Springer, New York, 2011).

    Book  Google Scholar 

  134. Shen, X. et al. The Toll-like receptor 4 D299G and T399I polymorphisms are associated with Crohn's disease and ulcerative colitis: a meta-analysis. Digestion 81, 69–77 (2006).

    Article  CAS  Google Scholar 

  135. Rallabhandi, P. et al. Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling. J. Immunol. 177, 322–332 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Arbour, N. C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25, 187–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Kiechl, S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med. 347, 185–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Lorenz, E., Mira, J. P., Frees, K. L. & Schwartz, D. A. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch. Intern. Med. 162, 1028–1032 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Eyking, A. et al. Toll-like receptor 4 variant D299G induces features of neoplastic progression in Caco-2 intestinal cells and is associated with advanced human colon cancer. Gastroenterology 141, 2154–2165 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Fuse, K., Katakura, K., Sakamoto, N. & Ohira, H. Toll-like receptor 9 gene mutations and polymorphisms in Japanese ulcerative colitis patients. World J. Gastroenterol. 16, 5815–5821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hong, J. et al. TLR2, TLR4 and TLR9 polymorphisms and Crohn's disease in a New Zealand Caucasian cohort. J. Gastroenterol. Hepatol. 22, 1760–1766 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Torok, H. P. et al. Crohn's disease is associated with a toll-like receptor-9 polymorphism. Gastroenterology 127, 365–366 (2004).

    Article  PubMed  Google Scholar 

  143. Eaves-Pyles, T. et al. Escherichia coli isolated from a Crohn's disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int. J. Med. Microbiol. 298, 397–409 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Dasti, J. I., Tareen, A. M., Lugert, R., Zautner, A. E. & Gross, U. Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int. J. Med. Microbiol. 300, 205–211 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Ohl, M. E. & Miller, S. I. Salmonella: a model for bacterial pathogenesis. Annu. Rev. Med. 52, 259–274 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Kelly, D. P. & Wood, A. P. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 50 (Pt 2), 511–516 (2000).

    Article  PubMed  Google Scholar 

  147. Willing, B. P. et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139, 1844–1854 e1 (2010).

    Article  PubMed  Google Scholar 

  148. Schwiertz, A. et al. Microbiota in pediatric inflammatory bowel disease. J. Pediatr. 157, 240–244e1 (2010).

    Article  PubMed  Google Scholar 

  149. Thomazini, C. M., Samegima, D. A., Rodrigues, M. A., Victoria, C. R. & Rodrigues, J. High prevalence of aggregative adherent Escherichia coli strains in the mucosa-associated microbiota of patients with inflammatory bowel diseases. Int. J. Med. Microbiol. 301, 475–479 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Mondot, S. et al. Highlighting new phylogenetic specificities of Crohn's disease microbiota. Inflamm. Bowel Dis. 17, 185–192 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Gibson, G. R., Cummings, J. H. & Macfarlane, G. T. Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol. Lett. 86, 103–111 (1991).

    Article  CAS  Google Scholar 

  152. Ternhag, A., Torner, A., Svensson, A., Ekdahl, K. & Giesecke, J. Short- and long-term effects of bacterial gastrointestinal infections. Emerg. Infect. Dis. 14, 143–148 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding to Dr Hansen was provided by a Clinical Academic Training Fellowship from the Chief Scientist Office in Scotland (CAF/08/01). Other sources of funding for IBD research within the group include The Broad Medical Research Program, Crohn's in Childhood Research Association, NHS Grampian Hospital Endowments and Gastrointestinal Unit Hospital Research Funds.

Author information

Authors and Affiliations

Authors

Contributions

I. Mukhopadhya, R. Hansen and G. L. Hold all contributed to all aspects of this manuscript. E. M. El-Omar contributed to the discussion of content and review of the manuscript.

Corresponding author

Correspondence to Georgina L. Hold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhya, I., Hansen, R., El-Omar, E. et al. IBD—what role do Proteobacteria play?. Nat Rev Gastroenterol Hepatol 9, 219–230 (2012). https://doi.org/10.1038/nrgastro.2012.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing