Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial contact during pregnancy, intestinal colonization and human disease

Abstract

Interaction with colonizing intestinal bacteria is essential for healthy intestinal and immunological development in infancy. Advances in understanding early host–microbe interactions indicate that this early microbial programming begins in utero and is substantially modulated by mode of birth, perinatal antibiotics and breastfeeding. Furthermore, it has become evident that this stepwise microbial colonization process, as well as immune and metabolic programming by the microbiota, might have a long-lasting influence on the risk of not only gastrointestinal disease, but also allergic, autoimmune and metabolic disease, in later life. Modulating early host–microbe interaction by maternal probiotic intervention during pregnancy and breastfeeding offers a promising novel tool to reduce the risk of disease. In this Review, we describe the current body of knowledge regarding perinatal microbial contact, initial intestinal colonization and its association with human disease, as well as means of modulating early host–microbe interaction to reduce the risk of disease in the child.

Key Points

  • Contact with microbes begins in utero and proceeds in a stepwise manner during birth and early infancy

  • Early host–microbe interaction is a crucial component of healthy immune and metabolic programming

  • Mode of delivery, prematurity, perinatal antibiotic exposure and breastfeeding have a major influence on early microbial contact, intestinal colonization and subsequent risk of disease

  • Maternal probiotic supplementation during pregnancy and breastfeeding has shown potential in reducing the risk of immune-mediated and metabolic disease via modulation of early host–microbe interactions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The gut microbiota programmes host health—from mother to infant.
Figure 2: Early programming of immune and metabolic phenotype.
Figure 3: Interactions between indigenous microbes and TGF-β2 in breast milk.

Similar content being viewed by others

References

  1. DuPont, A. W. & DuPont, H. L. The intestinal microbiota and chronic disorders of the gut. Nat. Rev. Gastroenterol. Hepatol. 16, 523–531 (2011).

    Article  Google Scholar 

  2. Roduit, C. et al. Prenatal animal contact and gene expression of innate immunity receptors at birth are associated with atopic dermatitis. J. Allergy Clin. Immunol. 127, 179–185 (2011).

    Article  PubMed  Google Scholar 

  3. Conrad, M. L. et al. Maternal TLR signalling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J. Exp. Med. 206, 2869–2877 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalliomäki, M. et al. Disticnt patterns of neonatal gut microflora in infants in whom allergy was and was not developing. J. Allergy Clin. Immunol. 107, 129–134 (2001).

    Article  PubMed  Google Scholar 

  5. Björkstén, B., Sepp, E., Julge K., Voor, T. & Mikelsaar, M. Allergy development and the intestinal microflora during the first year of life. J. Allergy Clin. Immunol. 108, 516–520 (2001).

    Article  PubMed  Google Scholar 

  6. Kalliomäki, M., Collado, M. C., Salminen, S. & Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 87, 534–538 (2008).

    Article  PubMed  Google Scholar 

  7. Johansson, M. A., Sjögren, Y. M., Persson, J. O., Nilsson, C. & Sverremark-Ekström, E. Early colonization with a group of Lactobacilli decreases the risk for allergy at five years of age despite allergic heredity. PLoS ONE 6, e23031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ajslev, T., Andersen, C. S., Gamborg, M., Sørensen, T. I. & Jess, T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int. J. Obes. (Lond). 35, 522–529 (2011).

    Article  CAS  Google Scholar 

  9. Harmsen, H. J. et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30, 61–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Roger, L. C., Costabile, A., Holland, D. T., Hoyles, L. & McCartney, A. L. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 156, 3329–3341 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Roger, L. C. & McCartney, A. L. Longitudinal investigation of the faecal microbiota of healthy full-term infants using fluorescence in situ hybridization and denaturing gradient gel electrophoresis. Microbiology 156, 3317–3328 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Matsumiya, Y., Kato, N., Watanabe, K. & Kato, H. Molecular epidemiological study of vertical transmission of vaginal Lactobacillus species from mothers to newborn infants in Japanese, by arbitrarily primed polymerase chain reaction. J. Infect. Chemother. 8, 43–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra52 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Penders, J. et al. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol. Lett. 243, 141–147 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Penders, J. et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118, 511–521 (2006).

    Article  PubMed  Google Scholar 

  17. Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4578–4585 (2011).

    Article  PubMed  Google Scholar 

  19. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goldenberg, R. L., Culhane, J. F., Iams, J. D. & Romero, R. Epidemiology and causes of preterm birth. Lancet 371, 75–84 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stark, P. L. & Lee, A. The bacterial colonization of the large bowel of pre-term low birth weight neonates. J. Hyg. (Lond). 89, 59–67 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Björkström, M. V. et al. Intestinal flora in very low-birth weight infants. Acta Paediatr. 98, 1762–1767 (2009).

    Article  PubMed  Google Scholar 

  24. Butel, M. J. et al. Conditions of bifidobacterial colonization in preterm infants: a prospective analysis. J. Pediatr. Gastroenterol. Nutr. 44, 577–582 (2007).

    Article  PubMed  Google Scholar 

  25. Chang, J. Y., Shin, S. M., Chun, J., Lee, J. H. & Seo, J. K. Pyrosequencing-based molecular monitoring of the intestinal bacterial colonization in preterm infants. J. Pediatr. Gastroenterol. Nutr. 53, 512–519 (2011).

    PubMed  Google Scholar 

  26. Wang, Y. et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J. 3, 944–954 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Rougé, C. et al. Investigation of the intestinal microbiota in preterm infants using different methods. Anaerobe 16, 362–370 (2010).

    Article  PubMed  Google Scholar 

  28. Neu, J. & Walker, W. A. Necrotizing enterocolitis. N. Engl. J. Med. 364, 255–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de la Cochetiere, M. F. et al. Early intestinal bacterial colonization and necrotizing enterocolitis in premature infants: the putative role of Clostridium. Pediatr. Res. 56, 366–370 (2004).

    Article  PubMed  Google Scholar 

  30. Mai, V. et al. Fecal microbiota in premature infants prior to necrotizing enterocolitis. PLoS ONE 6, e20647 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sudo, N. et al. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J. Immunol. 159, 739–745 (1997).

    Google Scholar 

  32. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Ruiz, P. A., Hoffmann, M., Szcesny, S., Blaut, M. & Haller, D. Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats. Immunology 115, 441–450 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, Q. et al. A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. J. Exp. Med. 203, 2853–2863 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Otte, J. M., Cario, E. & Podolsky, D. K. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 126, 1054–1070 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Bashir, M. E., Louie, S., Shi, H. N. & Nagler-Anderson, C. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J. Immunol. 172, 6978–6987 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  44. Rautava, S., Kalliomäki, M. & Isolauri, E. New therapeutic strategy for combating the increasing burden of allergic disease: Probiotics-A Nutrition, Allergy, Mucosal Immunology and Intestinal Microbiota (NAMI) Research Group report. J. Allergy Clin. Immunol. 116, 31–37 (2005).

    Article  PubMed  Google Scholar 

  45. Isolauri, E., Kalliomäki, M., Rautava, S., Salminen, S. & Laitinen, K. Obesity—extending the hygiene hypothesis. Nestle Nutr. Workshop Ser. Pediatr. Program. 64, 75–85 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Abraham, C. & Medzhitov, R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 140, 1729–1737 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Decker, E. et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics 125, 1433–1440 (2010).

    Article  Google Scholar 

  48. Mårild, K., Stephansson, O., Montgomery, S., Murray, J. A. & Ludvigsson, J. F. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology 142, 39–45 (2012).

    Article  PubMed  Google Scholar 

  49. Algert, C. S., McElduff, A., Morris, J. M. & Roberts, C. L. Perinatal risk factors for early onset of Type 1 diabetes in a 2000–2005 birth cohort. Diabet. Med. 26, 1193–1197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bonifacio, E., Warncke, K., Winkler, C., Wallner, M. & Ziegler, A. G. Cesarean section and interferon-induced helicase gene polymorphisms combine to increase childhood type 1 diabetes risk. Diabetes 60, 3300–3306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kero, J. et al. Mode of delivery and asthma—is there a connection? Pediatr. Res. 52, 6–11 (2002).

    PubMed  Google Scholar 

  52. Roduit, C. et al. Asthma at 8 years of age in children born by caesarean section. Thorax 64, 107–113 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Nistal, E. et al. Differences of small intestinal bacteria populations in adults and children with/without celiac disease: effect of age, gluten diet, and disease. Inflamm. Bowel Dis. 18, 649–656 (2012).

    Article  PubMed  Google Scholar 

  54. Giongo, A. et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 5, 82–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Russell, S. L. et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13, 440–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Jumpertz, R. et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 94, 58–65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Membrez, M. et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 22, 2416–2426 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Mold, J. E. et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322, 1562–1565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roberts, K. A. et al. Placental structure and inflammation in pregnancies associated with obesity. Placenta 32, 247–254 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Collado, M. C., Isolauri, E., Laitinen, K. & Salminen, S. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am. J. Clin. Nutr. 92, 1023–1030 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Andrews, W. W. et al. Endometrial microbial colonization and plasma cell endometritis after spontaneous or indicated preterm versus term delivery. Am. J. Obstet. Gynecol. 193, 739–745 (2005).

    Article  PubMed  Google Scholar 

  64. Onderdonk, A. B., Delaney, M. L., DuBois, A. M., Allred, E. N. & Leviton, A. Detection of bacteria in placental tissues obtained from extremely low gestational age neonates. Am. J. Obstet. Gynecol. 198, 1–7 (2008).

    Article  CAS  Google Scholar 

  65. Bengtson, M. B. et al. Relationships between inflammatory bowel disease and perinatal factors: both maternal and paternal disease are related to preterm birth of offspring. Inflamm. Bowel Dis. 16, 847–855 (2010).

    Article  PubMed  Google Scholar 

  66. Goepfert, A. R. et al. Periodontal disease and upper genital tract inflammation in early spontaneous preterm birth. Obstet. Gynecol. 104, 777–783 (2004).

    Article  PubMed  Google Scholar 

  67. Bearfield, C., Davenport, E. S., Sivapathasundaram, V. & Allaker, R. P. Possible association between amniotic fluid micro-organism infection and microflora in the mouth. BJOG 109, 527–533 (2002).

    Article  PubMed  Google Scholar 

  68. León, R. et al. Detection of Porphyromonas gingivalis in the amniotic fluid in pregnant women with a diagnosis of threatened premature labor. J. Periodontol. 78, 1249–1255 (2007).

    Article  PubMed  Google Scholar 

  69. DiGiulio, D. B. Diversity of microbes in amniotic fluid. Semin. Fetal Neonatal Med. 17, 2–11 (2012).

    Article  PubMed  Google Scholar 

  70. Sánchez, P. J. & Regan, J. A. Vertical transmission of Ureaplasma urealyticum from mothers to preterm infants. Pediatr. Infect. Dis. J. 9, 398–401 (1990).

    Article  PubMed  Google Scholar 

  71. Sánchez, P. J. & Regan, J. A. Ureaplasma urealyticum colonization and chronic lung disease in low birth weight infants. Pediatr. Infect. Dis. J. 7, 542–546 (1988).

    PubMed  Google Scholar 

  72. Okogbule-Wonodi, A. C. et al. Necrotizing enterocolitis is associated with Ureaplasma colonization in preterm infants. Pediatr. Res. 69, 442–447 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Leviton, A. et al. Microbiologic and histologic characteristics of the extremely preterm infant's placenta predict white matter damage and later cerebral palsy. the ELGAN study. Pediatr. Res. 67, 95–101 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Goldenberg, R. L., Hauth, J. C. & Andrews, W. W. Intrauterine infection and preterm delivery. N. Engl. J. Med. 342, 1500–1507 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Satokari, R., Grönroos, T., Laitinen, K., Salminen, S. & Isolauri, E. Bifidobacterium and Lactobacillus DNA in the human placenta. Lett. Appl. Microbiol. 48, 8–12 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Steel, J. H. et al. Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr. Res. 57, 404–411 (2005).

    Article  PubMed  Google Scholar 

  77. Rautava, S., Collado, M. C., Salminen, S. & Isolauri, E. Probiotics modulate host–microbe interaction in the placenta and fetal gut—a randomized, double-blind, placebo-controlled trial. Neonatology 102, 178–184 (2005).

    Article  Google Scholar 

  78. Mshvildadze, M. et al. Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. J. Pediatr. 156, 20–25 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Markenson, G. R., Adams, L. A., Hoffman, D. E. & Reece, M. T. Prevalence of Mycoplasma bacteria in amniotic fluid at the time of genetic amniocentesis using the polymerase chain reaction. J. Reprod. Med. 48, 775–779 (2003).

    PubMed  Google Scholar 

  80. Fichorovna, R. N. et al. Maternal microbe-specific modulation of inflammatory response in extremely low-gestational-age newborns. MBio 2, e00280-10 (2011).

    Article  Google Scholar 

  81. Zhu, M. J., Du, M., Nathanielsz, P. W. & Ford, S. P. Maternal obesity up-regulates inflammatory signalling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta 31, 387–391 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Kenyon, S. L., Taylor, D. J., Tarnow-Mordi, W. & ORACLE Collaborative Group. Broad-spectrum antibiotics for preterm, prelabour rupture of fetal membranes: the ORACLE I randomised trial. ORACLE Collaborative Group. Lancet 357, 979–988 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Weintraub, A. S. et al. Antenatal antibiotic exposure in preterm infants with necrotizing enterocolitis. J. Perinatol. http://dx.doi.org/10.1038/jp.2011.180.

  84. Kenyon, S. et al. Childhood outcomes after prescription of antibiotics to pregnant women with spontaneous preterm labour: 7-year follow-up of the ORACLE II trial. Lancet 372, 1319–1327 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Cotten, C. M. et al. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics 123, 58–66 (2009).

    Article  PubMed  Google Scholar 

  86. Kuppala, V. S., Meinzen-Derr, J., Morrow, A. L. & Schibler, K. R. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants. J. Pediatr. 159, 720–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shaw, S. Y., Blanchard, J. F. & Bernstein, C. N. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am. J. Gastroenterol. 105, 2687–2692 (2010).

    Article  PubMed  Google Scholar 

  88. Rautava, S. & Walker, W. A. Academy of Breastfeeding Medicine founder's lecture 2008: breastfeeding—an extrauterine link between mother and child. Breastfeed. Med. 4, 3–10 (2010).

    Article  Google Scholar 

  89. Gueimonde, M., Laitinen, K., Salminen, S. & Isolauri, E. Breast milk: a source of bifidobacteria for infant gut development and maturation? Neonatology 92, 64–66 (2007).

    Article  PubMed  Google Scholar 

  90. Grönlund, M. M. et al. Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin. Exp. Allergy 37, 1764–1772 (2007).

    Article  PubMed  Google Scholar 

  91. Yektaei-Karin, E. et al. The stress of birth enhances in vitro spontaneous and IL-8-induced neutrophil chemotaxis in the human newborn. Pediatr. Allergy Immunol. 18, 643–651 (2007).

    Article  PubMed  Google Scholar 

  92. Grönlund, M. M. et al. Mode of delivery directs the phagocyte functions of infants for the first 6 months of life. Clin. Exp. Immunol. 116, 521–526 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Huurre, A. et al. Mode of delivery—effects on gut microbiota and humoral immunity. Neonatology 93, 236–240 (2008).

    Article  PubMed  Google Scholar 

  94. Cabrera-Rubio, R. et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. http://dx.doi.org/10.3945/ajcn.112.037382.

  95. Perez, P. F. et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119, 724–732 (2007).

    Article  Google Scholar 

  96. Grönlund, M. M., Grzes´kowiak, Ł., Isolauri, E. & Salminen, S. Influence of mother's intestinal microbiota on gut colonization in the infant. Gut Microbes 2, 227–233 (2011).

    Article  PubMed  Google Scholar 

  97. Martín, V. et al. Sharing of bacterial strains between breast milk and infant feces. J. Hum. Lact. 28, 36–44 (2012).

    Article  PubMed  Google Scholar 

  98. Abrahamsson, T. R., Sinkiewicz, G., Jakobsson, T., Fredrikson, M. & Björkstén, B. Probiotic lactobacilli in breast milk and infant stool in relation to oral intake during the first year of life. J. Pediatr. Gastroenterol. Nutr. 49, 349–354 (2009).

    Article  PubMed  Google Scholar 

  99. Verhasselt, V. et al. Breast milk-mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nat. Med. 14, 170–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Rautava, S. et al. Breast milk-transforming growth factor-β2 specifically attenuates IL-1β-induced inflammatory responses in the immature human intestine via an SMAD6- and ERK-dependent mechanism. Neonatology 99, 192–201 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Rautava, S., Lu, L., Nanthakumar, N. N., Dubert-Ferrandon, A. & Walker, W. A. TGF-β2 induces maturation of immature human intestinal epithelial cells and inhibits inflammatory cytokine responses induced via the NF-κB pathway. J. Pediatr. Gastroenterol. Nutr. 54, 630–638 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rautava, S., Kalliomäki, M. & Isolauri, E. Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant. J. Allergy Clin. Immunol. 109, 1191–1121 (2002).

    Article  Google Scholar 

  103. Fujii, T. et al. Bifidobacterium breve enhances transforming growth factor β1 signaling by regulating Smad7 expression in preterm infants. J. Pediatr. Gastroenterol. Nutr. 43, 83–88 (2006).

    Article  PubMed  Google Scholar 

  104. Moro, G. E. et al. Effects of a new mixture of prebiotics on faecal flora and stools in term infants. Acta Paediatr. Suppl. 91, 77–91 (2003).

    CAS  PubMed  Google Scholar 

  105. Veereman-Wauters, G. et al. Physiological and bifidogenic effects of prebiotic supplements in infant formulae. J. Pediatr. Gastroenterol. Nutr. 52, 763–771 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Salvini, F. et al. A specific prebiotic mixture added to starting infant formula has long-lasting bifidogenic effects. J. Nutr. 141, 1335–1339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Holscher, H. D. et al. Effects of prebiotic-containing infant formula on gastrointestinal tolerance and fecal microbiota in a randomized controlled trial. JPEN J. Parenter. Enteral Nutr. 36, 95S–105S (2012).

    Article  CAS  PubMed  Google Scholar 

  108. van Hoffen, E. et al. A specific mixture of short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides induces a beneficial immunoglobulin profile in infants at high risk for allergy. Allergy 64, 484–487 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Arslanoglu, S. et al. Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J. Nutr. 138, 1091–1095 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Grüber, C. et al. Reduced occurrence of early atopic dermatitis because of immunoactive prebiotics among low-atopy-risk infants. J. Allergy Clin. Immunol. 126, 791–797 (2010).

    Article  PubMed  Google Scholar 

  111. Duggan, C. et al. Oligofructose-supplemented infant cereal: 2 randomized, blinded community-based trials in Peruvian infants. Am. J. Clin. Nutr. 77, 937–942 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Szajewska, H. et al. Inulin and fructo-oligosaccharides for the prevention of antibiotic-associated diarrhea in children: report by the ESPGHAN working group on probiotics and prebiotics. J. Pediatr. Gastroenterol. Nutr. 54, 828–829 (2012).

    Article  PubMed  Google Scholar 

  113. Vandenplas, Y., De Hert, S. G. & PROBIOTICAL-study group. Randomised clinical trial: the symbiotic food supplement Probiotical vs. placebo for acute gastroenteritis in children. Aliment. Pharmacol. Ther. 34, 862–867 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Passariello, A. et al. Randomised clinical trial: efficacy of a new symbiotic formulation containing Lactobacillus paracasei B21060 plus arabinogalactan and xilooligosaccharides in children with acute diarrhea. Aliment. Pharmacol. Ther. 35, 782–788 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Kukkonen, K. et al. Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 119, 192–198 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Van der Aa, L. B. et al. Effect of a new symbiotic mixture on atopic dermatitis in infants: a randomized-controlled trial. Clin. Exp. Allergy 40, 795–804 (2010).

    CAS  PubMed  Google Scholar 

  117. Schultz, M., Göttl, C., Young, R. J., Iwen, P. & Vanderhoof, J. A. Administration of oral probiotic bacteria to pregnant women causes temporary infantile colonization. J. Pediatr. Gastroenterol. Nutr. 38, 293–297 (2004).

    Article  PubMed  Google Scholar 

  118. Rinne, M., Kalliomäki, M., Salminen, S. & Isolauri, E. Probiotic intervention in the first months of life: short-term effects on gastrointestinal symptoms and long-term effects on gut microbiota. J. Pediatr. Gastroenterol. Nutr. 43, 200–205 (2006).

    Article  PubMed  Google Scholar 

  119. Gueimonde, M., Kalliomäki, M., Isolauri, E. & Salminen, S. Probiotic intervention in neonates—will permanent colonization ensue? J. Pediatr. Gastroenterol. Nutr. 42, 604–606 (2006).

    Article  PubMed  Google Scholar 

  120. Grzes´kowiak, Ł. et al. The impact of perinatal probiotic intervention on gut microbiota: double-blind placebo-controlled trials in Finland and Germany. Anaerobe 18, 7–13 (2012).

    Article  Google Scholar 

  121. Kalliomäki, M. et al. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357, 1076–1079 (2001).

    Article  PubMed  Google Scholar 

  122. Kalliomäki, M., Salminen, S., Poussa, T., Arvilommi, H. & Isolauri, E. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 361, 1869–1871 (2003).

    Article  PubMed  Google Scholar 

  123. Kalliomäki, M., Salminen, S., Poussa, T. & Isolauri, E. Probiotics during the first 7 years of life: a cumulative risk reduction of eczema in a randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 119, 1019–1021 (2007).

    Article  PubMed  Google Scholar 

  124. Abrahamsson, T. R. et al. Probiotics in prevention of IgE-associated eczema: a double-blind, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 119, 1174–1180 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Wickens, K. et al. A differential effect of 2 probiotics in the prevention of eczema and atopy: a double-blind, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 122, 788–794 (2008).

    Article  PubMed  Google Scholar 

  126. Niers, L. et al. The effects of selected probiotic strains on the development of eczema (the PandA study). Allergy 64, 1349–1358 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Dotterud, C. K., Storrø, O., Johnsen, R. & Oien, T. Probiotics in pregnant women to prevent allergic disease: a randomized, double-blind trial. Br. J. Dermatol. 163, 616–623 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Kim, J. Y. et al. Effect of probiotic mix (Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus) in the primary prevention of eczema: a double-blind, randomized, placebo-controlled trial. Pediatr. Allergy Immunol. 21, 386–393 (2010).

    Article  CAS  Google Scholar 

  129. Taylor, A. L., Dunstan, J. A. & Prescott, S. L. Probiotic supplementation for the first 6 months of life fails to reduce the risk of atopic dermatitis and increases the risk of allergen sensitization in high-risk children: a randomized controlled trial. J. Allergy Clin. Immunol. 119, 184–191 (2007).

    Article  PubMed  Google Scholar 

  130. Kopp, M. V., Hennemuth, I., Heinzmann, A. & Urbanek, R. Randomized, double-blind, placebo-controlled trial of probiotics for primary prevention: no clinical effects of Lactobacillus GG supplementation. Pediatrics 121, 850–856 (2008).

    Article  Google Scholar 

  131. Soh, S. E. et al. Probiotic supplementation in the first 6 months of life in at risk Asian infants—effects on eczema and atopic sensitization at the age of 1 year. Clin. Exp. Allergy 39, 571–578 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Huurre, A., Laitinen, K., Rautava, S., Korkeamäki, M. & Isolauri, E. Impact of maternal atopy and probiotic supplementation during pregnancy on infant sensitization: a double-blind placebo-controlled study. Clin. Exp. Allergy 38, 1342–1348 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Luoto, R., Laitinen, K., Nermes, M. & Isolauri, E. Impact of maternal probiotic-supplemented dietary counselling on pregnancy outcome and prenatal and postnatal growth: a double-blind, placebo-controlled study. Br. J. Nutr. 103, 1792–1799 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Laitinen, K., Poussa, T. & Isolauri, E. Nutrition, Allergy, Mucosal Immunology and Intestinal Microbiota Group. Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: a randomised controlled trial. Br. J. Nutr. 101, 1679–1687 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Ilmonen, J., Isolauri, E., Poussa, T. & Laitinen, K. Impact of dietary counselling and probiotic intervention on maternal anthropometric measurements during and after pregnancy: a randomized placebo-controlled trial. Clin. Nutr. 30, 156–164 (2011).

    Article  PubMed  Google Scholar 

  136. Luoto, R., Kalliomäki, M., Laitinen, K. & Isolauri, E. The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int. J. Obes. (Lond). 34, 1531–1537 (2010).

    Article  CAS  Google Scholar 

  137. Björkstén, B. et al. Collecting and banking human milk: to heat or not to heat? Br. Med. J. 281, 765–769 (1980).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Martín, R. et al. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr. 143, 754–758 (2003).

    Article  PubMed  Google Scholar 

  139. Heikkilä, M. P. & Saris, P. E. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 95, 471–478 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Beasley, S. S. & Saris, P. E. Nisin-producing Lactococcus lactis strains isolated from human milk. Appl. Environ. Microbiol. 70, 5051–5053 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Martín, R. et al. Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res. Microbiol. 158, 31–37 (2007).

    Article  PubMed  Google Scholar 

  142. Delgado, S., Arroyo, R., Martín, R. & Rodríguez, J. M. PCR-DGGE assessment of the bacterial diversity of breast milk in women with lactational infectious mastitis. BMC Infect. Dis. 8, 51 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jiménez, E. et al. Assessment of the bacterial diversity of human colostrum and screening of staphylococcal and enterococcal populations for potential virulence factors. Res. Microbiol. 159, 595–601 (2008).

    Article  PubMed  Google Scholar 

  144. Martín, R. et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microbiol. 75, 965–969 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Hunt, K. M. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6, e21313 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Erika Isolauri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rautava, S., Luoto, R., Salminen, S. et al. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 9, 565–576 (2012). https://doi.org/10.1038/nrgastro.2012.144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing