Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of growth impairment in pediatric Crohn's disease

Abstract

Crohn's disease manifests during childhood or adolescence in up to 25% of patients. The potential for linear growth impairment as a complication of chronic intestinal inflammation is unique to pediatric patient populations. Insulin-like growth factor I (IGF-I), produced by the liver in response to growth hormone (GH) stimulation, is the key mediator of GH effects at the growth plate of bones. An association between impaired growth in children with Crohn's disease and low IGF-I levels is well recognized. Early studies emphasized the role of malnutrition in suppression of IGF-I production. However, a simple nutritional hypothesis fails to explain all the observations related to growth in children with Crohn's disease. The direct, growth-inhibitory effects of proinflammatory cytokines are increasingly recognized and explored. The potential role of noncytokine factors, such as lipopolysaccharides, and their potential to negatively influence the growth axis have recently been investigated with intriguing results. There is now reason for optimism that the modern anticytokine therapeutic agents available for treating children and adolescents with Crohn's disease will reduce the prevalence of this otherwise common complication. As our understanding of the mechanisms that underlie growth impairment advance, so too should the opportunity for developing further novel and targeted therapies.

Key Points

  • Chronic undernutrition and direct effects of proinflammatory cytokines are the two major and interrelated factors responsible for the impairment of linear growth in children with Crohn's disease

  • The mechanisms by which cytokines impede linear growth are complex and involve, but are not limited to, disruption of growth hormone–insulin-like growth factor I pathways

  • The potential effects that other noncytokine molecular factors may have on the growth axis are an evolving focus of research

  • Normal growth is a marker of the success of therapy in children with Crohn's disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The GH–IGF-I axis and its role in linear growth.
Figure 2: GH receptors and the JAK2–STAT5 signaling pathway.
Figure 3: Molecular mechanisms of GH resistance in Crohn's disease.
Figure 4: Proposed mechanism for blockade of IL-6–STAT3 activation by GH.
Figure 5: GH receptor cleavage and formation of GH-binding protein.

Similar content being viewed by others

References

  1. Kelsen, J. & Baldassano, R. Inflammatory bowel disease: the difference between children and adults. Inflamm. Bowel Dis. 14 (Suppl. 2), S9–S11 (2008).

    PubMed  Google Scholar 

  2. Heuschkel, R. et al. Guidelines for the management of growth failure in childhood inflammatory bowel disease. Inflamm. Bowel Dis. 14, 839–849 (2008).

    Article  PubMed  Google Scholar 

  3. Karlberg, J., Jalil, F., Lam, B., Low, L. & Yeung, C. Y. Linear growth retardation in relation to the three phases of growth. Eur. J. Clin. Nutr. 48 (Suppl. 1), S25–S44 (1994).

    PubMed  Google Scholar 

  4. Rogol, A. D., Roemmich, J. N. & Clark, P. A. Growth at puberty. J. Adolesc. Health 31, 192–200 (2002).

    Article  PubMed  Google Scholar 

  5. Salmon, W. D. Jr & Daughaday, W. H. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J. Lab. Clin. Med. 116, 408–419 (1990).

    PubMed  Google Scholar 

  6. Daughaday, W. H. A personal history of the origin of the somatomedin hypothesis and recent challenges to its validity. Perspect. Biol. Med. 32, 194–211 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Rinderknecht, E. & Humbel, R. E. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J. Biol. Chem. 253, 2769–2776 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. Isaksson, O. G., Jansson, J. O. & Gause, I. A. Growth hormone stimulates longitudinal bone growth directly. Science 216, 1237–1239 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Isaksson, O. G., Lindahl, A., Nilsson, A. & Isgaard, J. Mechanism of the stimulatory effect of growth hormone on longitudinal bone growth. Endocr. Rev. 8, 426–438 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Green, H., Morikawa, M. & Nixon, T. A dual effector theory of growth-hormone action. Differentiation 29, 195–198 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Frank, S. J., Messina, J. L., Baumann, G., Black, R. A. & Bertics, P. J. Insights into modulation of (and by) growth hormone signaling. J. Lab. Clin. Med. 136, 14–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Teglund, S. et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93, 841–850 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Bergad, P. L. et al. Inhibition of growth hormone action in models of inflammation. Am. J. Physiol. Cell Physiol. 279, C1906–C1917 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Denson, L. A. et al. Interleukin-6 inhibits hepatic growth hormone signaling via upregulation of Cis and Socs-3. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G646–G654 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Ram, P. A. & Waxman, D. J. SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J. Biol. Chem. 274, 35553–35561 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Asplin, C. M. et al. Alterations in the pulsatile mode of growth hormone release in men and women with insulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 69, 239–245 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Herrington, J., Smit, L. S., Schwartz, J. & Carter-Su, C. The role of STAT proteins in growth hormone signaling. Oncogene 19, 2585–2597 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, X., Robinson, G. W., Gouilleux, F., Groner, B. & Hennighausen, L. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc. Natl Acad. Sci. USA 92, 8831–8835 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones, J. I. & Clemmons, D. R. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 16, 3–34 (1995).

    CAS  PubMed  Google Scholar 

  20. Govoni, K. E., Baylink, D. J. & Mohan, S. The multi-functional role of insulin-like growth factor binding proteins in bone. Pediatr. Nephrol. 20, 261–268 (2005).

    Article  PubMed  Google Scholar 

  21. Rechler, M. M. Insulin-like growth factor binding proteins. Vitam. Horm. 47, 1–114 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Miyakoshi, N., Richman, C., Qin, X., Baylink, D. J. & Mohan, S. Effects of recombinant insulin-like growth factor-binding protein-4 on bone formation parameters in mice. Endocrinology 140, 5719–5728 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Rajaram, S., Baylink, D. J. & Mohan, S. Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocr. Rev. 18, 801–831 (1997).

    CAS  PubMed  Google Scholar 

  24. Thissen, J. P., Davenport, M. L., Pucilowska, J. B., Miles, M. V. & Underwood, L. E. Increased serum clearance and degradation of 125I-labeled IGF-I in protein-restricted rats. Am. J. Physiol. 262, E406–E411 (1992).

    CAS  PubMed  Google Scholar 

  25. Underwood, L. E., Thissen, J. P., Lemozy, S., Ketelslegers, J. M. & Clemmons, D. R. Hormonal and nutritional regulation of IGF-I and its binding proteins. Horm. Res. 42, 145–151 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Nilsson, O. & Baron, J. Impact of growth plate senescence on catch-up growth and epiphyseal fusion. Pediatr. Nephrol. 20, 319–322 (2005).

    Article  PubMed  Google Scholar 

  27. Walker, K. V. & Kember, N. F. Cell kinetics of growth cartilage in the rat tibia. II. Measurements during ageing. Cell Tissue Kinet. 5, 409–419 (1972).

    CAS  PubMed  Google Scholar 

  28. Weise, M. et al. Effects of estrogen on growth plate senescence and epiphyseal fusion. Proc. Natl Acad. Sci. USA 98, 6871–6876 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gafni, R. I. et al. Catch-up growth is associated with delayed senescence of the growth plate in rabbits. Pediatr. Res. 50, 618–623 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Baron, J. et al. Catch-up growth after glucocorticoid excess: a mechanism intrinsic to the growth plate. Endocrinology 135, 1367–1371 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Wei, W. & Sedivy, J. M. Differentiation between senescence (M1) and crisis (M2) in human fibroblast cultures. Exp. Cell Res. 253, 519–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Prader, A., Tanner, J. M. & von Harnack, H. G. Catch-up growth following illness or starvation: an example of developmental canalization in man. J. Pediatr. 62, 646–659 (1963).

    Article  CAS  PubMed  Google Scholar 

  33. Cutler, G. B. Jr. The role of estrogen in bone growth and maturation during childhood and adolescence. J. Steroid Biochem. Mol. Biol. 61, 141–144 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Veldhuis, J. D. & Bowers, C. Y. Three-peptide control of pulsatile and entropic feedback-sensitive modes of growth hormone secretion: modulation by estrogen and aromatizable androgen. J. Pediatr. Endocrinol. Metab. 16 (Suppl. 3), 587–605 (2003).

    CAS  PubMed  Google Scholar 

  35. Keenan, B. S. et al. Androgen-stimulated pubertal growth: the effects of testosterone and dihydrotestosterone on growth hormone and insulin-like growth factor-I in the treatment of short stature and delayed puberty. J. Clin. Endocrinol. Metab. 76, 996–1001 (1993).

    CAS  PubMed  Google Scholar 

  36. Nilsson, K. O. et al. Improved final height in girls with Turner's syndrome treated with growth hormone and oxandrolone. J. Clin. Endocrinol. Metab. 81, 635–640 (1996).

    CAS  PubMed  Google Scholar 

  37. Stanhope, R. et al. Double blind placebo controlled trial of low dose oxandrolone in the treatment of boys with constitutional delay of growth and puberty. Arch. Dis. Child 63, 501–505 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kirschner, B. S. & Sutton, M. M. Somatomedin-C levels in growth-impaired children and adolescents with chronic inflammatory bowel disease. Gastroenterology 91, 830–836 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Tenore, A., Berman, W. F., Parks, J. S. & Bongiovanni, A. M. Basal and stimulated serum growth hormone concentrations in inflammatory bowel disease. J. Clin. Endocrinol. Metab. 44, 622–628 (1977).

    Article  CAS  PubMed  Google Scholar 

  40. Straus, D. S. & Takemoto, C. D. Effect of fasting on insulin-like growth factor-I (IGF-I) and growth hormone receptor mRNA levels and IGF-I gene transcription in rat liver. Mol. Endocrinol. 4, 91–100 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Thissen, J. P. et al. Evidence that pretranslational and translational defects decrease serum insulin-like growth factor-I concentrations during dietary protein restriction. Endocrinology 129, 429–435 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Kelts, D. G. et al. Nutritional basis of growth failure in children and adolescents with Crohn's disease. Gastroenterology 76, 720–727 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. Kirschner, B. S., Klich, J. R., Kalman, S. S., deFavaro, M. V. & Rosenberg, I. H. Reversal of growth retardation in Crohn's disease with therapy emphasizing oral nutritional restitution. Gastroenterology 80, 10–15 (1981).

    Article  CAS  PubMed  Google Scholar 

  44. Ballinger, A. et al. The role of medial hypothalamic serotonin in the suppression of feeding in a rat model of colitis. Gastroenterology 118, 544–553 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Filipsson, S., Hulten, L. & Lindstedt, G. Malabsorption of fat and vitamin B12 before and after intestinal resection for Crohn's disease. Scand. J. Gastroenterol. 13, 529–536 (1978).

    Article  CAS  PubMed  Google Scholar 

  46. Griffiths, A. M., Drobnies, A., Soldin, S. J. & Hamilton, J. R. Enteric protein loss measured by fecal α1-antitrypsin clearance in the assessment of Crohn's disease activity: a study of children and adolescents. J. Pediatr. Gastroenterol. Nutr. 5, 907–911 (1986).

    Article  CAS  PubMed  Google Scholar 

  47. Azcue, M., Rashid, M., Griffiths, A. & Pencharz, P. B. Energy expenditure and body composition in children with Crohn's disease: effect of enteral nutrition and treatment with prednisolone. Gut 41, 203–208 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ballinger, A. B., Azooz, O., El-Haj, T., Poole, S. & Farthing, M. J. Growth failure occurs through a decrease in insulin-like growth factor 1 which is independent of undernutrition in a rat model of colitis. Gut 46, 694–700 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Benedetti, F. et al. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J. Clin. Invest. 99, 643–650 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martensson, K., Chrysis, D. & Savendahl, L. Interleukin-1β and TNF-α act in synergy to inhibit longitudinal growth in fetal rat metatarsal bones. J. Bone Miner. Res. 19, 1805–1812 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Varghese, S., Wyzga, N., Griffiths, A. M. & Sylvester, F. A. Effects of serum from children with newly diagnosed Crohn disease on primary cultures of rat osteoblasts. J. Pediatr. Gastroenterol. Nutr. 35, 641–648 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, X. et al. Endotoxin-induced proteolytic reduction in hepatic growth hormone (GH) receptor: a novel mechanism for GH insensitivity. Mol. Endocrinol. 22, 1427–1437 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Denson, L. A. et al. TNF-α downregulates murine hepatic growth hormone receptor expression by inhibiting Sp1 and Sp3 binding. J. Clin. Invest. 107, 1451–1458 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dejkhamron, P. et al. Lipopolysaccharide (LPS) directly suppresses growth hormone receptor (GHR) expression through MyD88-dependent and -independent Toll-like receptor-4/MD2 complex signaling pathways. Mol. Cell Endocrinol. 274, 35–42 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Colson, A., Le Cam, A., Maiter, D., Edery, M. & Thissen, J. P. Potentiation of growth hormone-induced liver suppressors of cytokine signaling messenger ribonucleic acid by cytokines. Endocrinology 141, 3687–3695 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Cohney, S. J. et al. SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol. Cell Biol. 19, 4980–4988 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ram, P. A. & Waxman, D. J. Role of the cytokine-inducible SH2 protein CIS in desensitization of STAT5b signaling by continuous growth hormone. J. Biol. Chem. 275, 39487–39496 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Shumate, M. L., Yumet, G., Ahmed, T. A. & Cooney, R. N. Interleukin-1 inhibits the induction of insulin-like growth factor-I by growth hormone in CWSV-1 hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G227–G239 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. De Benedetti, F. et al. Effect of IL-6 on IGF binding protein-3: a study in IL-6 transgenic mice and in patients with systemic juvenile idiopathic arthritis. Endocrinology 142, 4818–4826 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Mauras, N. Growth hormone therapy in the glucocorticosteroid-dependent child: metabolic and linear growth effects. Horm. Res. 56 (Suppl. 1), 13–18 (2001).

    CAS  PubMed  Google Scholar 

  61. De Benedetti, F. et al. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum. 54, 3551–3563 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Kamimura, D., Ishihara, K. & Hirano, T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev. Physiol. Biochem. Pharmacol. 149, 1–38 (2003).

    CAS  PubMed  Google Scholar 

  63. Tamura, T. et al. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc. Natl Acad. Sci. USA 90, 11924–11928 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Franchimont, N., Wertz, S. & Malaise, M. Interleukin-6: an osteotropic factor influencing bone formation? Bone 37, 601–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Bross, D. A., Leichtner, A. M., Zurakowski, D., Law, T. & Bousvaros, A. Elevation of serum interleukin-6 but not serum-soluble interleukin-2 receptor in children with Crohn's disease. J. Pediatr. Gastroenterol. Nutr. 23, 164–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Suzuki, A. et al. CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J. Exp. Med. 193, 471–481 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tebbutt, N. C. et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat. Med. 8, 1089–1097 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Nicholson, S. E. et al. Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc. Natl Acad. Sci. USA 97, 6493–6498 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carey, R. et al. Activation of an IL-6–STAT3-dependent transcriptome in pediatric-onset inflammatory bowel disease. Inflamm. Bowel Dis. 14, 446–457 (2008).

    Article  PubMed  Google Scholar 

  70. Mudter, J. et al. Activation pattern of signal transducers and activators of transcription (STAT) factors in inflammatory bowel diseases. Am. J. Gastroenterol. 100, 64–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Cassidy, J. T. & Hillman, L. S. Abnormalities in skeletal growth in children with juvenile rheumatoid arthritis. Rheum. Dis. Clin. North Am. 23, 499–522 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. MacRae, V. E., Farquharson, C. & Ahmed, S. F. The pathophysiology of the growth plate in juvenile idiopathic arthritis. Rheumatology (Oxford) 45, 11–19 (2006).

    Article  CAS  Google Scholar 

  73. Sawczenko, A. et al. Intestinal inflammation-induced growth retardation acts through IL-6 in rats and depends on the −174 IL-6 G>C polymorphism in children. Proc. Natl Acad. Sci. USA 102, 13260–13265 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cezard, J. P. et al. Growth in paediatric Crohn's disease. Horm. Res. 58 (Suppl. 1), 11–15 (2002).

    CAS  PubMed  Google Scholar 

  75. Bernstein, C. N. & Leslie, W. D. The pathophysiology of bone disease in gastrointestinal disease. Eur. J. Gastroenterol. Hepatol. 15, 857–864 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Lien, G. et al. A two-year prospective controlled study of bone mass and bone turnover in children with early juvenile idiopathic arthritis. Arthritis Rheum. 52, 833–840 (2005).

    Article  PubMed  Google Scholar 

  77. Ito, H. et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn's disease. Gastroenterology 126, 989–996 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Nishimoto, N. & Kishimoto, T. Inhibition of IL-6 for the treatment of inflammatory diseases. Curr. Opin. Pharmacol. 4, 386–391 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Nishimoto, N. et al. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 50, 1761–1769 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Yokota, S. et al. Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 52, 818–825 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Wolk, K. et al. IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn's disease. J. Immunol. 178, 5973–5981 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Yumet, G., Shumate, M. L., Bryant, D. P., Lang, C. H. & Cooney, R. N. Hepatic growth hormone resistance during sepsis is associated with increased suppressors of cytokine signaling expression and impaired growth hormone signaling. Crit. Care Med. 34, 1420–1427 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Allen, D. B. Influence of inhaled corticosteroids on growth: a pediatric endocrinologist's perspective. Acta Paediatr. 87, 123–129 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Ballinger, A. B., Savage, M. O. & Sanderson, I. R. Delayed puberty associated with inflammatory bowel disease. Pediatr. Res. 53, 205–210 (2003).

    Article  PubMed  Google Scholar 

  85. Brain, C. E. & Savage, M. O. Growth and puberty in chronic inflammatory bowel disease. Baillieres Clin. Gastroenterol. 8, 83–100 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Mizokami, A., Gotoh, A., Yamada, H., Keller, E. T. & Matsumoto, T. Tumor necrosis factor-α represses androgen sensitivity in the LNCaP prostate cancer cell line. J. Urol. 164, 800–805 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Zadik, Z., Cooper, M., Chen, M. & Stern, N. Cushing's disease presenting as pubertal arrest. J. Pediatr. Endocrinol. 6, 201–204 (1993).

    CAS  PubMed  Google Scholar 

  88. Russell, R. K. et al. Genotype–phenotype analysis in childhood-onset Crohn's disease: NOD2/CARD15 variants consistently predict phenotypic characteristics of severe disease. Inflamm. Bowel Dis. 11, 955–964 (2005).

    Article  PubMed  Google Scholar 

  89. Tomer, G., Ceballos, C., Concepcion, E. & Benkov, K. J. NOD2/CARD15 variants are associated with lower weight at diagnosis in children with Crohn's disease. Am. J. Gastroenterol. 98, 2479–2484 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Wine, E. et al. Pediatric Crohn's disease and growth retardation: the role of genotype, phenotype, and disease severity. Pediatrics 114, 1281–1286 (2004).

    Article  PubMed  Google Scholar 

  91. Russell, R. K. et al. Analysis of the influence of OCTN1/2 variants within the IBD5 locus on disease susceptibility and growth indices in early-onset inflammatory bowel disease. Gut 55, 1114–1123 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Levine, A. et al. TNF promoter polymorphisms and modulation of growth retardation and disease severity in pediatric Crohn's disease. Am. J. Gastroenterol. 100, 1598–1604 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Aiges, H., Markowitz, J., Rosa, J. & Daum, F. Home nocturnal supplemental nasogastric feedings in growth-retarded adolescents with Crohn's disease. Gastroenterology 97, 905–910 (1989).

    Article  CAS  PubMed  Google Scholar 

  94. Belli, D. C. et al. Chronic intermittent elemental diet improves growth failure in children with Crohn's disease. Gastroenterology 94, 603–610 (1988).

    Article  CAS  PubMed  Google Scholar 

  95. Wilschanski, M. et al. Supplementary enteral nutrition maintains remission in paediatric Crohn's disease. Gut 38, 543–548 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Walker-Smith, J. A. Management of growth failure in Crohn's disease. Arch. Dis. Child. 75, 351–354 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fell, J. M. et al. Mucosal healing and a fall in mucosal pro-inflammatory cytokine mRNA induced by a specific oral polymeric diet in paediatric Crohn's disease. Aliment. Pharmacol. Ther. 14, 281–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Borrelli, O. et al. Polymeric diet alone versus corticosteroids in the treatment of active pediatric Crohn's disease: a randomized controlled open-label trial. Clin. Gastroenterol. Hepatol. 4, 744–753 (2006).

    Article  PubMed  Google Scholar 

  99. Zachos, M., Tondeur, M. & Griffiths, A. M. Enteral nutritional therapy for inducing remission of Crohn's disease. Cochrane Database of Systematic Reviews CD000542 (2001).

  100. Rigaud, D. et al. Controlled trial comparing two types of enteral nutrition in treatment of active Crohn's disease: elemental versus polymeric diet. Gut 32, 1492–1497 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Seidman, E., Jones, A. & Issenman, R. Cyclical exclusive enteral nutrition versus alternate day prednisone in maintaining remission of pediatric Crohn's disease. J. Pediatr. Gastroenterol. Nutr. 23, A344 (1996).

  102. Rutgeerts, P. J. Review article: the limitations of corticosteroid therapy in Crohn's disease. Aliment. Pharmacol. Ther. 15, 1515–1525 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Markowitz, J., Grancher, K., Kohn, N., Lesser, M. & Daum, F. A multicenter trial of 6-mercaptopurine and prednisone in children with newly diagnosed Crohn's disease. Gastroenterology 119, 895–902 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Turner, D. et al. Methotrexate following unsuccessful thiopurine therapy in pediatric Crohn's disease. Am. J. Gastroenterol. 102, 2804–2812 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Hyams, J. et al. Induction and maintenance infliximab therapy for the treatment of moderate-to-severe Crohn's disease in children. Gastroenterology 132, 863–873 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Walters, T. D., Gilman, A. R. & Griffiths, A. M. Linear growth improves during infliximab therapy in children with chronically active severe Crohn's disease. Inflamm. Bowel Dis. 13, 424–430 (2007).

    Article  PubMed  Google Scholar 

  107. de Ridder, L. et al. Infliximab therapy in 30 patients with refractory pediatric crohn disease with and without fistulas in The Netherlands. J. Pediatr. Gastroenterol. Nutr. 39, 46–52 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Borrelli, O. et al. Infliximab heals intestinal inflammatory lesions and restores growth in children with Crohn's disease. Dig. Liver Dis. 36, 342–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Cezard, J. P. et al. A prospective study of the efficacy and tolerance of a chimeric antibody to tumor necrosis factors (Remicade) in severe pediatric Crohn disease. J. Pediatr. Gastroenterol. Nutr. 36, 632–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Griffiths, A. M., Hyams, J. S. & Crandall, W. Height of children with active Crohn's disease improves during treatment with infliximab. Gastroenterology 130 (Suppl. 2), A59 (2006).

    Google Scholar 

  111. Griffiths, A. M., Wesson, D. E., Shandling, B., Corey, M. & Sherman, P. M. Factors influencing postoperative recurrence of Crohn's disease in childhood. Gut 32, 491–495 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Davies, G., Evans, C. M., Shand, W. S. & Walker-Smith, J. A. Surgery for Crohn's disease in childhood: influence of site of disease and operative procedure on outcome. Br. J. Surg. 77, 891–894 (1990).

    Article  CAS  PubMed  Google Scholar 

  113. Baldassano, R. N. et al. Pediatric Crohn's disease: risk factors for postoperative recurrence. Am. J. Gastroenterol. 96, 2169–2176 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Mauras, N. et al. Growth hormone has anabolic effects in glucocorticosteroid-dependent children with inflammatory bowel disease: a pilot study. Metabolism 51, 127–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Han, X., Sosnowska, D., Bonkowski, E. L. & Denson, L. A. Growth hormone inhibits signal transducer and activator of transcription 3 activation and reduces disease activity in murine colitis. Gastroenterology 129, 185–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Slonim, A. E. et al. A preliminary study of growth hormone therapy for Crohn's disease. N. Engl. J. Med. 342, 1633–1637 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Leung, D. W. et al. Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature 330, 537–543 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T. D. Walters receives joint fellowship funding from The Crohn's and Colitis Foundation of Canada, AstraZeneca Canada, The Canadian Association of Gastroenterology, and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Griffiths.

Ethics declarations

Competing interests

A. M. Griffiths has been a Consultant for Abbott, Centocor, Schering-Plough and UCB, and has received research support from Schering Plough Canada.

T. D. Walters has been a Consultant for Schering-Plough Canada and UCB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walters, T., Griffiths, A. Mechanisms of growth impairment in pediatric Crohn's disease. Nat Rev Gastroenterol Hepatol 6, 513–523 (2009). https://doi.org/10.1038/nrgastro.2009.124

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2009.124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing