Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alcohol, adipose tissue and liver disease: mechanistic links and clinical considerations

Key Points

  • Alcohol consumption, even at moderate levels, affects the function of adipose tissue

  • Hazardous alcohol consumption causes marked adipose tissue inflammation, similar to changes seen in obesity

  • Adipose tissue inflammation caused by alcohol contributes to the progression of liver disease through effects on liver function, inflammation and fibrosis

  • If alcohol abuse and obesity are both present, risk of liver-related morbidity and mortality is increased

  • Hazardous drinkers are at increased risk of the clinical sequelae of adipose tissue inflammation, particularly type 2 diabetes mellitus

  • In addition to abstinence from alcohol, addressing adipose tissue inflammation through exercise or medications could improve liver disease

Abstract

Adipose tissue represents a large volume of biologically active tissue that exerts substantial systemic effects in health and disease. Alcohol consumption can profoundly disturb the normal functions of adipose tissue by inducing adipocyte death and altering secretion of adipokines, pro-inflammatory mediators and free fatty acids from adipose tissue, which have important direct and indirect effects on the pathogenesis of alcoholic liver disease (ALD). Cessation of alcohol intake quickly reverses inflammatory changes in adipose tissue, and pharmacological treatment that normalizes adipose tissue function improves experimental ALD. Obesity exacerbates liver injury induced by chronic or binge alcohol consumption, and obesity and alcohol can synergize to increase risk of ALD and progression. Physicians who care for individuals with ALD should be aware of the effects of adipose tissue dysfunction on liver function, and consider strategies to manage obesity and insulin resistance. This Review examines the effect of alcohol on adiposity and adipose tissue and the relationship between alcohol, adipose tissue and the liver.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adipose tissue in alcoholic liver disease.

Similar content being viewed by others

References

  1. Blachier, M., Leleu, H., Peck-Radosavljevic, M., Valla, D. C. & Roudot-Thoraval, F. The burden of liver disease in Europe: a review of available epidemiological data. J. Hepatol. 58, 593–608 (2013).

    Article  PubMed  Google Scholar 

  2. Younossi, Z. M. et al. Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin. Gastroenterol. Hepatol. 9, 524–530 (2011).

    PubMed  Google Scholar 

  3. Rehm, J., Samokhvalov, A. V. & Shield, K. D. Global burden of alcoholic liver diseases. J. Hepatol. 59, 160–168 (2013).

    PubMed  Google Scholar 

  4. O'shea, R. S., Dasarathy, S. & McCullough, A. J. Alcoholic liver disease. Hepatology 51, 307–328 (2010).

    PubMed  Google Scholar 

  5. Teli, M. R., Day, C. P., James, O. F. W., Burt, A. D. & Bennett, M. K. Determinants of progression to cirrhosis or fibrosis in pure alcoholic fatty liver. Lancet 346, 987–990 (1995).

    CAS  PubMed  Google Scholar 

  6. Raynard, B. et al. Risk factors of fibrosis in alcohol-induced liver disease. Hepatology 35, 635–638 (2002).

    PubMed  Google Scholar 

  7. Prior, B. M. et al. In vivo validation of whole body composition estimates from dual-energy X-ray absorptiometry. J. Appl. Physiol. 83, 623–630 (1997).

    CAS  PubMed  Google Scholar 

  8. Martin, A. D., Daniel, M. Z., Drinkwater, D. T. & Clarys, J. P. Adipose tissue density, estimated adipose lipid fraction and whole body adiposity in male cadavers. Int. J. Obes. Relat. Metab. Disord. 18, 79–83 (1994).

    CAS  PubMed  Google Scholar 

  9. Thomas, E. L. et al. Magnetic resonance imaging of total body fat. J. Appl. Physiol. 85, 1778–1785 (1998).

    CAS  PubMed  Google Scholar 

  10. Molina, D. K. & DiMaio, V. J. M. Normal organ weights in men: part II the brain, lungs, liver, spleen, and kidneys. Am. J. Forensic Med. Pathol. 33, 368–372 (2012).

    PubMed  Google Scholar 

  11. Molina, D. K. & DiMaio, V. J. M. Normal organ weights in women: part II the brain, lungs, liver, spleen, and kidneys. Am. J. Forensic Med. Pathol. 36, 182–187

  12. Heinemann, A., Wischhusen, F., Püschel, K. & Rogiers, X. Standard liver volume in the Caucasian population. Liver Transpl. Surg. 5, 366–368 (1999).

    CAS  PubMed  Google Scholar 

  13. Fox, C. S. et al. Abdominal visceral and subcutaneous adipose tissue compartments association with metabolic risk factors in the Framingham Heart Study. Circulation 116, 39–48 (2007).

    PubMed  Google Scholar 

  14. Ross, R., Fortier, L. & Hudson, R. Separate associations between visceral and subcutaneous adipose tissue distribution, insulin and glucose levels in obese women. Diabetes Care 19, 1404–1411 (1996).

    CAS  PubMed  Google Scholar 

  15. Pou, K. M. et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham heart study. Circulation 116, 1234–1241 (2007).

    CAS  PubMed  Google Scholar 

  16. Fain, J. N., Madan, A. K., Hiler, M. L., Cheema, P. & Bahouth, S. W. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145, 2273–2282 (2004).

    CAS  PubMed  Google Scholar 

  17. Bjorntorp, P. Adipose tissue distribution and function. Int. J. Obes. 15, 67–81 (1991).

    PubMed  Google Scholar 

  18. Nazare, J.-A. et al. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity. Am. J. Clin. Nutr. 96, 714–726 (2012).

    CAS  PubMed  Google Scholar 

  19. Raji, A., Seely, E. W., Arky, R. A. & Simonson, D. C. Body fat distribution and insulin resistance in healthy Asian Indians and Caucasians. J. Clin. Endocrinol. Metab. 86, 5366–5371 (2001).

    CAS  PubMed  Google Scholar 

  20. Rutkowski, J. M., Stern, J. H. & Scherer, P. E. The cell biology of fat expansion. J. Cell Biol. 208, 501–512 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cusi, K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 142, 711–725.e6 (2012).

    CAS  PubMed  Google Scholar 

  22. Large, V., Peroni, O., Letexier, D., Ray, H. & Beylot, M. Metabolism of lipids in human white adipocyte. Diabetes Metab. 30, 294–309 (2004).

    CAS  PubMed  Google Scholar 

  23. Nielsen, T. S., Jessen, N., Jørgensen, J. O., Møller, N. & Lund, S. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J. Mol. Endocrinol. 52, R199–R222 (2014).

    CAS  PubMed  Google Scholar 

  24. Rosen, E. D. & Spiegelman, B. M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847–853 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vendrell, J. et al. Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obes. Res. 12, 962–971 (2004).

    CAS  PubMed  Google Scholar 

  26. Myers, M. G., Cowley, M. A. & Münzberg, H. Mechanisms of leptin action and leptin resistance. Annu. Rev. Physiol. 70, 537–556 (2008).

    CAS  PubMed  Google Scholar 

  27. Weyer, C. et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930–1935 (2001).

    CAS  PubMed  Google Scholar 

  28. Turer, A. T. & Scherer, P. E. Adiponectin: mechanistic insights and clinical implications. Diabetologia 55, 2319–2326 (2012).

    CAS  PubMed  Google Scholar 

  29. Kern, P. A., Gregorio, G. B. D., Lu, T., Rassouli, N. & Ranganathan, G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 52, 1779–1785 (2003)

    CAS  PubMed  Google Scholar 

  30. Mitchell, J. B. et al. Immunophenotype of human adipose derived cells: temporal changes in stromal associated and stem cell associated markers. Stem Cells 24, 376–385 (2006).

    PubMed  Google Scholar 

  31. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Strissel, K. J. et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56, 2910–2918 (2007).

    CAS  PubMed  Google Scholar 

  34. Lumeng, C. N., DelProposto, J. B., Westcott, D. J. & Saltiel, A. R. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57, 3239–3246 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cildir, G., Akıncılar, S. C. & Tergaonkar, V. Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol. Med. 19, 487–500 (2013).

    CAS  PubMed  Google Scholar 

  36. Kintscher, U. et al. T-Lymphocyte infiltration in visceral adipose tissue a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol. 28, 1304–1310 (2008).

    CAS  PubMed  Google Scholar 

  37. Stefanovic-Racic, M. et al. Dendritic cells promote macrophage infiltration and comprise a substantial proportion of obesity-associated increases in CD11c+ cells in adipose tissue and liver. Diabetes 61, 2330–2339 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bertola, A. et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61, 2238–2247 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nijhuis, J. et al. Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity 17, 2014–2018 (2009).

    CAS  PubMed  Google Scholar 

  40. Elgazar-Carmon, V., Rudich, A., Hadad, N. & Levy, R. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J. Lipid Res. 49, 1894–1903 (2008).

    CAS  PubMed  Google Scholar 

  41. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fain, J. N. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam. Horm. 74, 443–477 (2006).

    CAS  PubMed  Google Scholar 

  43. Mitchell, M. & Herlong, H. Alcohol and nutrition: caloric value, bioenergetics, and relationship to liver damage. Ann. Rev. Nutr. 6, 457–474 (2011).

    Google Scholar 

  44. Sayon-Orea, C., Martinez-Gonzalez, M. A. & Bes-Rastrollo, M. Alcohol consumption and body weight: a systematic review. Nutr. Rev. 69, 419–431 (2011).

    PubMed  Google Scholar 

  45. Lahti-Koski, M., Pietinen, P., Heliövaara, M. & Vartiainen, E. Associations of body mass index and obesity with physical activity, food choices, alcohol intake, and smoking in the 1982–1997 FINRISK Studies. Am. J. Clin. Nutr. 75, 809–817 (2002).

    CAS  PubMed  Google Scholar 

  46. Wannamethee, S. G. & Shaper, A. G. Alcohol, body weight, and weight gain in middle-aged men. Am. J. Clin. Nutr. 77, 1312–1317 (2003).

    CAS  PubMed  Google Scholar 

  47. Addolorato, G., Capristo, E., Greco, A. V., Stefanini, G. F. & Gasbarrini, G. Influence of chronic alcohol abuse on body weight and energy metabolism: is excess ethanol consumption a risk factor for obesity or malnutrition. J. Intern. Med. 244, 387–395 (1998).

    CAS  PubMed  Google Scholar 

  48. Levine, J. A., Harris, M. M. & Morgan, M. Y. Energy expenditure in chronic alcohol abuse. Eur. J. Clin. Invest. 30, 779–786 (2000).

    CAS  PubMed  Google Scholar 

  49. Muller, M. J. et al. Energy expenditure and substrate metabolism in ethanol-induced liver cirrhosis. Am. J. Physiol. 260, E338–E344 (1991).

    CAS  PubMed  Google Scholar 

  50. Addolorato, G. et al. Three months of abstinence from alcohol normalizes energy expenditure and substrate oxidation in alcoholics: a longitudinal study. Am. J. Gastroenterol. 93, 2476–2481 (1998).

    CAS  PubMed  Google Scholar 

  51. Pirlich, M. et al. Bioelectrical impedance analysis is a useful bedside technique to assess malnutrition in cirrhotic patients with and without ascites. Hepatology 32, 1208–1215 (2000).

    CAS  PubMed  Google Scholar 

  52. Merli, M., Riggio, O., Romiti, A., Ariosto, F. & Mango, L. Basal energy production rate and substrate use in stable cirrhotic patients. Hepatology 12, 106–112 (1990).

    CAS  PubMed  Google Scholar 

  53. McClain, C. J., Barve, S. S. & Barve, A. Alcoholic liver disease and malnutrition. Alcohol. Clin. Exp. Res. 35, 815–820 (2011).

    PubMed  PubMed Central  Google Scholar 

  54. Huisman, E. J., Trip, E. J. & Siersema, P. D. Protein energy malnutrition predicts complications in liver cirrhosis. Eur. J. Gastroenterol. Hepatol. 23, 982–989 (2011).

    CAS  PubMed  Google Scholar 

  55. Mendenhall, C. L. et al. VA cooperative study on alcoholic hepatitis. II: prognostic significance of protein-calorie malnutrition. Am. J. Clin. Nutr. 43, 213–218 (1986).

    CAS  PubMed  Google Scholar 

  56. Sayon-Orea, C. et al. Type of alcoholic beverage and incidence of overweight/obesity in a Mediterranean cohort: the SUN project. Nutrition 27, 802–808 (2011).

    PubMed  Google Scholar 

  57. Johansen, D., Friis, K., Skovenborg, E. & Grønbæk, M. Food buying habits of people who buy wine or beer: cross sectional study. BMJ 332, 519–522 (2006).

    PubMed  PubMed Central  Google Scholar 

  58. Bode, C., Bode, J. C., Erhardt, J. G., French, B. A. & French, S. W. Effect of the type of beverage and meat consumed by alcoholics with alcoholic liver disease. Alcohol. Clin. Exp. Res. 22, 1803–1805 (1998).

    CAS  PubMed  Google Scholar 

  59. Molenaar, E. A. et al. Association of lifestyle factors with abdominal subcutaneous and visceral adiposity: the Framingham heart study. Diabetes Care 32, 505–510 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Crabb, D. W., Zeng, Y., Liangpunsakul, S., Jones, R. & Considine, R. Ethanol impairs differentiation of human adipocyte stromal cells in culture. Alcohol. Clin. Exp. Res. 35, 1584–1592 (2011).

    CAS  PubMed  Google Scholar 

  62. Sebastian, B. M. et al. Identification of a cytochrome P4502E1/Bid/C1q-dependent axis mediating inflammation in adipose tissue after chronic ethanol feeding to mice. J. Biol. Chem. 286, 35989–35997 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46, 3–10 (1997).

    CAS  PubMed  Google Scholar 

  64. Eguchi, A. & Feldstein, A. E. Adipocyte cell death, fatty liver disease and associated metabolic disorders. Dig. Dis. 32, 579–585 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Goude, D., Fagerberg, B. & Hulthe, J. Alcohol consumption, the metabolic syndrome and insulin resistance in 58-year-old clinically healthy men (AIR study). Clin. Sci. 102, 345–352 (2002).

    PubMed  Google Scholar 

  66. Andersen, B. N. et al. Glucose tolerance and B cell function in chronic alcoholism: its relation to hepatic histology and exocrine pancreatic function. Metabolism 32, 1029–1032 (1983).

    CAS  PubMed  Google Scholar 

  67. Lomeo, F., Khokher, M. A. & Dandona, P. Ethanol and its novel metabolites inhibit insulin action on adipocytes. Diabetes 37, 912–915 (1988).

    CAS  PubMed  Google Scholar 

  68. Feng, L. et al. Long-term moderate ethanol consumption restores insulin sensitivity in high-fat-fed rats by increasing SLC2A4 (GLUT4) in the adipose tissue by AMP-activated protein kinase activation. J. Endocrinol. 199, 95–104 (2008).

    CAS  PubMed  Google Scholar 

  69. de la Monte, S. M. et al. Insulin resistance in experimental alcohol-induced liver disease. J. Gastroenterol. Hepatol. 23, e477–e486 (2008).

    CAS  PubMed  Google Scholar 

  70. Feng, L. et al. Long-term ethanol exposure inhibits glucose transporter 4 expression via an AMPK-dependent pathway in adipocytes. Acta Pharmacol. Sin. 31, 329–340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhong, W. et al. Chronic alcohol exposure stimulates adipose tissue lipolysis in mice: role of reverse triglyceride transport in the pathogenesis of alcoholic steatosis. Am. J. Pathol. 180, 998–1007 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rachakonda, V. et al. Stratification of risk of death in severe acute alcoholic hepatitis using a panel of adipokines and cytokines. Alcohol. Clin. Exp. Res. 38, 2712–2721 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kang, L. & Nagy, L. E. Chronic ethanol feeding suppresses B-adrenergic receptor-stimulated lipolysis in adipocytes isolated from epididymal fat. Endocrinology 147, 4330–4338 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Borowsky, S. A., Perlow, W., Baraona, E. & Lieber, C. S. Relationship of alcoholic hypertriglyceridemia to stage of liver disease and dietary lipid. Dig. Dis. Sci. 25, 22–27 (1980).

    CAS  PubMed  Google Scholar 

  75. Campillo, B., Bories, P. N. & Fouet, P. Postprandial de novo lipogenesis in alcoholic liver cirrhosis: relationship with fuel homeostasis and nutritional status. Eur. J. Clin. Nutr. 47, 640–647 (1993).

    CAS  PubMed  Google Scholar 

  76. Iturriaga, H. et al. Glucose tolerance and the insulin response in recently drinking alcoholic patients: possible effects of withdrawal. Metabolism 35, 238–243 (1986).

    CAS  PubMed  Google Scholar 

  77. Flanagan, D. E. et al. Alcohol consumption and insulin resistance in young adults. Eur. J. Clin. Invest. 30, 297–301 (2000).

    CAS  PubMed  Google Scholar 

  78. Liangpunsakul, S. et al. Increasing serum pre-adipocyte factor-1 (Pref-1) correlates with decreased body fat, increased free fatty acids, and level of recent alcohol consumption in excessive alcohol drinkers. Alcohol 48, 795–800 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Calissendorff, J., Brismar, K. & Röjdmark, S. Is decreased leptin secretion after alcohol ingestion catecholamine-mediated? Alcohol Alcohol. 39, 281–286 (2004).

    CAS  PubMed  Google Scholar 

  80. Röjdmark, S., Calissendorff, J. & Brismar, K. Alcohol ingestion decreases both diurnal and nocturnal secretion of leptin in healthy individuals. Clin. Endocrinol. 55, 639–647 (2001).

    Google Scholar 

  81. Nicolás, J. M. et al. Increased circulating leptin levels in chronic alcoholism. Alcohol. Clin. Exp. Res. 25, 83–88 (2001).

    PubMed  Google Scholar 

  82. de Timary, P. et al. The loss of metabolic control on alcohol drinking in heavy drinking alcohol-dependent subjects. PLoS ONE 7, e38682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. McCullough, A. J., Bugianesi, E., Marchesini, G. & Kalhan, S. C. Gender-dependent alterations in serum leptin in alcoholic cirrhosis. Gastroenterology 115, 947–953 (1998).

    CAS  PubMed  Google Scholar 

  84. Naveau, S. et al. Serum leptin in patients with alcoholic liver disease. Alcohol. Clin. Exp. Res. 30, 1422–1428 (2006).

    CAS  PubMed  Google Scholar 

  85. Kalafateli, M. et al. Adipokines levels are associated with the severity of liver disease in patients with alcoholic cirrhosis. World J. Gastroenterol. 21, 3020–3029 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Campillo, B., Sherman, E., Richardet, J. P. & Bories, P. N. Serum leptin levels in alcoholic liver cirrhosis: relationship with gender, nutritional status, liver function and energy metabolism. Eur. J. Clin. Nutr. 55, 980–988 (2001).

    CAS  PubMed  Google Scholar 

  87. Langouche, L. et al. Adiponectin, retinol-binding protein 4, and leptin in protracted critical illness of pulmonary origin. Crit. Care 13, R112 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Beulens, J. W., de Zoete, E. C., Kok, F. J., Schaafsma, G. & Hendriks, H. F. Effect of moderate alcohol consumption on adipokines and insulin sensitivity in lean and overweight men: a diet intervention study. Eur. J. Clin. Nutr. 62, 1098–1105 (2008).

    CAS  PubMed  Google Scholar 

  89. Sierksma, A. et al. Effect of moderate alcohol consumption on adiponectin, tumor necrosis factor-alpha, and insulin sensitivity. Diabetes Care 27, 184–189 (2004).

    CAS  PubMed  Google Scholar 

  90. Brien, S. E., Ronksley, P. E., Turner, B. J., Mukamal, K. J. & Ghali, W. A. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ 342, d636 (2011).

    PubMed  PubMed Central  Google Scholar 

  91. Beulens, J. W., van Beers, R. M., Stolk, R. P., Schaafsma, G. & Hendriks, H. F. The effect of moderate alcohol consumption on fat distribution and adipocytokines. Obesity 14, 60–66 (2006).

    CAS  PubMed  Google Scholar 

  92. Hillemacher, T. et al. Increased levels of adiponectin and resistin in alcohol dependence — a possible link to craving. Drug Alcohol Depend. 99, 333–337 (2009).

    CAS  PubMed  Google Scholar 

  93. Tacke, F. et al. High adiponectin in chronic liver disease and cholestasis suggests biliary route of adiponectin excretion in vivo. J. Hepatol. 42, 666–673 (2005).

    CAS  PubMed  Google Scholar 

  94. Kaser, S. et al. Circulating adiponectin reflects severity of liver disease but not insulin sensitivity in liver cirrhosis. J. Intern. Med. 258, 274–280 (2005).

    CAS  PubMed  Google Scholar 

  95. Kasztelan-Szczerbinska, B. et al. Association of serum adiponectin, leptin, and resistin concentrations with the severity of liver dysfunction and the disease complications in alcoholic liver disease. Mediators Inflamm. 2013, 148526 (2013).

    PubMed  PubMed Central  Google Scholar 

  96. Wandler, A., Bruun, J. M., Nielsen, M. P. & Richelsen, B. Ethanol exerts anti-inflammatory effects in human adipose tissue in vitro. Mol. Cell. Endocrinol. 296, 26–31 (2008).

    CAS  PubMed  Google Scholar 

  97. Kern, P. A., Di Gregorio, G. B., Lu, T., Rassouli, N. & Ranganathan, G. Adiponectin expression from human adipose tissue relation to obesity, insulin resistance, and tumor necrosis factor-a expression. Diabetes 52, 1779–1785 (2003).

    CAS  PubMed  Google Scholar 

  98. Ryo, M. et al. Adiponectin as a biomarker of the metabolic syndrome. Circ. J. 68, 975–981 (2004).

    CAS  PubMed  Google Scholar 

  99. Song, Z., Zhou, Z., Deaciuc, I., Chen, T. & McClain, C. J. Inhibition of adiponectin production by homocysteine: a potential mechanism for alcoholic liver disease. Hepatology 47, 867–879 (2008).

    CAS  PubMed  Google Scholar 

  100. Tang, H. et al. Ethanol-induced oxidative stress via the CYP2E1 pathway disrupts adiponectin secretion from adipocytes. Alcohol. Clin. Exp. Res. 36, 214–222 (2012).

    CAS  PubMed  Google Scholar 

  101. Xu, J. et al. Synergistic steatohepatitis by moderate obesity and alcohol in mice despite increased adiponectin and p-AMPK. J. Hepatol. 55, 673–682 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Fukuhara, A. et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307, 426–430 (2005).

    CAS  PubMed  Google Scholar 

  103. Moschen, A. R. et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. 178, 1748–1758 (2007).

    CAS  PubMed  Google Scholar 

  104. Chen, M. P. et al. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 91, 295–299 (2006).

    CAS  PubMed  Google Scholar 

  105. Czarnecki, D. et al. Changes in concentration of visfatin during four weeks of inpatient treatment of alcohol dependent males. Alcohol Drug Addict. 28, 173–181 (2015).

    Google Scholar 

  106. Yang, Q. et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362 (2005).

    CAS  PubMed  Google Scholar 

  107. Stefan, N. et al. High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans. Diabetes Care 30, 1173–1178 (2007).

    CAS  PubMed  Google Scholar 

  108. Tacke, F., Weiskirchen, R. & Trautwein, C. Liver function critically determines serum retinol-binding protein 4 (RBP4) levels in patients with chronic liver disease and cirrhosis. Hepatology 48, 1724–1725 (2008).

    PubMed  Google Scholar 

  109. McClain, C. J., Thiel, D. H., Parker, S., Badzin, L. K. & Gilbert, H. Alterations in zinc, vitamin A, and retinol-binding protein in chronic alcoholics: a possible mechanism for night blindness and hypogonadism. Alcohol. Clin. Exp. Res. 3, 135–141 (1979).

    CAS  PubMed  Google Scholar 

  110. Yang, R. Z. et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab. 290, E1253–E1261 (2006).

    CAS  PubMed  Google Scholar 

  111. Eisinger, K. et al. Portal vein omentin is increased in patients with liver cirrhosis but is not associated with complications of portal hypertension. Eur. J. Clin. Invest. 43, 926–932 (2013).

    CAS  PubMed  Google Scholar 

  112. Ernst, M. C. & Sinal, C. J. Chemerin: at the crossroads of inflammation and obesity. Trends Endocrinol. Metab. 21, 660–667 (2010).

    CAS  PubMed  Google Scholar 

  113. Ren, R. Z. et al. Chronic ethanol consumption increases the levels of chemerin in the serum and adipose tissue of humans and rats. Acta Pharmacol. Sin. 33, 652–659 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Eisinger, K., Krautbauer, S., Wiest, R., Weiss, T. S. & Buechler, C. Reduced serum chemerin in patients with more severe liver cirrhosis. Exp. Mol. Pathol. 98, 208–213 (2015).

    CAS  PubMed  Google Scholar 

  115. Voican, C. S. et al. Alcohol withdrawal alleviates adipose tissue inflammation in patients with alcoholic liver disease. Liver Int. 35, 967–978 (2014).

    PubMed  Google Scholar 

  116. Naveau, S. et al. Harmful effect of adipose tissue on liver lesions in patients with alcoholic liver disease. J. Hepatol. 52, 895–902 (2010).

    CAS  PubMed  Google Scholar 

  117. Lin, H. Z., Yang, S. Q., Zeldin, G. & Diehl, A. M. Chronic ethanol consumption induces the production of tumor necrosis factor alpha and related cytokines in liver and adipose tissue. Alcohol. Clin. Exp. Res. 22, 231S–237S (1998).

    CAS  PubMed  Google Scholar 

  118. Sun, X. et al. Activation of peroxisome proliferator-activated receptor-γ by rosiglitazone improves lipid homeostasis at the adipose tissue-liver axis in ethanol-fed mice. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G548–G557 (2012).

    CAS  PubMed  Google Scholar 

  119. Kang, L. et al. Chronic ethanol-induced insulin resistance is associated with macrophage infiltration into adipose tissue and altered expression of adipocytokines. Alcohol. Clin. Exp. Res. 31, 1581–1588 (2007).

    CAS  PubMed  Google Scholar 

  120. He, Z. et al. Adipose tissue hypoxia and low-grade inflammation: a possible mechanism for ethanol-related glucose intolerance. Br. J. Nutr. 113, 1355–1364 (2015).

    CAS  PubMed  Google Scholar 

  121. Benavides, V. I., Song, K., Molina, P. E. & Souza-Smith, F. M. Repeated binge-like alcohol intoxication-induced adaptive immunity in perilymphatic adipose tissue. FASEB J. 30, 1292.6 (2016).

    Google Scholar 

  122. Rachakonda, V. et al. Serum metabolomic profiling in acute alcoholic hepatitis identifies multiple dysregulated pathways. PLoS ONE 9, e113860 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. Feldstein, A. E. et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40, 185–194 (2004).

    CAS  PubMed  Google Scholar 

  124. Wei, X. et al. Chronic alcohol exposure disturbs lipid homeostasis at the adipose tissue-liver axis in mice: analysis of triacylglycerols using high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling. PLoS ONE 8, e55382 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Malhi, H., Bronk, S. F., Werneburg, N. W. & Gores, G. J. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J. Biol. Chem. 281, 12093–12101 (2006).

    CAS  PubMed  Google Scholar 

  126. Sekiya, M. et al. Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression. Hepatology 38, 1529–1539 (2003).

    CAS  PubMed  Google Scholar 

  127. Bevilacqua, S. et al. Acute elevation of free fatty acid levels leads to hepatic insulin resistance in obese subjects. Metabolism 36, 502–506 (1987).

    CAS  PubMed  Google Scholar 

  128. Ji, C., Chan, C. & Kaplowitz, N. Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model. J. Hepatol. 45, 717–724 (2006).

    CAS  PubMed  Google Scholar 

  129. Siler, S. Q., Neese, R. A. & Hellerstein, M. K. De novo lipogenesis, lipid kinetics, and whole-body lipid balances in humans after acute alcohol consumption. Am. J. Clin. Nutr. 70, 928–936 (1999).

    CAS  PubMed  Google Scholar 

  130. Wobser, H. et al. Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells. Cell Res. 19, 996–1005 (2009).

    CAS  PubMed  Google Scholar 

  131. Boden, G. et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kB pathway in rat liver. Diabetes 54, 3458–3465 (2005).

    CAS  PubMed  Google Scholar 

  132. Tang, T., Sui, Y., Lian, M., Li, Z. & Hua, J. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death. PLoS ONE 8, e81949 (2013).

    PubMed  PubMed Central  Google Scholar 

  133. Han, C. Y. et al. Differential effect of saturated and unsaturated free fatty acids on the generation of monocyte adhesion and chemotactic factors by adipocytes dissociation of adipocyte hypertrophy from inflammation. Diabetes 59, 386–396 (2010).

    CAS  Google Scholar 

  134. Ikejima, K. et al. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology 34, 288–297 (2001).

    CAS  PubMed  Google Scholar 

  135. Leclercq, I. A., Farrell, G. C., Schriemer, R. & Robertson, G. R. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J. Hepatol. 37, 206–213 (2002).

    CAS  PubMed  Google Scholar 

  136. Shen, J., Sakaida, I., Uchida, K., Terai, S. & Okita, K. Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci. 77, 1502–1515 (2005).

    CAS  PubMed  Google Scholar 

  137. Aleffi, S. et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology 42, 1339–1348 (2005).

    CAS  PubMed  Google Scholar 

  138. Xu, A. et al. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. Invest. 112, 91–100 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Parlesak, A., Schäfer, C., Schütz, T., Bode, J. C. & Bode, C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J. Hepatol. 32, 742–747 (2000).

    CAS  PubMed  Google Scholar 

  140. Leclercq, S., Matamoros, S. & Cani, P. D. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl Acad. Sci. USA 111, E4485–E4493 (2014).

    CAS  PubMed  Google Scholar 

  141. Thakur, V., Pritchard, M. T., McMullen, M. R. & Nagy, L. E. Adiponectin normalizes LPS-stimulated TNF-a production by rat Kupffer cells after chronic ethanol feeding. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G998–G1007 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Park, P., Thakur, V., Pritchard, M. T., McMullen, M. R. & Nagy, L. E. Regulation of Kupffer cell activity during chronic ethanol exposure: role of adiponectin. J. Gastroenterol. Hepatol. 21, S30–S33 (2006).

    CAS  PubMed  Google Scholar 

  143. Wang, H. J., Gao, B., Zakhari, S. & Nagy, L. E. Inflammation in alcoholic liver disease. Annu. Rev. Nutr. 32, 343–368 (2012).

    PubMed  PubMed Central  Google Scholar 

  144. Yin, M. et al. Essential role of tumor necrosis factor α in alcohol-induced liver injury in mice. Gastroenterology 117, 942–952 (1999).

    CAS  PubMed  Google Scholar 

  145. Gao, B. & Bataller, R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141, 1572–1585 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Leist, M. et al. Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models. Am. J. Pathol. 146, 1220 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Jones, B. E. et al. Hepatocytes sensitized to tumor necrosis factor-alpha cytotoxicity undergo apoptosis through caspase-dependent and caspase-independent pathways. J. Biol. Chem. 275, 705–712 (2000).

    CAS  PubMed  Google Scholar 

  148. Schwabe, R. F. & Brenner, D. A. Mechanisms of liver injury. I. TNF-alpha induced liver injury: role of IKK, JNK, and ROS pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G583–G589 (2006).

    CAS  PubMed  Google Scholar 

  149. Wolf, D. et al. TNF-alpha-induced expression of adhesion molecules in the liver is under the control of TNFR1-relevance for concanavalin A-induced hepatitis. J. Immunol. 166, 1300–1307 (2001).

    CAS  PubMed  Google Scholar 

  150. Tomita, K. et al. Tumour necrosis factor a signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 55, 415–424 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Cressman, D. E. et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274, 1379–1383 (1996).

    CAS  PubMed  Google Scholar 

  152. Zhang, X. et al. Interleukin-6 is an important mediator for mitochondrial DNA repair after alcoholic liver injury in mice. Hepatology 52, 2137–2147 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Hong, F. et al. Interleukin 6 alleviates hepatic steatosis and ischemia/reperfusion injury in mice with fatty liver disease. Hepatology 40, 933–941 (2004).

    CAS  PubMed  Google Scholar 

  154. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Parker, R. et al. Therapeutic use of a clinical stage CCR2 inhibitor, CCX872, in obesity-associated steatohepatitis. Lancet 383, S78 (2014).

    Google Scholar 

  156. Degre, D. et al. Hepatic expression of CCL2 in alcoholic liver disease is associated with disease severity and neutrophil infiltrates. Clin. Exp. Immunol. 169, 302–310 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Colmenero, J. et al. Hepatic expression of candidate genes in patients with alcoholic hepatitis: correlation with disease severity. Gastroenterology 132, 687–697 (2007).

    CAS  PubMed  Google Scholar 

  158. Mandrekar, P., Ambade, A., Lim, A., Szabo, G. & Catalano, D. An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology 54, 2185–2197 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Nio, Y. et al. Monocyte chemoattractant protein-1 (MCP-1) deficiency enhances alternatively activated M2 macrophages and ameliorates insulin resistance and fatty liver in lipoatrophic diabetic A-ZIP transgenic mice. Diabetologia 55, 3350–3358 (2012).

    CAS  PubMed  Google Scholar 

  160. Ferrante, S. C. et al. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr. Res. 77, 447–454 (2014).

    PubMed  PubMed Central  Google Scholar 

  161. Chen, X., Liang, H., Zhang, J., Zen, K. & Zhang, C.-Y. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 22, 125–132 (2012).

    CAS  PubMed  Google Scholar 

  162. Koeck, E. S. et al. Adipocyte exosomes induce transforming growth factor beta pathway dysregulation in hepatocytes: a novel paradigm for obesity-related liver disease. J. Surg. Res. 192, 268–275 (2014).

    CAS  PubMed  Google Scholar 

  163. Deng, Z. B. et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58, 2498–2505 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Pirola, C. J. et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut 64, 800–812 (2014).

    PubMed  PubMed Central  Google Scholar 

  165. Momen-Heravi, F. et al. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J. Transl Med. 13, 261 (2015).

    PubMed  PubMed Central  Google Scholar 

  166. Ortega, F. J. et al. Inflammation triggers specific microRNA profiles in human adipocytes and macrophages and in their supernatants. Clin. Epigenetics 7, 49 (2015).

    PubMed  PubMed Central  Google Scholar 

  167. Bala, S. et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. J. Hepatol. 64, 1378–1387 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Chang, B. et al. Short- or long-term high-fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: an important role for CXCL1. Hepatology 62, 1070–1085 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wang, W. et al. Inflammation is independent of steatosis in a murine model of steatohepatitis. Hepatology 66, 108–123 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Hart, C. L., Morrison, D. S., Batty, G. D., Mitchell, R. J. & Smith, G. D. Effect of body mass index and alcohol consumption on liver disease: analysis of data from two prospective cohort studies. BMJ 340, c1240 (2010).

    PubMed  PubMed Central  Google Scholar 

  171. Loomba, R. et al. Obesity and alcohol synergize to increase the risk of incident hepatocellular carcinoma in men. Clin. Gastroenterol. Hepatol. 8, 891–898 (2010).

    PubMed  Google Scholar 

  172. Bagnardi, V. et al. Light alcohol drinking and cancer: a meta-analysis. Ann. Oncol. 24, 301–308 (2012).

    PubMed  Google Scholar 

  173. Parker, R. et al. Excess adiposity in alcoholic hepatitis increases mortality and morbidity. Hepatology 64, 601 (2016).

    Google Scholar 

  174. European Association for the Study of Liver. EASL clinical practical guidelines: management of alcoholic liver disease. J. Hepatol. 57, 399–420 (2012).

  175. Wallerstedt, S., Gustafson, A. & Olsson, R. Serum lipids and lipoproteins during abstinence after heavy alcohol consumption in chronic alcoholics. Scand. J. Clin. Lab. Invest. 37, 599–604 (1977).

    CAS  PubMed  Google Scholar 

  176. Dixon, J. B., Dixon, M. E. & O'Brien, P. E. Alcohol consumption in the severely obese: relationship with the metabolic syndrome. Obes. Res. 10, 245–252 (2002).

    PubMed  Google Scholar 

  177. Hashimoto, Y. et al. The modest alcohol consumption reduces the incidence of fatty liver in men: a population-based large-scale cohort study. J. Gastroenterol. Hepatol. 30, 546–552 (2015).

    PubMed  Google Scholar 

  178. Ekstedt, M. et al. Alcohol consumption is associated with progression of hepatic fibrosis in non-alcoholic fatty liver disease. Scand. J. Gastroenterol. 44, 366–374 (2009).

    CAS  PubMed  Google Scholar 

  179. Phillips, G. B. & Safrit, H. F. Alcoholic diabetes: induction of glucose intolerance with alcohol. JAMA 13, 1513–1519 (1971).

    Google Scholar 

  180. Wei, M., Gibbons, L. W., Mitchell, T. L., Kampert, J. B. & Blair, S. N. Alcohol intake and incidence of type 2 diabetes in men. Diabetes Care 23, 18–22 (2000).

    CAS  PubMed  Google Scholar 

  181. Zein, N. N., Abdulkarim, A. S., Wiesner, R. H., Egan, K. S. & Persing, D. H. Prevalence of diabetes mellitus in patients with end-stage liver cirrhosis due to hepatitis C, alcohol, or cholestatic disease. J. Hepatol. 32, 209–217 (2000).

    CAS  PubMed  Google Scholar 

  182. Bianchi, G. et al. Prognostic significance of diabetes in patients with cirrhosis. Hepatology 20, 119–125 (1994).

    CAS  PubMed  Google Scholar 

  183. World Health Organization. Use of glycated haemoglobin (HbA1c) in diagnosis of diabetes mellitus: abbreviated report of a WHO consultation (WHO, 2011).

  184. Trenti, T. et al. Fructosamine and glycated hemoglobin as indices of glycemic control in patients with liver cirrhosis. Ric. Clin. Lab. 20, 261–267 (1990).

    CAS  PubMed  Google Scholar 

  185. Clément, K. et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 18, 1657–1669 (2004).

    PubMed  Google Scholar 

  186. Cancello, R. et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54, 2277–2286 (2005).

    CAS  PubMed  Google Scholar 

  187. Perreault, K. et al. Does physical activity moderate the association between alcohol drinking and all-cause, cancer and cardiovascular diseases mortality? A pooled analysis of eight British population cohorts. Br. J. Sports Med. 51, 651–657 (2016).

    PubMed  Google Scholar 

  188. Szary, N. et al. High intrinsic aerobic capacity protects against ethanol-induced hepatic injury and metabolic dysfunction: study using high capacity runner rat model. Biomolecules 5, 3295–3308 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Yki-Jarvinen, H. Thiazolidinediones. N. Engl. J. Med. 351, 1106–1118 (2004).

    PubMed  Google Scholar 

  190. Wang, W. et al. Inflammation is independent of steatosis in a murine model of steatohepatitis. Hepatology 66, 108–123 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Mahady, S. E., Webster, A. C., Walker, A., Sanyal, A. & George, J. The role of thiazolidinediones in non-alcoholic steatohepatitis — a systematic review and meta analysis. J. Hepatol. 55, 1383–1390 (2011).

    CAS  PubMed  Google Scholar 

  192. Shen, Z., Liang, X., Rogers, C. Q., Rideout, D. & You, M. Involvement of adiponectin-SIRT1-AMPK signaling in the protective action of rosiglitazone against alcoholic fatty liver in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G364–G374 (2010).

    CAS  PubMed  Google Scholar 

  193. Stopponi, S. et al. Activation of nuclear PPARγ receptors by the antidiabetic agent pioglitazone suppresses alcohol drinking and relapse to alcohol seeking. Biol. Psychiatry 69, 642–649 (2011).

    CAS  PubMed  Google Scholar 

  194. Sun, K. et al. Alcohol consumption and risk of metabolic syndrome: a meta-analysis of prospective studies. Clin. Nutr. 33, 596–602 (2014).

    PubMed  Google Scholar 

  195. Costanzo, S., Castelnuovo, A. D., Donati, M. B. & de Gaetano, G. Alcohol consumption and mortality in patients with cardiovascular disease: a meta-analysis. J. Am. Coll. Cardiol. 55, 1339–1347 (2010).

    PubMed  Google Scholar 

  196. Ajmera, V. H., Terrault, N. A. & Harrison, S. A. Is moderate alcohol use in non-alcoholic fatty liver disease good or bad? A critical review. Hepatology 65, 2090–2099 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397 (2015).

    PubMed  PubMed Central  Google Scholar 

  198. Briasoulis, A., Agarwal, V. & Messerli, F. H. Alcohol consumption and the risk of hypertension in men and women: a systematic review and meta-analysis. J. Clin. Hypertens. 14, 792–798 (2012).

    Google Scholar 

  199. Bessembinders, K., Wielders, J. & van der Wiel, A. Severe hypertriglyceridemia influenced by alcohol (SHIBA). Alcohol Alcohol. 46, 113–116 (2011).

    CAS  PubMed  Google Scholar 

  200. Fan, A. Z. et al. Lifetime alcohol drinking pattern is related to the prevalence of metabolic syndrome. The Western New York Health Study (WNYHS). Eur. J. Epidemiol. 21, 129–138 (2006).

    CAS  PubMed  Google Scholar 

  201. Nordstrom, S. M., Tran, J. L., Sos, B. C., Wagner, K. U. & Weiss, E. J. Disruption of JAK2 in adipocytes impairs lipolysis and improves fatty liver in mice with elevated GH. Mol. Endocrinol. 27, 1333–1342 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Tanaka, N. et al. Adipocyte-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice. J. Biol. Chem. 290, 3092–3105 (2015).

    CAS  PubMed  Google Scholar 

  203. Qi, L. et al. Adipocyte CREB promotes insulin resistance in obesity. Cell Metab. 9, 277–286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Jiang, C. et al. Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet–fed mice. Diabetes 60, 2484–1495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Cernkovich, E. R., Deng, J., Bond, M. C., Combs, T. P. & Harp, J. B. Adipose-specific disruption of signal transducer and activator of transcription 3 increases body weight and adiposity. Endocrinology 149, 1581–1590 (2008).

    CAS  PubMed  Google Scholar 

  206. Boucher, J. et al. Impaired thermogenesis and adipose tissue development in mice with fat-specific disruption of insulin and IGF-1 signalling. Nat. Commun. 3, 902 (2012).

    PubMed  PubMed Central  Google Scholar 

  207. Abel, E. D. et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729–733 (2001).

    CAS  PubMed  Google Scholar 

  208. Jones, J. R. et al. Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc. Natl Acad. Sci. USA 102, 6207–6212 (2005).

    CAS  PubMed  Google Scholar 

  209. Yang, H. et al. Adipose-specific deficiency of fumarate hydratase in mice protects against obesity, hepatic steatosis and insulin resistance. Diabetes 65, 3396–3409 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Sos, B. C. et al. Abrogation of growth hormone secretion rescues fatty liver in mice with hepatocyte-specific deletion of JAK2. J. Clin. Invest. 121, 1412–1423 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Matsusue, K. et al. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J. Clin. Invest. 111, 737–747 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Wunderlich, F. T. et al. Hepatic NF-kappa B essential modulator deficiency prevents obesity-induced insulin resistance but synergizes with high-fat feeding in tumorigenesis. Proc. Natl Acad. Sci. USA 105, 1297–1302 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work from the lab of B.G. described in this Review was supported by the intramural program of National Institute on Alcohol Abuse and Alcoholism, NIH.

Author information

Authors and Affiliations

Authors

Contributions

R.P. researched data for the article. All of the authors discussed content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Richard Parker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parker, R., Kim, SJ. & Gao, B. Alcohol, adipose tissue and liver disease: mechanistic links and clinical considerations. Nat Rev Gastroenterol Hepatol 15, 50–59 (2018). https://doi.org/10.1038/nrgastro.2017.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing