Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut microbiota and gastrointestinal surgery

Key Points

  • Under normal conditions the intestinal microbiota provide resistance to pathogens

  • The physiological stress of surgical injury on the gastrointestinal tract can result in a profound shift in gut microbiota abundance, function and spatial location

  • Postsurgical re-establishment of the intestinal microbiota population is poorly understood

  • Selective pressures due to the process of surgical care can promote the development of resistant pathogens

  • Major intestinal reconstruction alters the intestinal microbiota; the altered microbiota might contribute to some of the benefits of these procedures, but could also contribute to the development of postsurgical complications

  • The effects of surgical injury can, in some cases, result in an in vivo transformation of intestinal bacteria to a more virulent phenotype

Abstract

Surgery involving the gastrointestinal tract continues to prove challenging because of the persistence of unpredictable complications such as anastomotic leakage and life-threatening infections. Removal of diseased intestinal segments results in substantial catabolic stress and might require complex reconstructive surgery to maintain the functional continuity of the intestinal tract. As gastrointestinal surgery necessarily involves a breach of an epithelial barrier colonized by microorganisms, preoperative intestinal antisepsis is used to reduce infection-related complications. The current approach to intestinal antisepsis varies widely across institutions and countries with little understanding of its mechanism of action, effect on the gut microbiota and overall efficacy. Many of the current approaches to intestinal antisepsis before gastrointestinal surgery run counter to emerging concepts of intestinal microbiota contributing to immune function and recovery from injury. Here, we review evidence outlining the role of gut microbiota in recovery from gastrointestinal surgery, particularly in the development of infections and anastomotic leak. To make surgery safer and further reduce complications, a molecular, genetic and functional understanding of the response of the gastrointestinal tract to alterations in its microbiota is needed. Methods can then be developed to preserve the health-promoting functions of the microbiota while at the same time suppressing their harmful effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of perioperative events on the intestinal microbiota.
Figure 2: Host–microorganism communication.
Figure 3: Altering anatomy alters the physiology and microenvironment of the intestine.
Figure 4: Microbial pathogenesis of anastomotic leak: context-dependent virulence expression in response to cues released by surgically injured tissues.

Similar content being viewed by others

References

  1. Merkow, R. P. et al. Underlying reasons associated with hospital readmission following surgery in the United States. JAMA 313, 483–495 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Clarke, J. S. et al. Preoperative oral antibiotics reduce septic complications of colon operations: results of prospective, randomized, double-blind clinical study. Ann. Surg. 186, 251–259 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schubert, A. M., Sinani, H. & Schloss, P. D. Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. MBio 6, e00974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Britton, R. A. & Young, V. B. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 146, 1547–1553 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Deitch, E. A. Gut-origin sepsis: evolution of a concept. Surgeon 10, 350–356 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vaishnavi, C. Translocation of gut flora and its role in sepsis. Indian J. Med. Microbiol. 31, 334–342 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Yu, L. C.-H. et al. Enteric dysbiosis promotes antibiotic-resistant bacterial infection: systemic dissemination of resistant and commensal bacteria through epithelial transcytosis. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G824–G835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Piton, G. & Capellier, G. Biomarkers of gut barrier failure in the ICU. Curr. Opin. Crit. Care 22, 152–160 (2016).

    PubMed  Google Scholar 

  9. Gibson, M. K., Pesesky, M. W. & Dantas, G. The yin and yang of bacterial resilience in the human gut microbiota. J. Mol. Biol. 426, 3866–3876 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sassone-Corsi, M. & Raffatellu, M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J. Immunol. 194, 4081–4087 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Caballero, S. & Pamer, E. G. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu. Rev. Immunol. 33, 227–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kamada, N., Chen, G. Y., Inohara, N. & Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A. & Kimura, I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7, 2839–2849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Macfarlane, G. T. & Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 95, 50–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, J. et al. Interaction between microbes and host intestinal health: modulation by dietary nutrients and gut-brain-endocrine-immune axis. Curr. Protein Pept. Sci. 16, 592–603 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Fan, P. et al. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Curr. Protein Pept. Sci. 16, 646–654 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Malago, J. J. Contribution of microbiota to the intestinal physicochemical barrier. Benef. Microbes 6, 295–311 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Schreiber, F., Arasteh, J. M. & Lawley, T. D. Pathogen resistance mediated by IL-22 signaling at the epithelial-microbiota interface. J. Mol. Biol. 427, 3676–3682 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Littman, D. R. & Pamer, E. G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10, 311–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Mulder, I. E. et al. Restricting microbial exposure in early life negates the immune benefits associated with gut colonization in environments of high microbial diversity. PLoS ONE 6, e28279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mulder, I. E. et al. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol. 7, 79 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abt, M. C. & Pamer, E. G. Commensal bacteria mediated defenses against pathogens. Curr. Opin. Immunol. 29, 16–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerber, G. K. The dynamic microbiome. FEBS Lett. 588, 4131–4139 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Joshi, V. et al. Smoking decreases structural and functional resilience in the subgingival ecosystem. J. Clin. Periodontol. 41, 1037–1047 (2014).

    Article  PubMed  Google Scholar 

  29. Allais, L. et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ. Microbiol. 18, 1352–1363 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Campbell, S. C. et al. The effect of diet and exercise on intestinal integrity and microbial diversity in mice. PLoS ONE 11, e0150502 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Earley, Z. M. et al. Burn injury alters the intestinal microbiome and increases gut permeability and bacterial translocation. PLoS ONE 10, e0129996 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shimizu, K. et al. Gut microbiota and environment in patients with major burns – a preliminary report. Burns 41, e28–e33 (2015).

    Article  PubMed  Google Scholar 

  34. Krishnan, P., Frew, Q., Green, A., Martin, R. & Dziewulski, P. Cause of death and correlation with autopsy findings in burns patients. Burns 39, 583–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Shimizu, K. et al. Altered gut flora are associated with septic complications and death in critically ill patients with systemic inflammatory response syndrome. Dig. Dis. Sci. 56, 1171–1177 (2011).

    Article  PubMed  Google Scholar 

  36. Shogan, B. D. et al. Intestinal anastomotic injury alters spatially defined microbiome composition and function. Microbiome 2, 35 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sommovilla, J. et al. Small bowel resection induces long-term changes in the enteric microbiota of mice. J. Gastrointest. Surg. 19, 56–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Hartman, A. L. et al. Human gut microbiome adopts an alternative state following small bowel transplantation. Proc. Natl Acad. Sci. USA 106, 17187–17192 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang, F. et al. Temporal variations of the ileal microbiota in intestinal ischemia and reperfusion. Shock 39, 96–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, F., Li, Q., Wang, C., Tang, C. & Li, J. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury. PLoS ONE 7, e42027 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, H. et al. Bifidobacteria may be beneficial to intestinal microbiota and reduction of bacterial translocation in mice following ischaemia and reperfusion injury. Br. J. Nutr. 109, 1990–1998 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Perez-Chanona, E., Mühlbauer, M. & Jobin, C. The microbiota protects against ischemia/reperfusion-induced intestinal injury through nucleotide-binding oligomerization domain-containing protein 2 (NOD2) signaling. Am. J. Pathol. 184, 2965–2975 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jalanka, J. et al. Effects of bowel cleansing on the intestinal microbiota. Gut 64, 1562–1568 (2015).

    Article  PubMed  Google Scholar 

  45. Antonopoulos, D. A. et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect. Immun. 77, 2367–2375 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ferrer, M., Martins dos Santos, V. A. P., Ott, S. J. & Moya, A. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut Microbes 5, 64–70 (2014).

    Article  PubMed  Google Scholar 

  47. Ubeda, C. & Pamer, E. G. Antibiotics, microbiota, and immune defense. Trends Immunol. 33, 459–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Güenaga, K. F., Matos, D. & Wille-Jørgensen, P. Mechanical bowel preparation for elective colorectal surgery. Cochrane Database Syst. Rev. 9, CD001544 (2011).

    Google Scholar 

  49. Nelson, R. L., Gladman, E. & Barbateskovic, M. Antimicrobial prophylaxis for colorectal surgery. Cochrane Database Syst. Rev. 5, CD001181 (2014).

    Google Scholar 

  50. Kasiraj, A. C. et al. The effects of feeding and withholding food on the canine small intestinal microbiota. FEMS Microbiol. Ecol. 92, fiw085 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, Y., Wu, C., Zhang, X., Ou, W. & Huang, P. Clinical study of different bowel preparations on changes of gut flora in patients undergoing colorectal resection [Chinese]. Zhonghua Wei Chang Wai Ke Za Zhi 15, 574–577 (2012).

    PubMed  Google Scholar 

  52. Smith, M. B. et al. Suppression of the human mucosal-related colonic microflora with prophylactic parenteral and/or oral antibiotics. World J. Surg. 14, 636–641 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Huipeng, W., Lifeng, G., Chuang, G., Jiaying, Z. & Yuankun, C. The differences in colonic mucosal microbiota between normal individual and colon cancer patients by polymerase chain reaction-denaturing gradient gel electrophoresis. J. Clin. Gastroenterol. 48, 138–144 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Lam, V. et al. Intestinal microbiota as novel biomarkers of prior radiation exposure. Radiat. Res. 177, 573–583 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, Y. S., Kim, J. & Park, S.-J. High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe 33, 1–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Montassier, E. et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment. Pharmacol. Ther. 42, 515–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tang, Y. et al. Administration of probiotic mixture DM#1 ameliorated 5-fluorouracil-induced intestinal mucositis and dysbiosis in rats. Nutrition http://dx.doi.org/10.1016/j.nut.2016.05.003 (2016).

  59. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. González-Sarrías, A., Tomé-Carneiro, J., Bellesia, A., Tomás-Barberán, F. A. & Espín, J. C. The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells. Food Funct. 6, 1460–1469 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Leslie, M. MICROBIOME. Microbes aid cancer drugs. Science 350, 614–615 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Touchefeu, Y. et al. Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment. Pharmacol. Ther. 40, 409–421 (2014).

    CAS  PubMed  Google Scholar 

  64. Gilbert, J. A. et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535, 94–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Woting, A. & Blaut, M. The intestinal microbiota in metabolic disease. Nutrients 8, 202 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Leung, V., Dufour, D. & Lévesque, C. M. Death and survival in Streptococcus mutans: differing outcomes of a quorum-sensing signaling peptide. Front. Microbiol. 6, 1176 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Patenge, N., Fiedler, T. & Kreikemeyer, B. Common regulators of virulence in streptococci. Curr. Top. Microbiol. Immunol. 368, 111–153 (2013).

    CAS  PubMed  Google Scholar 

  68. Jimenez, J. C. & Federle, M. J. Quorum sensing in group A Streptococcus. Front. Cell. Infect. Microbiol. 4, 127 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu, L. et al. Recognition of host immune activation by Pseudomonas aeruginosa. Science 309, 774–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Ojima, M. et al. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig. Dis. Sci. 61, 1628–1634 (2016).

    Article  PubMed  Google Scholar 

  71. Hayakawa, M. et al. Dramatic changes of the gut flora immediately after severe and sudden insults. Dig. Dis. Sci. 56, 2361–2365 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Alcock, J. Dangerous disappearing act: commensal gut microbiota after acute severe insults. Dig. Dis. Sci. 56, 2212–2214 (2011).

    Article  PubMed  Google Scholar 

  73. Chauv, S. et al. Risk of resistant organisms and Clostridium difficile with prolonged systemic antibiotic prophylaxis for central nervous system devices. Neurocrit. Care 25, 128–132 (2016).

    Article  PubMed  Google Scholar 

  74. Zaborin, A. et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. mBio 5, e01361-14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Okada, M., Bothin, C., Kanazawa, K. & Midtvedt, T. Experimental study of the influence of intestinal flora on the healing of intestinal anastomoses. Br. J. Surg. 86, 961–965 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Mizuta, M. et al. Perioperative supplementation with bifidobacteria improves postoperative nutritional recovery, inflammatory response, and fecal microbiota in patients undergoing colorectal surgery: a prospective, randomized clinical trial. Biosci. Microbiota Food Health 35, 77–87 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Okazaki, T. et al. Intestinal microbiota in pediatric surgical cases administered Bifidobacterium breve: a randomized controlled trial. J. Pediatr. Gastroenterol. Nutr. 63, 46–50 (2016).

    Article  PubMed  Google Scholar 

  79. Gustafsson, U. O., Oppelstrup, H., Thorell, A., Nygren, J. & Ljungqvist, O. Adherence to the ERAS protocol is associated with 5-year survival after colorectal cancer surgery: a retrospective cohort study. World J. Surg. 40, 1741–1747 (2016).

    Article  PubMed  Google Scholar 

  80. Zhuang, C.-L., Ye, X.-Z., Zhang, X.-D., Chen, B.-C. & Yu, Z. Enhanced recovery after surgery programs versus traditional care for colorectal surgery: a meta-analysis of randomized controlled trials. Dis. Colon Rectum 56, 667–678 (2013).

    Article  PubMed  Google Scholar 

  81. Gustafsson, U. O. et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. World J. Surg. 37, 259–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Tappenden, K. A. Intestinal adaptation following resection. JPEN J. Parenter. Enteral Nutr. 38, 23S–31S (2014).

    Article  PubMed  Google Scholar 

  83. Carswell, K. A. et al. The effect of bariatric surgery on intestinal absorption and transit time. Obes. Surg. 24, 796–805 (2014).

    Article  PubMed  Google Scholar 

  84. Zhang, Y.-J. et al. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci. 16, 7493–7519 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Patterson, E. et al. Gut microbiota, the pharmabiotics they produce and host health. Proc. Nutr. Soc. 73, 477–489 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Hammer, H. F. Medical complications of bariatric surgery: focus on malabsorption and dumping syndrome. Dig. Dis. 30, 182–186 (2012).

    Article  PubMed  Google Scholar 

  87. Heiman, M. L. & Greenway, F. L. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol. Metab. 5, 317–320 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gralka, E. et al. Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner. Am. J. Clin. Nutr. 102, 1313–1322 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Sakhaee, K., Poindexter, J. & Aguirre, C. The effects of bariatric surgery on bone and nephrolithiasis. Bone 84, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Gletsu-Miller, N. & Wright, B. N. Mineral malnutrition following bariatric surgery. Adv. Nutr. 4, 506–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lagoo, J., Pappas, T. N. & Perez, A. A relic or still relevant: the narrowing role for vagotomy in the treatment of peptic ulcer disease. Am. J. Surg. 207, 120–126 (2014).

    Article  PubMed  Google Scholar 

  92. Seeley, R. J., Chambers, A. P. & Sandoval, D. A. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab. 21, 369–378 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Osto, M. et al. Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine. Physiol. Behav. 119, 92–96 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Lutz, T. A. & Bueter, M. The physiology underlying Roux-en-Y gastric bypass: a status report. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1275–1291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chakravartty, S., Tassinari, D., Salerno, A., Giorgakis, E. & Rubino, F. What is the mechanism behind weight loss maintenance with gastric bypass? Curr. Obes. Rep. 4, 262–268 (2015).

    Article  PubMed  Google Scholar 

  96. Liou, A. P. et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl Med. 5, 178ra41 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Houghton, S. G., Romero, Y. & Sarr, M. G. Effect of Roux-en-Y gastric bypass in obese patients with Barrett's esophagus: attempts to eliminate duodenogastric reflux. Surg. Obes. Relat. Dis. 4, 1–5 (2008).

    Article  PubMed  Google Scholar 

  98. Naik, R. D., Choksi, Y. A. & Vaezi, M. F. Consequences of bariatric surgery on oesophageal function in health and disease. Nat. Rev. Gastroenterol. Hepatol. 13, 111–119 (2016).

    Article  PubMed  Google Scholar 

  99. Csendes, A., Burgos, A. M., Smok, G., Burdiles, P. & Henriquez, A. Effect of gastric bypass on Barrett's esophagus and intestinal metaplasia of the cardia in patients with morbid obesity. J. Gastrointest. Surg. 10, 259–264 (2006).

    Article  PubMed  Google Scholar 

  100. Amir, I., Konikoff, F. M., Oppenheim, M., Gophna, U. & Half, E. E. Gastric microbiota is altered in oesophagitis and Barrett's oesophagus and further modified by proton pump inhibitors. Environ. Microbiol. 16, 2905–2914 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Yang, L., Chaudhary, N., Baghdadi, J. & Pei, Z. Microbiome in reflux disorders and esophageal adenocarcinoma. Cancer J. 20, 207–210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Snider, E. J., Freedberg, D. E. & Abrams, J. A. Potential role of the microbiome in Barrett's esophagus and esophageal adenocarcinoma. Dig. Dis. Sci. 61, 2217–2225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Baghdadi, J., Chaudhary, N., Pei, Z. & Yang, L. Microbiome, innate immunity, and esophageal adenocarcinoma. Clin. Lab. Med. 34, 721–732 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Di Pilato, V. et al. The esophageal microbiota in health and disease. Ann. NY Acad. Sci. http://dx.doi.org/10.1111/nyas.13127 (2016).

  105. Neto, A. G., Whitaker, A. & Pei, Z. Microbiome and potential targets for chemoprevention of esophageal adenocarcinoma. Semin. Oncol. 43, 86–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Jones, M. L., Martoni, C. J., Ganopolsky, J. G., Labbé, A. & Prakash, S. The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention. Expert Opin. Biol. Ther. 14, 467–482 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Miyachi, T. et al. Biliopancreatic limb plays an important role in metabolic improvement after duodenal-jejunal bypass in a rat model of diabetes. Surgery http://dx.doi.org/10.1016/j.surg.2015.11.027 (2016).

  108. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Flynn, C. R. et al. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat. Commun. 6, 7715 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Billeter, A. T. et al. Risk of malnutrition, trace metal, and vitamin deficiency post Roux-en-Y gastric bypass — a prospective study of 20 patients with BMI <35 kg/m2. Obes. Surg. 25, 2125–2134 (2015).

    Article  PubMed  Google Scholar 

  111. Bland, C. M. et al. Long-term pharmacotherapy considerations in the bariatric surgery patient. Am. J. Health-Syst. Pharm. 73, 1230–1242 (2016).

    Article  PubMed  Google Scholar 

  112. Distrutti, E., Monaldi, L., Ricci, P. & Fiorucci, S. Gut microbiota role in irritable bowel syndrome: new therapeutic strategies. World J. Gastroenterol. 22, 2219–2241 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Husebye, E., Hellström, P. M. & Midtvedt, T. Intestinal microflora stimulates myoelectric activity of rat small intestine by promoting cyclic initiation and aboral propagation of migrating myoelectric complex. Dig. Dis. Sci. 39, 946–956 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Tan, C. K. et al. Pre-surgical administration of microbial cell preparation in colorectal cancer patients: a randomized controlled trial. World J. Surg. http://dx.doi.org/10.1007/s00268-016-3499-9 (2016).

  115. Sjöström, L. et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 10, 653–662 (2009).

    Article  PubMed  Google Scholar 

  116. Maestro, A., Rigla, M. & Caixàs, A. Does bariatric surgery reduce cancer risk? A review of the literature. Endocrinol. Nutr. 62, 138–143 (2015).

    Article  PubMed  Google Scholar 

  117. Derogar, M. et al. Increased risk of colorectal cancer after obesity surgery. Ann. Surg. 258, 983–988 (2013).

    Article  PubMed  Google Scholar 

  118. Sweeney, T. E. & Morton, J. M. Metabolic surgery: action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Best Pract. Res. Clin. Gastroenterol. 28, 727–740 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Penney, N. C., Kinross, J., Newton, R. C. & Purkayastha, S. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. Int. J. Obes. 39, 1565–1574 (2015).

    Article  CAS  Google Scholar 

  120. Kant, P. et al. Mucosal biomarkers of colorectal cancer risk do not increase at 6 months following sleeve gastrectomy, unlike gastric bypass. Obesity (Silver Spring) 22, 202–210 (2014).

    Article  CAS  Google Scholar 

  121. Sheflin, A. M., Whitney, A. K. & Weir, T. L. Cancer-promoting effects of microbial dysbiosis. Curr. Oncol. Rep. 16, 406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vogtmann, E. & Goedert, J. J. Epidemiologic studies of the human microbiome and cancer. Br. J. Cancer 114, 237–242 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shogan, B. D., Carlisle, E. M., Alverdy, J. C. & Umanskiy, K. Do we really know why colorectal anastomoses leak? J. Gastrointest. Surg. 17, 1698–1707 (2013).

    Article  PubMed  Google Scholar 

  124. Shogan, B. D. et al. Proceedings of the first international summit on intestinal anastomotic leak, Chicago, Illinois, October 4–5, 2012. Surg. Infect. 15, 479–489 (2014).

    Article  Google Scholar 

  125. Caulfield, H. & Hyman, N. H. Anastomotic leak after low anterior resection: a spectrum of clinical entities. JAMA Surg. 148, 177–182 (2013).

    Article  PubMed  Google Scholar 

  126. Degett, T. H., Andersen, H. S. & Gögenur, I. Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. Langenbecks Arch. Surg. http://dx.doi.org/10.1007/s00423-016-1400-9 (2016).

  127. Cohn, I. & Rives, J. D. Antibiotic protection of colon anastomoses. Ann. Surg. 141, 707–717 (1955).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Fry, D. E. Antimicrobial bowel preparation for elective colon surgery. Surg. Infect. 17, 269–274 (2016).

    Article  Google Scholar 

  129. Schardey, H. M. et al. Bacteria: a major pathogenic factor for anastomotic insufficiency. Antimicrob. Agents Chemother. 38, 2564–2567 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Olivas, A. D. et al. Intestinal tissues induce an SNP mutation in Pseudomonas aeruginosa that enhances its virulence: possible role in anastomotic leak. PLoS ONE 7, e44326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Seal, J. B., Morowitz, M., Zaborina, O., An, G. & Alverdy, J. C. The molecular Koch's postulates and surgical infection: a view forward. Surgery 147, 757–765 (2010).

    Article  PubMed  Google Scholar 

  132. Shogan, B. D. et al. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Sci. Transl Med. 7, 286ra68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Siegel, R., DeSantis, C. & Jemal, A. Colorectal cancer statistics, 2014. Cancer J. Clin. 64, 104–117 (2014).

    Article  Google Scholar 

  134. Wiegering, A. et al. Improved survival of patients with colon cancer detected by screening colonoscopy. Int. J. Colorectal Dis. http://dx.doi.org/10.1007/s00384-015-2501-6 (2016).

  135. Rex, D. K. Optimal bowel preparation—a practical guide for clinicians. Nat. Rev. Gastroenterol. Hepatol. 11, 419–425 (2014).

    Article  PubMed  Google Scholar 

  136. O'Brien, C. L., Allison, G. E., Grimpen, F. & Pavli, P. Impact of colonoscopy bowel preparation on intestinal microbiota. PLoS ONE 8, e62815 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Francino, M. P. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front. Microbiol. 6, 1543 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Becattini, S., Taur, Y. & Pamer, E. G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 22, 458–478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Woodard, G. A. et al. Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: a prospective randomized trial. J. Gastrointest. Surg. 13, 1198–1204 (2009).

    Article  PubMed  Google Scholar 

  140. Canales, B. K. & Gonzalez, R. D. Kidney stone risk following Roux-en-Y gastric bypass surgery. Transl Androl. Urol. 3, 242–249 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. Chen, J.-C., Lee, W.-J., Tsou, J.-J., Liu, T.-P. & Tsai, P.-L. Effect of probiotics on postoperative quality of gastric bypass surgeries: a prospective randomized trial. Surg. Obes. Relat. Dis. 12, 57–61 (2016).

    Article  PubMed  Google Scholar 

  142. Liu, Z.-H. et al. The effects of perioperative probiotic treatment on serum zonulin concentration and subsequent postoperative infectious complications after colorectal cancer surgery: a double-center and double-blind randomized clinical trial. Am. J. Clin. Nutr. 97, 117–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Theodoropoulos, G. E. et al. Synbiotics and gastrointestinal function-related quality of life after elective colorectal cancer resection. Ann. Gastroenterol. 29, 56–62 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Kotzampassi, K. et al. A four-probiotics regimen reduces postoperative complications after colorectal surgery: a randomized, double-blind, placebo-controlled study. World J. Surg. 39, 2776–2783 (2015).

    Article  PubMed  Google Scholar 

  145. Kiran, R. P., Murray, A. C. A., Chiuzan, C., Estrada, D. & Forde, K. Combined preoperative mechanical bowel preparation with oral antibiotics significantly reduces surgical site infection, anastomotic leak, and ileus after colorectal surgery. Ann. Surg. 262, 416–425 (2015).

    Article  PubMed  Google Scholar 

  146. Sadahiro, S. et al. Comparison between oral antibiotics and probiotics as bowel preparation for elective colon cancer surgery to prevent infection: prospective randomized trial. Surgery 155, 493–503 (2014).

    Article  PubMed  Google Scholar 

  147. Morris, M. S., Graham, L. A., Chu, D. I., Cannon, J. A. & Hawn, M. T. Oral antibiotic bowel preparation significantly reduces surgical site infection rates and readmission rates in elective colorectal surgery. Ann. Surg. 261, 1034–1040 (2015).

    Article  PubMed  Google Scholar 

  148. Scarborough, J. E., Mantyh, C. R., Sun, Z. & Migaly, J. Combined mechanical and oral antibiotic bowel preparation reduces incisional surgical site infection and anastomotic leak rates after elective colorectal resection: an analysis of colectomy-targeted ACS NSQIP. Ann. Surg. 262, 331–337 (2015).

    Article  PubMed  Google Scholar 

  149. Jung, B. et al. Mechanical bowel preparation does not affect the intramucosal bacterial colony count. Int. J. Colorectal Dis. 25, 439–442 (2010).

    Article  PubMed  Google Scholar 

  150. Bucher, P., Gervaz, P., Egger, J.-F., Soravia, C. & Morel, P. Morphologic alterations associated with mechanical bowel preparation before elective colorectal surgery: a randomized trial. Dis. Colon Rectum 49, 109–112 (2006).

    Article  PubMed  Google Scholar 

  151. Valuckaite, V. et al. High molecular weight polyethylene glycol (PEG 15–20) maintains mucosal microbial barrier function during intestinal graft preservation. J. Surg. Res. 183, 869–875 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zaborin, A. et al. Phosphate-containing polyethylene glycol polymers prevent lethal sepsis by multidrug-resistant pathogens. Antimicrob. Agents Chemother. 58, 966–977 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to John C. Alverdy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guyton, K., Alverdy, J. The gut microbiota and gastrointestinal surgery. Nat Rev Gastroenterol Hepatol 14, 43–54 (2017). https://doi.org/10.1038/nrgastro.2016.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2016.139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing