Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coeliac disease and gluten-related disorders in childhood

Key Points

  • The fundamental step in diagnosing coeliac disease is awareness of symptom diversity; anti-transglutaminase antibodies are very specific for the diagnosis and, in children, duodenal biopsies can sometimes be omitted

  • Prospective studies show that coeliac disease manifests at a young age, more often in girls, and is related to the HLA genotype, but not the timing of gluten introduction or breastfeeding

  • Wheat allergy is one of the most common food allergies in children beginning in early childhood; it is less common in adolescents and adults; most children outgrow wheat allergy by 12 years

  • Noncoeliac gluten sensitivity is a clinical condition in which symptoms are triggered by gluten ingestion in the absence of coeliac disease and wheat allergy

  • No biological markers exist for noncoeliac gluten sensitivity, exclusion of coeliac disease and of wheat allergy is the most important diagnostic step

  • Once a gluten-related disorder is diagnosed, children should be referred to a paediatric dietitian for in-depth guidance about the necessary dietary treatment

Abstract

Gluten-related disorders such as coeliac disease, wheat allergy and noncoeliac gluten sensitivity are increasingly being diagnosed in children. Coeliac disease occurs frequently, affecting 1–3% of the Western population. The condition manifests at a very young age, more so in girls, and is related to the HLA genotype. Coeliac disease might be considered a public health problem and, as primary prevention is not possible, the debate on mass screening should be reopened. Wheat proteins, including gluten, are responsible for one of the most common food allergies in children: wheat allergy. Unlike coeliac disease and wheat allergy, noncoeliac gluten sensitivity is an unclear and controversial entity. These three gluten-related disorders are treated with a gluten-free diet. In coeliac disease, the diet should be strictly followed, whereas wheat allergy only requires wheat elimination and in noncoeliac gluten sensitivity occasional trials of gluten reintroduction can be done. A good diagnostic work-up is important for gluten-related disorders in childhood to avoid unnecessary restrictive diets in children. In this Review, we provide an overview of the pathogenesis, diagnosis and management of the most common gluten-related disorders in children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow-chart of the diagnostic process in a child with a suspected gluten-related disorder.
Figure 2: Schematic representation of the immune response to gluten peptides in the small bowel mucosa of patients with coeliac disease.
Figure 3: ESPGHAN algorithm for the diagnosis of coeliac disease in children and adolescents with symptoms.
Figure 4: ESPGHAN algorithm for the diagnosis of coeliac disease in asymptomatic children and adolescents with a genetic risk of coeliac disease.

Similar content being viewed by others

References

  1. Meijer, C. R., Shamir, R. & Mearin, M. L. Coeliac disease and gluten sensitivity. J. Pediatr. Gastroenterol. Nutr. 60, 429–432 (2015).

    CAS  PubMed  Google Scholar 

  2. Husby, S. et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 54, 136–160 (2012).

    CAS  PubMed  Google Scholar 

  3. Myleus, A. et al. Celiac disease revealed in 3% of Swedish 12-year-olds born during an epidemic. J. Pediatr. Gastroenterol. Nutr. 49, 170–176 (2009).

    PubMed  Google Scholar 

  4. Catassi, C., Gatti, S. & Fasano, A. The new epidemiology of celiac disease. J. Pediatr. Gastroenterol. Nutr. 59 (Suppl. 1), S7–S9 (2014).

    PubMed  Google Scholar 

  5. Gandolfi, L. et al. Prevalence of celiac disease among blood donors in Brazil. Am. J. Gastroenterol. 95, 689–692 (2000).

    CAS  PubMed  Google Scholar 

  6. Gomez, J. C. et al. Prevalence of celiac disease in Argentina: screening of an adult population in the La Plata area. Am. J. Gastroenterol. 96, 2700–2704 (2001).

    CAS  PubMed  Google Scholar 

  7. Barada, K., Bitar, A., Mokadem, M. A., Hashash, J. G. & Green, P. Celiac disease in Middle Eastern and North African countries: a new burden? World J. Gastroenterol. 16, 1449–1457 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Masjedizadeh, R. et al. Celiac disease in South-West of Iran. World J. Gastroenterol. 12, 4416–4419 (2006).

    PubMed  PubMed Central  Google Scholar 

  9. Yuan, J. et al. The tip of the “celiac iceberg” in China: a systematic review and meta-analysis. PLoS ONE 8, e81151 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. Byass, P., Kahn, K. & Ivarsson, A. The global burden of childhood coeliac disease: a neglected component of diarrhoeal mortality? PLoS ONE 6, e22774 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fasano, A. et al. Federation of International Societies of Pediatric Gastroenterology, Hepatology, and Nutrition consensus report on celiac disease. J. Pediatr. Gastroenterol. Nutr. 47, 214–219 (2008).

    CAS  PubMed  Google Scholar 

  12. Rubio-Tapia, A. et al. Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology 137, 88–93 (2009).

    PubMed  PubMed Central  Google Scholar 

  13. Catassi, C. et al. Detection of Celiac disease in primary care: a multicenter case-finding study in North America. Am. J. Gastroenterol. 102, 1454–1460 (2007).

    PubMed  Google Scholar 

  14. Csizmadia, C. G., Mearin, M. L., von Blomberg, B. M., Brand, R. & Verloove-Vanhorick, S. P. An iceberg of childhood coeliac disease in the Netherlands. Lancet 353, 813–814 (1999).

    CAS  PubMed  Google Scholar 

  15. Sandstrom, O. et al. Transglutaminase IgA antibodies in a celiac disease mass screening and the role of HLA-DQ genotyping and endomysial antibodies in sequential testing. J. Pediatr. Gastroenterol. Nutr. 57, 472–476 (2013).

    PubMed  Google Scholar 

  16. Steens, R. F. et al. A national prospective study on childhood celiac disease in the Netherlands 1993–2000: an increasing recognition and a changing clinical picture. J. Pediatr. 147, 239–243 (2005).

    PubMed  Google Scholar 

  17. Vriezinga, S. L. et al. Randomized feeding intervention in infants at high risk for celiac disease. N. Engl. J. Med. 371, 1304–1315 (2014).

    CAS  PubMed  Google Scholar 

  18. Lundin, K. E. et al. Gliadin-specific, HLA-DQ(α 1*0501, β 1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J. Exp. Med. 178, 187–196 (1993).

    CAS  PubMed  Google Scholar 

  19. Anderson, R. P., Degano, P., Godkin, A. J., Jewell, D. P. & Hill, A. V. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat. Med. 6, 337–342 (2000).

    CAS  PubMed  Google Scholar 

  20. Arentz-Hansen, H. et al. The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J. Exp. Med. 191, 603–612 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shan, L. et al. Structural basis for gluten intolerance in celiac sprue. Science 297, 2275–2279 (2002).

    CAS  PubMed  Google Scholar 

  22. Sjostrom, H. et al. Identification of a gliadin T-cell epitope in coeliac disease: general importance of gliadin deamidation for intestinal T-cell recognition. Scand. J. Immunol. 48, 111–115 (1998).

    CAS  PubMed  Google Scholar 

  23. Tye-Din, J. A. et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci. Transl. Med. 2, 41ra51 (2010).

    PubMed  Google Scholar 

  24. Vader, L. W. et al. Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology 125, 1105–1113 (2003).

    CAS  PubMed  Google Scholar 

  25. Vader, W. et al. The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 122, 1729–1737 (2002).

    CAS  PubMed  Google Scholar 

  26. van de Wal, Y. et al. Small intestinal T cells of celiac disease patients recognize a natural pepsin fragment of gliadin. Proc. Natl. Acad. Sci. USA 95, 10050–10054 (1998).

    CAS  PubMed  Google Scholar 

  27. van de Wal, Y. et al. Glutenin is involved in the gluten-driven mucosal T cell response. Eur. J. Immunol. 29, 3133–3139 (1999).

    CAS  PubMed  Google Scholar 

  28. Molberg, O. et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med. 4, 713–717 (1998).

    CAS  PubMed  Google Scholar 

  29. Vader, L. W. et al. Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J. Exp. Med. 195, 643–649 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. van de Wal, Y. et al. Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J. Immunol. 161, 1585–1588 (1998).

    CAS  PubMed  Google Scholar 

  31. Mearin, M. L. et al. HLA-DR phenotypes in Spanish coeliac children: their contribution to the understanding of the genetics of the disease. Gut 24, 532–537 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vader, W. et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc. Natl. Acad. Sci. USA 100, 12390–12395 (2003).

    CAS  PubMed  Google Scholar 

  33. Vermeulen, B. A. et al. Phenotypic variance in childhood coeliac disease and the HLA-DQ/DR dose effect. Scand. J. Gastroenterol. 44, 40–45 (2009).

    CAS  PubMed  Google Scholar 

  34. Tjon, J. M., van, B. J. & Koning, F. Celiac disease: how complicated can it get? Immunogenetics 62, 641–651 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. van, Bergen, J., Mulder, C. J., Mearin, M. L. & Koning, F. Local communication among mucosal immune cells in patients with celiac disease. Gastroenterology 148, 1187–1194 (2015).

    CAS  Google Scholar 

  36. Abadie, V., Sollid, L. M., Barreiro, L. B. & Jabri, B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu. Rev. Immunol. 29, 493–525 (2011).

    CAS  PubMed  Google Scholar 

  37. Jarvinen, T. T. et al. Villous tip intraepithelial lymphocytes as markers of early-stage coeliac disease. Scand. J. Gastroenterol. 39, 428–433 (2004).

    CAS  PubMed  Google Scholar 

  38. Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366 (2004).

    CAS  PubMed  Google Scholar 

  39. Hue, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–377 (2004).

    PubMed  Google Scholar 

  40. Kutlu, T. et al. Numbers of T cell receptor (TCR) αβ+ but not TcR γδ+ intraepithelial lymphocytes correlate with the grade of villous atrophy in coeliac patients on a long term normal diet. Gut 34, 208–214 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmitz, F. et al. Identification of a potential physiological precursor of aberrant cells in refractory coeliac disease type II. Gut 62, 509–519 (2013).

    CAS  PubMed  Google Scholar 

  42. Ludvigsson, J. F. & Green, P. H. The missing environmental factor in celiac disease. N. Engl. J. Med. 371, 1341–1343 (2014).

    PubMed  Google Scholar 

  43. Olivares, M. et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut 64, 406–417 (2015).

    CAS  PubMed  Google Scholar 

  44. Guandalini, S. & Assiri, A. Celiac disease: a review. JAMA Pediatr. 168, 272–278 (2014).

    PubMed  Google Scholar 

  45. Giersiepen, K. et al. Accuracy of diagnostic antibody tests for coeliac disease in children: summary of an evidence report. J. Pediatr. Gastroenterol. Nutr. 54, 229–241 (2012).

    CAS  PubMed  Google Scholar 

  46. Green, P. H. & Jabri, B. Coeliac disease. Lancet 362, 383–391 (2003).

    CAS  PubMed  Google Scholar 

  47. Hadithi, M. et al. Accuracy of serologic tests and HLA-DQ typing for diagnosing celiac disease. Ann. Intern. Med. 147, 294–302 (2007).

    PubMed  Google Scholar 

  48. Wessels, M. M. et al. Impact on parents of HLA-DQ2/DQ8 genotyping in healthy children from coeliac families. Eur. J. Hum. Genet. 23, 405–408 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Marsh, M. N. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity ('celiac sprue'). Gastroenterology 102, 330–354 (1992).

    CAS  PubMed  Google Scholar 

  50. Oberhuber, G., Granditsch, G. & Vogelsang, H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur. J. Gastroenterol. Hepatol. 11, 1185–1194 (1999).

    CAS  PubMed  Google Scholar 

  51. Aronsson, C. A. et al. Age at gluten introduction and risk of celiac disease. Pediatrics 135, 239–245 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Werkstetter, K. ProCeDE: Prospective Celiac Disease Diagnostic Evaluation [online], (2015).

    Google Scholar 

  53. Kolsteren, M. M., Koopman, H. M., Schalekamp, G. & Mearin, M. L. Health-related quality of life in children with celiac disease. J. Pediatr. 138, 593–595 (2001).

    CAS  PubMed  Google Scholar 

  54. van Doorn, R. K., Winkler, L. M., Zwinderman, K. H., Mearin, M. L. & Koopman, H. M. CDDUX: a disease-specific health-related quality-of-life questionnaire for children with celiac disease. J. Pediatr. Gastroenterol. Nutr. 47, 147–152 (2008).

    PubMed  Google Scholar 

  55. Mariani, P. et al. The gluten-free diet: a nutritional risk factor for adolescents with celiac disease? J. Pediatr. Gastroenterol. Nutr. 27, 519–523 (1998).

    CAS  PubMed  Google Scholar 

  56. Hopman, E. G., le Cessie, S., von Blomberg, B. M. & Mearin, M. L. Nutritional management of the gluten-free diet in young people with celiac disease in The Netherlands. J. Pediatr. Gastroenterol. Nutr. 43, 102–108 (2006).

    CAS  PubMed  Google Scholar 

  57. Ohlund, K., Olsson, C., Hernell, O. & Ohlund, I. Dietary shortcomings in children on a gluten-free diet. J. Hum. Nutr. Diet. 23, 294–300 (2010).

    CAS  PubMed  Google Scholar 

  58. Alvarez-Jubete, L., Arendt, E. K. & Gallagher, E. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int. J. Food Sci. Nutr. 60 (Suppl. 4), 240–257 (2009).

    CAS  PubMed  Google Scholar 

  59. do Nascimento, A. B., Fiates, G. M., Dos, A. A. & Teixeira, E. Analysis of ingredient lists of commercially available gluten-free and gluten-containing food products using the text mining technique. Int. J. Food Sci. Nutr. 64, 217–222 (2013).

    PubMed  Google Scholar 

  60. Sjoberg, V. et al. Noncontaminated dietary oats may hamper normalization of the intestinal immune status in childhood celiac disease. Clin. Transl. Gastroenterol. 5, e58 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Hogen Esch, C. E. et al. Specific celiac disease antibodies in children on a gluten-free diet. Pediatrics 128, 547–552 (2011).

    PubMed  Google Scholar 

  62. James, S. P. National Institutes of Health Consensus Development Conference Statement on Celiac Disease, June 28–30, 2004. Gastroenterology 128 (Suppl. 1), S1–S9 (2005).

    Google Scholar 

  63. Nederlandse Vereniging van Maag-Darm-Leverartsen. Richtlijn Coeliakie en Dermatitis Herpetiformis Richtlijn Coeliakie en Dermatitis Herpetiformis. Haarlem: Nederlandse Vereniging voor Maag-Darm-Leverartsen [online], (2008).

  64. Hill, I. D. et al. Guideline for the diagnosis and treatment of celiac disease in children: recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 40, 1–19 (2005).

    PubMed  Google Scholar 

  65. Murch, S. et al. Joint BSPGHAN and Coeliac UK guidelines for the diagnosis and management of coeliac disease in children. Arch. Dis. Child 98, 806–811 (2013).

    PubMed  Google Scholar 

  66. Freeman, H. J. Non-dietary forms of treatment for adult celiac disease. World J. Gastrointest. Pharmacol. Ther. 4, 108–112 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Mitea, C. et al. Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: implications for coeliac disease. Gut 57, 25–32 (2008).

    CAS  PubMed  Google Scholar 

  68. Siegel, M. et al. Safety, tolerability, and activity of ALV003: results from two phase 1 single, escalating-dose clinical trials. Dig. Dis. Sci. 57, 440–450 (2012).

    CAS  PubMed  Google Scholar 

  69. Kapoerchan, V. V. et al. Design, synthesis and evaluation of high-affinity binders for the celiac disease associated HLA-DQ2 molecule. Mol. Immunol. 47, 1091–1097 (2010).

    CAS  PubMed  Google Scholar 

  70. Xia, J. et al. Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Bioorg. Med. Chem. 15, 6565–6573 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Klock, C., Herrera, Z., Albertelli, M. & Khosla, C. Discovery of potent and specific dihydroisoxazole inhibitors of human transglutaminase 2. J. Med. Chem. 57, 9042–9064 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Keech, C. L., Dromey, J. A., Chen, Z., Anderson, R. P. & McCluskey, J. Immune tolerance induced by peptide immunotherapy in an HLA Dq2-dependent mouse model of gluten immunity [abstract 355]. Gastroenterology 136, A57 (2009).

    Google Scholar 

  73. Kelly, C. P. et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment. Pharmacol. Ther. 37, 252–262 (2013).

    CAS  PubMed  Google Scholar 

  74. Ivarsson, A. et al. Epidemic of coeliac disease in Swedish children. Acta Paediatr. 89, 165–171 (2000).

    CAS  PubMed  Google Scholar 

  75. Norris, J. M. et al. Risk of celiac disease autoimmunity and timing of gluten introduction in the diet of infants at increased risk of disease. JAMA 293, 2343–2351 (2005).

    CAS  PubMed  Google Scholar 

  76. Agostoni, C. et al. Complementary feeding: a commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 46, 99–110 (2008).

    PubMed  Google Scholar 

  77. Akobeng, A. K., Ramanan, A. V., Buchan, I. & Heller, R. F. Effect of breast feeding on risk of coeliac disease: a systematic review and meta-analysis of observational studies. Arch. Dis. Child 91, 39–43 (2006).

    CAS  PubMed  Google Scholar 

  78. Jansen, M. A. et al. Infant feeding and anti-tissue transglutaminase antibody concentrations in the Generation R Study. Am. J. Clin. Nutr. 100, 1095–1101 (2014).

    CAS  PubMed  Google Scholar 

  79. Lionetti, E. et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N. Engl. J. Med. 371, 1295–1303 (2014).

    PubMed  Google Scholar 

  80. Szajewska, H. et al. Systematic review with meta-analysis: early infant feeding and coeliac disease—update 2015. Aliment. Pharmacol. Ther. 41, 1038–1054 (2015).

    CAS  PubMed  Google Scholar 

  81. Ivarsson, A. et al. Prevalence of childhood celiac disease and changes in infant feeding. Pediatrics 131, e687–e694 (2013).

    PubMed  Google Scholar 

  82. Rosen, A. et al. Usefulness of symptoms to screen for celiac disease. Pediatrics 133, 211–218 (2014).

    PubMed  Google Scholar 

  83. Mearin, M. L., Ivarsson, A. & Dickey, W. Coeliac disease: is it time for mass screening? Best. Pract. Res. Clin. Gastroenterol. 19, 441–452 (2005).

    PubMed  Google Scholar 

  84. van Koppen, E. J. et al. Long-term health and quality-of-life consequences of mass screening for childhood celiac disease: a 10-year follow-up study. Pediatrics 123, e582–e588 (2009).

    PubMed  Google Scholar 

  85. Kiefte-de Jong, J. C. et al. Levels of antibodies against tissue transglutaminase during pregnancy are associated with reduced fetal weight and birth weight. Gastroenterology 144, 726–735 (2013).

    CAS  PubMed  Google Scholar 

  86. Kurppa, K. et al. Benefits of a gluten-free diet for asymptomatic patients with serologic markers of celiac disease. Gastroenterology 147, 610–617 (2014).

    CAS  PubMed  Google Scholar 

  87. Catassi, C. & Fasano, A. Coeliac disease. The debate on coeliac disease screening—are we there yet? Nat. Rev. Gastroenterol. Hepatol. 11, 457–458 (2014).

    PubMed  Google Scholar 

  88. Inomata, N. Wheat allergy. Curr. Opin. Allergy Clin. Immunol. 9, 238–243 (2009).

    CAS  PubMed  Google Scholar 

  89. Johansson, S. G. et al. Revised nomenclature for allergy for global use: report of the nomenclature review committee of the World Allergy Organization, October 2003. J. Allergy Clin. Immunol. 113, 832–836 (2004).

    CAS  PubMed  Google Scholar 

  90. Benhamou, A. H., Vanini, G., Lantin, J. P. & Eigenmann, P. A. Antihistamine and sodium cromoglycate medication for food cold water exercise-induced anaphylaxis. Allergy 62, 1471–1472 (2007).

    CAS  PubMed  Google Scholar 

  91. Mulder, C. J., van Wanrooij, R. L., Bakker, S. F., Wierdsma, N. & Bouma, G. Gluten-free diet in gluten-related disorders. Dig. Dis. 31, 57–62 (2013).

    PubMed  Google Scholar 

  92. Nwaru, B. I. et al. Prevalence of common food allergies in Europe: a systematic review and meta-analysis. Allergy 69, 992–1007 (2014).

    CAS  PubMed  Google Scholar 

  93. Zuidmeer, L. et al. The prevalence of plant food allergies: a systematic review. J. Allergy Clin. Immunol. 121, 1210–1218 (2008).

    CAS  PubMed  Google Scholar 

  94. Zeiger, R. S. & Heller, S. The development and prediction of atopy in high-risk children: follow-up at age seven years in a prospective randomized study of combined maternal and infant food allergen avoidance. J. Allergy Clin. Immunol. 95, 1179–1190 (1995).

    CAS  PubMed  Google Scholar 

  95. Poole, J. A. et al. Timing of initial exposure to cereal grains and the risk of wheat allergy. Pediatrics 117, 2175–2182 (2006).

    PubMed  Google Scholar 

  96. Droste, J. H. et al. Does the use of antibiotics in early childhood increase the risk of asthma and allergic disease? Clin. Exp. Allergy 30, 1547–1553 (2000).

    CAS  PubMed  Google Scholar 

  97. Husain, Z. & Schwartz, R. A. Food allergy update: more than a peanut of a problem. Int. J. Dermatol. 52, 286–294 (2013).

    CAS  PubMed  Google Scholar 

  98. Makela, M. J. et al. Wheat allergy in children—new tools for diagnostics. Clin. Exp. Allergy 44, 1420–1430 (2014).

    CAS  PubMed  Google Scholar 

  99. Leonard, M. M. & Vasagar, B. US perspective on gluten-related diseases. Clin. Exp. Gastroenterol. 7, 25–37 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Jones, S. M., Magnolfi, C. F., Cooke, S. K. & Sampson, H. A. Immunologic cross-reactivity among cereal grains and grasses in children with food hypersensitivity. J. Allergy Clin. Immunol. 96, 341–351 (1995).

    CAS  PubMed  Google Scholar 

  101. Hischenhuber, C. et al. Review article: safe amounts of gluten for patients with wheat allergy or coeliac disease. Aliment. Pharmacol. Ther. 23, 559–575 (2006).

    CAS  PubMed  Google Scholar 

  102. Yang, H., Xiao, Y. Z., Luo, X. Y., Tan, Q. & Wang, H. Diagnostic accuracy of atopy patch tests for food allergy in children with atopic dermatitis aged less than two years. Allergol. Immunopathol. (Madr.) 42, 22–28 (2014).

    CAS  Google Scholar 

  103. Soares-Weiser, K. et al. The diagnosis of food allergy: a systematic review and meta-analysis. Allergy 69, 76–86 (2014).

    CAS  PubMed  Google Scholar 

  104. Matsukura, S. et al. Two cases of wheat-dependent anaphylaxis induced by aspirin administration but not by exercise. Clin. Exp. Dermatol. 35, 233–237 (2010).

    CAS  PubMed  Google Scholar 

  105. Keet, C. A. et al. The natural history of wheat allergy. Ann. Allergy Asthma Immunol. 102, 410–415 (2009).

    CAS  PubMed  Google Scholar 

  106. Sapone, A. et al. Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med. 10, 13 (2012).

    PubMed  PubMed Central  Google Scholar 

  107. Biesiekierski, J. R. et al. Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial. Am. J. Gastroenterol. 106, 508–514 (2011).

    CAS  PubMed  Google Scholar 

  108. Catassi, C. et al. Non-Celiac Gluten sensitivity: the new frontier of gluten related disorders. Nutrients. 5, 3839–3853 (2013).

    PubMed  PubMed Central  Google Scholar 

  109. Francavilla, R. et al. Clinical, serologic, and histologic features of gluten sensitivity in children. J. Pediatr. 164, 463–467 (2014).

    PubMed  Google Scholar 

  110. Batista, I. C. et al. Autism spectrum disorder and celiac disease: no evidence for a link. Arq Neuropsiquiatr. 70, 28–33 (2012).

    PubMed  Google Scholar 

  111. Whiteley, P. et al. The ScanBrit randomised, controlled, single-blind study of a gluten- and casein-free dietary intervention for children with autism spectrum disorders. Nutr. Neurosci. 13, 87–100 (2010).

    CAS  PubMed  Google Scholar 

  112. Sapone, A. et al. Differential mucosal IL-17 expression in two gliadin-induced disorders: gluten sensitivity and the autoimmune enteropathy celiac disease. Int. Arch. Allergy Immunol. 152, 75–80 (2010).

    CAS  PubMed  Google Scholar 

  113. Volta, U., Bardella, M. T., Calabro, A., Troncone, R. & Corazza, G. R. An Italian prospective multicenter survey on patients suspected of having non-celiac gluten sensitivity. BMC Med. 12, 85 (2014).

    PubMed  PubMed Central  Google Scholar 

  114. Sapone, A. et al. Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity. BMC Med. 9, 23 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Vazquez-Roque, M. I. et al. A controlled trial of gluten-free diet in patients with irritable bowel syndrome-diarrhea: effects on bowel frequency and intestinal function. Gastroenterology 144, 903–911 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Junker, Y. et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J. Exp. Med. 209, 2395–2408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Volta, U. & De, G. R. New understanding of gluten sensitivity. Nat. Rev. Gastroenterol. Hepatol. 9, 295–299 (2012).

    CAS  PubMed  Google Scholar 

  118. Lundin, K. E. & Alaedini, A. Non-celiac gluten sensitivity. Gastrointest. Endosc. Clin. N. Am. 22, 723–734 (2012).

    PubMed  Google Scholar 

  119. Ahrens, B., Niggemann, B., Wahn, U. & Beyer, K. Positive reactions to placebo in children undergoing double-blind, placebo-controlled food challenge. Clin. Exp. Allergy 44, 572–578 (2014).

    CAS  PubMed  Google Scholar 

  120. Biesiekierski, J. R., Newnham, E. D., Shepherd, S. J., Muir, J. G. & Gibson, P. R. Characterization of adults with a self-diagnosis of nonceliac gluten sensitivity. Nutr. Clin. Pract. 29, 504–509 (2014).

    PubMed  Google Scholar 

  121. Peters, S. L., Biesiekierski, J. R., Yelland, G. W., Muir, J. G. & Gibson, P. R. Randomised clinical trial: gluten may cause depression in subjects with non-coeliac gluten sensitivity—an exploratory clinical study. Aliment. Pharmacol. Ther. 39, 1104–1112 (2014).

    CAS  PubMed  Google Scholar 

  122. Biesiekierski, J. R. et al. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology 145, 320–328 (2013).

    CAS  PubMed  Google Scholar 

  123. Millward, C., Ferriter, M., Calver, S. & Connell-Jones, G. Gluten- and casein-free diets for autistic spectrum disorder. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD003498 http://dx.doi.org/10.1002/14651858.CD003498.pub3 (2008).

Download references

Acknowledgements

We thank Dr D. Amado, visiting paediatrician at Leiden University Medical Centre, for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to M. Luisa Mearin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vriezinga, S., Schweizer, J., Koning, F. et al. Coeliac disease and gluten-related disorders in childhood. Nat Rev Gastroenterol Hepatol 12, 527–536 (2015). https://doi.org/10.1038/nrgastro.2015.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.98

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing