Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural reflex pathways in intestinal inflammation: hypotheses to viable therapy

Key Points

  • Neural reflex regulation of immune responses depends on the type and tissue compartment of the inflammatory response

  • Although immune cells respond to cholinergic receptor activation, immune organs such as the spleen and lymphoid organs are innervated by adrenergic pathways rather than cholinergic pathways

  • A variety of cholinergic, adrenergic and enteric neurotransmitters has strong immune-regulating potential, but only limited evidence exists for neural afferent–efferent reflex pathways in intestinal immune regulation

  • Clinical and preclinical studies using electrical (implanted devices) or nutritional (cholecystokinin-afferent activation) activation of vagal reflex are ongoing and suggest an anti-inflammatory potential of vagus nerve stimulation (afferent or efferent)

Abstract

Studies in neuroscience and immunology have clarified much of the anatomical and cellular basis for bidirectional interactions between the nervous and immune systems. As with other organs, intestinal immune responses and the development of immunity seems to be modulated by neural reflexes. Sympathetic immune modulation and reflexes are well described, and in the past decade the parasympathetic efferent vagus nerve has been added to this immune-regulation network. This system, designated 'the inflammatory reflex', comprises an afferent arm that senses inflammation and an efferent arm that inhibits innate immune responses. Intervention in this system as an innovative principle is currently being tested in pioneering trials of vagus nerve stimulation using implantable devices to treat IBD. Patients benefit from this treatment, but some of the working mechanisms remain to be established, for instance, treatment is effective despite the vagus nerve not always directly innervating the inflamed tissue. In this Review, we will focus on the direct neuronal regulatory mechanisms of immunity in the intestine, taking into account current advances regarding the innervation of the spleen and lymphoid organs, with a focus on the potential for treatment in IBD and other gastrointestinal pathologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of interactive parasympathetic and sympathetic innervation of lymphoid structures.
Figure 2: Intestinal innervation and immune cell regulation.

Similar content being viewed by others

References

  1. Costa, M., Brookes, S. J. & Hennig, G. W. Anatomy and physiology of the enteric nervous system. Gut 47 (Suppl. 4), 15–19 (2000).

    Google Scholar 

  2. Llewellyn-Smith, I. J., Furness, J. B., O'Brien, P. E. & Costa, M. Noradrenergic nerves in human small intestine. Distribution and ultrastructure. Gastroenterology 87, 513–529 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Sharkey, K. A. Emerging roles for enteric glia in gastrointestinal disorders. J. Clin. Invest. 125, 918–925 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Psichas, A., Reimann, F. & Gribble, F. M. Gut chemosensing mechanisms. J. Clin. Invest. 125, 908–917 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mawe, G. M. Colitis-induced neuroplasticity disrupts motility in the inflamed and post-inflamed colon. J. Clin. Invest. 125, 949–955 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Avetisyan, M., Schill, E. M. & Heuckeroth, R. O. Building a second brain in the bowel. J. Clin. Invest. 125, 899–907 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Costes, L. M., Boeckxstaens, G. E., de Jonge, W. J. & Cailotto, C. Neural networks in intestinal immunoregulation. Organogenesis 9, 216–223 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gonzalez-Rey, E., Chorny, A. & Delgado, M. Regulation of immune tolerance by anti-inflammatory neuropeptides. Nat. Rev. Immunol. 7, 52–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Berthoud, H. R., Jedrzejewska, A. & Powley, T. L. Simultaneous labeling of vagal innervation of the gut and afferent projections from the visceral forebrain with dil injected into the dorsal vagal complex in the rat. J. Comp. Neurol. 301, 65–79 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Pavlov, V. A. & Tracey, K. J. The cholinergic anti-inflammatory pathway. Brain Behav. Immun. 19, 493–499 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Pavlov, V. A. & Tracey, K. J. Controlling inflammation: the cholinergic anti-inflammatory pathway. Biochem. Soc. Trans. 34, 1037–1040 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Tracey, K. J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest. 117, 289–296 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wieczorek, M. & Dunn, A. J. Effect of subdiaphragmatic vagotomy on the noradrenergic and HPA axis activation induced by intraperitoneal interleukin-1 administration in rats. Brain Res. 1101, 73–84 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berthoud, H. R., Kressel, M., Raybould, H. E. & Neuhuber, W. L. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat. Embryol. (Berl.) 191, 203–212 (1995).

    Article  CAS  Google Scholar 

  15. Yamamoto, T. et al. Anti-allergic role of cholinergic neuronal pathway via alpha7 nicotinic ACh receptors on mucosal mast cells in a murine food allergy model. PLoS ONE 9, e85888 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Williams, R. M., Berthoud, H. R. & Stead, R. H. Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa. Neuroimmunomodulation 4, 266–270 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Ek, M., Kurosawa, M., Lundeberg, T. & Ericsson, A. Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. J. Neurosci. 18, 9471–9479 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Wan, W., Wetmore, L., Sorensen, C. M., Greenberg, A. H. & Nance, D. M. Neural and biochemical mediators of endotoxin and stress-induced c-fos expression in the rat brain. Brain Res. Bull. 34, 7–14 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Maier, S. F., Goehler, L. E., Fleshner, M. & Watkins, L. R. The role of the vagus nerve in cytokine-to-brain communication. Ann. N. Y. Acad. Sci. 840, 289–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Saper, C. B., Romanovsky, A. A. & Scammell, T. E. Neural circuitry engaged by prostaglandins during the sickness syndrome. Nat. Neurosci. 15, 1088–1095 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, H. et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat. Med. 10, 1216–1221 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Bernik, T. R. et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J. Exp. Med. 195, 781–788 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tracey, K. J. The inflammatory reflex. Nature 420, 853–859 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Pavlov, V. A. et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc. Natl Acad. Sci. USA 103, 5219–5223 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Andersson, U. & Tracey, K. J. Neural reflexes in inflammation and immunity. J. Exp. Med. 209, 1057–1068 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andersson, U. & Tracey, K. J. Reflex principles of immunological homeostasis. Annu. Rev. Immunol. 30, 313–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guarini, S. et al. Efferent vagal fibre stimulation blunts nuclear factor-κB activation and protects against hypovolemic hemorrhagic shock. Circulation 107, 1189–1194 (2003).

    Article  PubMed  Google Scholar 

  29. Guarini, S. et al. Adrenocorticotropin reverses hemorrhagic shock in anesthetized rats through the rapid activation of a vagal anti-inflammatory pathway. Cardiovasc. Res. 63, 357–365 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Martelli, D., McKinley, M. J. & McAllen, R. M. The cholinergic anti-inflammatory pathway: a critical review. Auton. Neurosci. 182, 65–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Bratton, B. O. et al. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons. Exp. Physiol. 97, 1180–1185 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Coupland, R. E., Parker, T. L., Kesse, W. K. & Mohamed, A. A. The innervation of the adrenal gland. III. Vagal innervation. J. Anat. 163, 173–181 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Torres-Rosas, R. et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat. Med. 20, 291–295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rhen, T. & Cidlowski, J. A. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N. Engl. J. Med. 353, 1711–1723 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Fuentes, J. M., Hanly, E. J., Aurora, A. R., De Maio, A. & Talamini, M. A. Anesthesia-specific protection from endotoxic shock is not mediated through the vagus nerve. Surgery 138, 766–771 (2005).

    Article  PubMed  Google Scholar 

  36. Bonaz, B., Picq, C., Sinniger, V., Mayol, J. F. & Clarencon, D. Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol. Motil. 25, 208–221 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Clarencon, D. et al. Long term effects of low frequency (10 Hz) vagus nerve stimulation on EEG and heart rate variability in Crohn's disease: a case report. Brain Stimul. 7, 914–916 (2014).

    Article  PubMed  Google Scholar 

  38. Birmingham, K. et al. Bioelectronic medicines: a research roadmap. Nat. Rev. Drug Discov. 13, 399–400 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Tobin, G., Giglio, D. & Lundgren, O. Muscarinic receptor subtypes in the alimentary tract. J. Physiol. Pharmacol. 60, 3–21 (2009).

    CAS  PubMed  Google Scholar 

  40. Xu, Y. et al. Molecular dynamics of nicotinic acetylcholine receptor correlating biological functions. Curr. Protein Pept. Sci. 7, 195–200 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kawashima, K., Fujii, T., Moriwaki, Y. & Misawa, H. Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci. 91, 1027–1032 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, H. et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Kawashima, K., Yoshikawa, K., Fujii, Y. X., Moriwaki, Y. & Misawa, H. Expression and function of genes encoding cholinergic components in murine immune cells. Life Sci. 80, 2314–2319 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Qian, J., Galitovskiy, V., Chernyavsky, A. I., Marchenko, S. & Grando, S. A. Plasticity of the murine spleen T-cell cholinergic receptors and their role in in vitro differentiation of naive CD4 T cells toward the Th1, Th2 and Th17 lineages. Genes Immun. 12, 222–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Skok, M., Grailhe, R. & Changeux, J. P. Nicotinic receptors regulate B lymphocyte activation and immune response. Eur. J. Pharmacol. 517, 246–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Skok, M., Grailhe, R., Agenes, F. & Changeux, J. P. The role of nicotinic acetylcholine receptors in lymphocyte development. J. Neuroimmunol. 171, 86–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Olofsson, P. S., Rosas-Ballina, M., Levine, Y. A. & Tracey, K. J. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol. Rev. 248, 188–204 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Matteoli, G. et al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63, 938–948 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Cailotto, C. et al. Neuroanatomical evidence demonstrating the existence of the vagal anti-inflammatory reflex in the intestine. Neurogastroenterol. Motil. 24, 191–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Kirchgessner, A. L. & Gershon, M. D. Identification of vagal efferent fibers and putative target neurons in the enteric nervous system of the rat. J. Comp. Neurol. 285, 38–53 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Holst, M. C., Kelly, J. B. & Powley, T. L. Vagal preganglionic projections to the enteric nervous system characterized with Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol. 381, 81–100 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Walter, G. C., Phillips, R. J., Baronowsky, E. A. & Powley, T. L. Versatile, high-resolution anterograde labeling of vagal efferent projections with dextran amines. J. Neurosci. Methods 178, 1–9 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. de Jonge, W. J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat. Immunol. 6, 844–851 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Nemethova, A., Michel, K., Gomez-Pinilla, P. J., Boeckxstaens, G. E. & Schemann, M. Nicotine attenuates activation of tissue resident macrophages in the mouse stomach through the beta2 nicotinic acetylcholine receptor. PLoS ONE 8, e79264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Matteoli, G. & Boeckxstaens, G. E. The vagal innervation of the gut and immune homeostasis. Gut 62, 1214–1222 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Lubbers, T. et al. Lipid-enriched enteral nutrition controls the inflammatory response in murine Gram-negative sepsis. Crit. Care Med. 38, 1996–2002 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. de Haan, J. J. et al. Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G383–G391 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Felten, D. L., Felten, S. Y., Carlson, S. L., Olschowka, J. A. & Livnat, S. Noradrenergic and peptidergic innervation of lymphoid tissue. J. Immunol. 135, 755s–765s (1985).

    CAS  PubMed  Google Scholar 

  59. Nance, D. M. & Burns, J. Innervation of the spleen in the rat: evidence for absence of afferent innervation. Brain Behav. Immun. 3, 281–290 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Bellinger, D. L., Lorton, D., Felten, S. Y. & Felten, D. L. Innervation of lymphoid organs and implications in development, aging, and autoimmunity. Int. J. Immunopharmacol. 14, 329–344 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Rosas-Ballina, M. et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl Acad. Sci. USA 105, 11008–11013 (2008).

    Article  PubMed  Google Scholar 

  62. Berthoud, H. R. & Powley, T. L. Characterization of vagal innervation to the rat celiac, suprarenal and mesenteric ganglia. J. Auton. Nerv. Syst. 42, 153–169 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Schafer, M. K., Eiden, L. E. & Weihe, E. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system. Neuroscience 84, 361–376 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Vida, G., Pena, G., Deitch, E. A. & Ulloa, L. α7-cholinergic receptor mediates vagal induction of splenic norepinephrine. J. Immunol. 186, 4340–4346 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vida, G. et al. beta2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J. 25, 4476–4485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Haass, M. & Kubler, W. Nicotine and sympathetic neurotransmission. Cardiovasc. Drugs Ther. 10, 657–665 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Huston, J. M. et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J. Exp. Med. 203, 1623–1628 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakai, A., Hayano, Y., Furuta, F., Noda, M. & Suzuki, K. Control of lymphocyte egress from lymph nodes through beta2-adrenergic receptors. J. Exp. Med. 211, 2583–2598 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gautron, L. et al. Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J. Comp. Neurol. 521, 3741–3767 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Buijs, R. M., van der Vliet, J., Garidou, M. L., Huitinga, I. & Escobar, C. Spleen vagal denervation inhibits the production of antibodies to circulating antigens. PLoS ONE 3, e3152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bellinger, D. L., Lorton, D., Hamill, R. W., Felten, S. Y. & Felten, D. L. Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav. Immun. 7, 191–204 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Snoek, S. A., Borensztajn, K. S., van den Wijngaard, R. M. & de Jonge, W. J. Neuropeptide receptors in intestinal disease: physiology and therapeutic potential. Curr. Pharm. Des. 16, 1091–1105 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nijhuis, L. E. et al. Adrenergic β2 receptor activation stimulates anti-inflammatory properties of dendritic cells in vitro. PLoS ONE 9, e85086 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van der Zanden, E. P. et al. Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor alpha4beta2. Gastroenterology 137, 1029–1039 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Ghia, J. E., Blennerhassett, P., Kumar-Ondiveeran, H., Verdu, E. F. & Collins, S. M. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131, 1122–1130 (2006).

    Article  PubMed  Google Scholar 

  77. Ji, H. et al. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol. 7, 335–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Eliakim, R., Fan, Q. X. & Babyatsky, M. W. Chronic nicotine administration differentially alters jejunal and colonic inflammation in interleukin-10 deficient mice. Eur. J. Gastroenterol. Hepatol. 14, 607–614 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Eliakim, R., Karmeli, F., Rachmilewitz, D., Cohen, P. & Fich, A. Effect of chronic nicotine administration on trinitrobenzene sulphonic acid-induced colitis. Eur. J. Gastroenterol. Hepatol. 10, 1013–1019 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Snoek, S. A. et al. Selective alpha7 nicotinic acetylcholine receptor agonists worsen disease in experimental colitis. Br. J. Pharmacol. 160, 322–333 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Meregnani, J. et al. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton. Neurosci. 160, 82–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Fogel, R., Zhang, X. & Renehan, W. E. Relationships between the morphology and function of gastric and intestinal distention-sensitive neurons in the dorsal motor nucleus of the vagus. J. Comp. Neurol. 364, 78–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Bonaz, B. The cholinergic anti-inflammatory pathway and the gastrointestinal tract. Gastroenterology 133, 1370–1373 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Pellissier, S. et al. Relationship between vagal tone, cortisol, TNF-α, epinephrine and negative affects in Crohn's disease and irritable bowel syndrome. PLoS ONE 9, e105328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rubio, A., Pellissier, S., Picot, A., Dantzer, C. & Bonaz, B. The link between negative affect, vagal tone, and visceral sensitivity in quiescent Crohn's disease. Neurogastroenterol. Motil. 26, 1200–1203 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Jacobson, K., McHugh, K. & Collins, S. M. Experimental colitis alters myenteric nerve function at inflamed and noninflamed sites in the rat. Gastroenterology 109, 718–722 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Jacobson, K., McHugh, K. & Collins, S. M. The mechanism of altered neural function in a rat model of acute colitis. Gastroenterology 112, 156–162 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Straub, R. H. et al. Key role of the sympathetic microenvironment for the interplay of tumour necrosis factor and interleukin 6 in normal but not in inflamed mouse colon mucosa. Gut 54, 1098–1106 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zitnik, R. J. Treatment of chronic inflammatory diseases with implantable medical devices. Cleve. Clin. J. Med. 78 (Suppl. 1), S30–S34 (2011).

    Article  PubMed  Google Scholar 

  90. US National Library of Medicine. ClinicalTrial.gov [online], (2014).

  91. US National Library of Medicine. ClinicalTrial.gov [online], (2015).

  92. US National Library of Medicine. ClinicalTrial.gov [online], (2014).

  93. Lubbers, T. et al. Cholecystokinin/cholecystokinin-1 receptor-mediated peripheral activation of the afferent vagus by enteral nutrients attenuates inflammation in rats. Ann. Surg. 252, 376–382 (2010).

    Article  PubMed  Google Scholar 

  94. Lubbers, T. et al. Chylomicron formation and glucagon-like peptide 1 receptor are involved in activation of the nutritional anti-inflammatory pathway. J. Nutr. Biochem. 22, 1105–1111 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. de Haan, J. J. et al. Lipid-rich enteral nutrition improves the defense against an opportunistic infection during polymicrobial sepsis. Shock 41, 109–114 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Luyer, M. D. et al. Pretreatment with high-fat enteral nutrition reduces endotoxin and tumor necrosis factor-alpha and preserves gut barrier function early after hemorrhagic shock. Shock 21, 65–71 (2004).

    Article  PubMed  Google Scholar 

  97. Lubbers, T. et al. Continuous administration of enteral lipid- and protein-rich nutrition limits inflammation in a human endotoxemia model. Crit. Care Med. 41, 1258–1265 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Lubbers, T. et al. Lipid-rich enteral nutrition reduces postoperative ileus in rats via activation of cholecystokinin-receptors. Ann. Surg. 249, 481–487 (2009).

    Article  PubMed  Google Scholar 

  99. Andersen, H. K., Lewis, S. J. & Thomas, S. Early enteral nutrition within 24h of colorectal surgery versus later commencement of feeding for postoperative complications. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD004080 http://dx.doi.org/10.1002/14651858.CD004080.pub2.

  100. Boelens, P. G. et al. Reduction of postoperative ileus by early enteral nutrition in patients undergoing major rectal surgery: prospective, randomized, controlled trial. Ann. Surg. 259, 649–655 (2014).

    Article  PubMed  Google Scholar 

  101. Han-Geurts, I. J. et al. Randomized clinical trial of the impact of early enteral feeding on postoperative ileus and recovery. Br. J. Surg. 94, 555–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. van den Heijkant, T. C. et al. Randomized clinical trial of the effect of gum chewing on postoperative ileus and inflammation in colorectal surgery. Br. J. Surg. 102, 202–211 (2014).

    Article  PubMed  Google Scholar 

  103. US National Library of Medicine. ClinicalTrial.gov [online], (2014).

  104. Peters, E. G. et al. The effects of stimulation of the autonomic nervous system via perioperative nutrition on postoperative ileus and anastomotic leakage following colorectal surgery (SANICS II trial): a study protocol for a double-blind randomized controlled trial. Trials 16, 20 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Wouter J. de Jonge.

Ethics declarations

Competing interests

R.A.W. is funded by a research grant from GlaxoSmithKline. M.D.L. receives research funding and consultancy fees from Covidien, Fonds NutsOhra, Nutricia and ZonMw. W.J.J. has received research and consultancy grants from GlaxoSmithKline, Mead Johnson Nutrition Paediatric Institute, Schwabe Corporation and Setpoint Medical. W.A.B. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willemze, R., Luyer, M., Buurman, W. et al. Neural reflex pathways in intestinal inflammation: hypotheses to viable therapy. Nat Rev Gastroenterol Hepatol 12, 353–362 (2015). https://doi.org/10.1038/nrgastro.2015.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.56

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing