Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Crosstalk at the mucosal border: importance of the gut microenvironment in IBS

Key Points

  • Altered gut microbiota composition, aberrant expression pattern and function of enterochromaffin cells, abnormal gut permeability and dysregulated immune activity have been found in at least subgroups of patients with IBS

  • The complex interaction between these systems has been demonstrated in different animal models of IBS

  • The association between these abnormalities and the symptom profile in patients with IBS has been demonstrated

  • Targeting these alterations in the development of new therapies for IBS seems promising

Abstract

The aetiology and pathology of IBS, a functional bowel disorder thought to lack an organic cause, is largely unknown. However, studies suggest that various features, such as altered composition of the gut microbiota, together with increased intestinal permeability, a changed balance in the enteroendocrine system and a dysregulated immune system in the gut, most likely have an important role in IBS. Exactly how these entities act together and give rise to symptoms is still unknown, but an altered gut microbiota composition could lead to dysregulation of the intestinal barrier as well as the enteroendocrine and the immune systems, which (through interactions with the nervous system) might generate symptoms. This Review highlights the crosstalk between the gut microbiota, the enteroendocrine system, the immune system and the role of intestinal permeability in patients with IBS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peripheral factors involved in the pathophysiology of IBS.
Figure 2: Different structural abnormalities can interact with each other and contribute to the generation of symptoms in IBS.

Similar content being viewed by others

References

  1. Longstreth, G. F. et al. Functional bowel disorders. Gastroenterology 130, 1480–1491 (2006).

    PubMed  Google Scholar 

  2. Lovell, R. M. & Ford, A. C. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin. Gastroenterol. Hepatol. 10, 712–721.e4 (2012).

    PubMed  Google Scholar 

  3. White, B. C. J. Mucous colitis: a delineation of the syndrome with certain observations on its mechanisms and on the role of emotional tension as a precipitating factor. Ann. Int. Med. 14, 854–872 (1940).

    Google Scholar 

  4. Whitehead, W. E., Palsson, O. & Jones, K. R. Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications? Gastroenterology 122, 1140–1156 (2002).

    PubMed  Google Scholar 

  5. Chaudhary, N. A. & Truelove, S. C. The irritable colon syndrome. A study of the clinical features, predisposing causes, and prognosis in 130 cases. Q. J. Med. 31, 307–322 (1962).

    CAS  PubMed  Google Scholar 

  6. Spiller, R. et al. Guidelines on the irritable bowel syndrome: mechanisms and practical management. Gut 56, 1770–1798 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Törnblom, H. et al. Colonic transit time and IBS symptoms: what's the link? Am. J. Gastroenterol. 107, 754–760 (2012).

    PubMed  Google Scholar 

  8. Ritchie, J. Pain from distension of the pelvic colon by inflating a balloon in the irritable colon syndrome. Gut 14, 125–132 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Whitehead, W. E. et al. Tolerance for rectosigmoid distention in irritable bowel syndrome. Gastroenterology 98, 1187–1192 (1990).

    CAS  PubMed  Google Scholar 

  10. Posserud, I. et al. Altered rectal perception in irritable bowel syndrome is associated with symptom severity. Gastroenterology 133, 1113–1123 (2007).

    PubMed  Google Scholar 

  11. Tillisch, K., Mayer, E. A. & Labus, J. S. Quantitative meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndrome. Gastroenterology 140, 91–100 (2011).

    PubMed  Google Scholar 

  12. Furness, J. B. et al. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol. 10, 729–740 (2013).

    CAS  PubMed  Google Scholar 

  13. Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Simren, M. et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 62, 159–176 (2013).

    PubMed  Google Scholar 

  15. Bercik, P. & Collins, S. M. The effects of inflammation, infection and antibiotics on the microbiota–gut–brain axis. Adv. Exp. Med. Biol. 817, 279–289 (2014).

    CAS  PubMed  Google Scholar 

  16. De Palma, G., Collins, S. M. & Bercik, P. The microbiota–gut–brain axis in functional gastrointestinal disorders. Gut Microbes 5, 419–429 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Mayer, E. A. & Tillisch, K. The brain-gut axis in abdominal pain syndromes. Annu. Rev. Med. 62, 381–396 (2011).

    CAS  PubMed  Google Scholar 

  18. Mayer, E. A., Savidge, T. & Shulman, R. J. Brain–gut microbiome interactions and functional bowel disorders. Gastroenterology 146, 1500–1512 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanaka, Y. et al. Biopsychosocial model of irritable bowel syndrome. J. Neurogastroenterol. Motil. 17, 131–139 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. Sommer, F. & Backhed, F. The gut microbiota—masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    CAS  PubMed  Google Scholar 

  21. Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    CAS  PubMed  Google Scholar 

  22. Gibson, M. K., Pesesky, M. W. & Dantas, G. The yin and yang of bacterial resilience in the human gut microbiota. J. Mol. Biol. http://dx.doi.org/10.1016/j.jmb.2014.05.029.

  23. Akiho, H. et al. Mechanisms underlying the maintenance of muscle hypercontractility in a model of postinfective gut dysfunction. Gastroenterology 129, 131–141 (2005).

    CAS  PubMed  Google Scholar 

  24. Bercik, P. et al. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology 127, 179–187 (2004).

    PubMed  Google Scholar 

  25. Gwee, K. A. et al. The role of psychological and biological factors in postinfective gut dysfunction. Gut 44, 400–406 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanazawa, M. et al. Motility response to colonic distention is increased in postinfectious irritable bowel syndrome (PI-IBS). Neurogastroenterol. Motil. 26, 696–704 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kimball, E. S. et al. Acute colitis induction by oil of mustard results in later development of an IBS-like accelerated upper GI transit in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1266–G1273 (2005).

    CAS  PubMed  Google Scholar 

  28. Rao, S. S. et al. Studies on the mechanism of bowel disturbance in ulcerative colitis. Gastroenterology 93, 934–940 (1987).

    CAS  PubMed  Google Scholar 

  29. Rao, S. S. et al. Anorectal sensitivity and responses to rectal distention in patients with ulcerative colitis. Gastroenterology 93, 1270–1275 (1987).

    CAS  PubMed  Google Scholar 

  30. Verdu, E. F. et al. Lactobacillus paracasei normalizes muscle hypercontractility in a murine model of postinfective gut dysfunction. Gastroenterology 127, 826–837 (2004).

    CAS  PubMed  Google Scholar 

  31. Verdu, E. F. et al. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55, 182–90 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Verma-Gandhu, M. et al. Visceral pain perception is determined by the duration of colitis and associated neuropeptide expression in the mouse. Gut 56, 358–364 (2007).

    CAS  PubMed  Google Scholar 

  33. Wu, T. et al. Gut motility and enteroendocrine secretion. Curr. Opin. Pharmacol. 13, 928–934 (2013).

    CAS  PubMed  Google Scholar 

  34. Khan, W. I. & Ghia, J. E. Gut hormones: emerging role in immune activation and inflammation. Clin. Exp. Immunol. 161, 19–27 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sekirov, I. et al. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    CAS  PubMed  Google Scholar 

  36. Young, V. B. & Schmidt, T. M. Overview of the gastrointestinal microbiota. Adv. Exp. Med. Biol. 635, 29–40 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. O'Hara, A. M. & Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 7, 688–693 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    CAS  PubMed  Google Scholar 

  39. Dethlefsen, L., McFall-Ngai M & Relman, D. A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449, 811–818 (2007).

    CAS  PubMed  Google Scholar 

  40. Zoetendal, E. G., Rajilic-Stojanovic, M. & de Vos, W. M. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57, 1605–1615 (2008).

    CAS  PubMed  Google Scholar 

  41. Swidsinski, A., Loening-Baucke, V., Lochs, H. & Hale, L. P. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J. Gastroenterol. 11, 113–1140 (2005).

    Google Scholar 

  42. Wu, G. D. & Lewis, J. D. Analysis of the human gut microbiome and association with disease. Clin. Gastroenterol. Hepatol. 11, 774–777 (2013).

    PubMed  Google Scholar 

  43. Hyland, N. P., Quigley, E. M. & Brint, E. Microbiota–host interactions in irritable bowel syndrome: epithelial barrier, immune regulation and brain-gut interactions. World J. Gastroenterol. 20, 8859–8866 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Lee, K. N. & Lee, O. Y. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome. World J. Gastroenterol. 20, 8886–8897 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Spiller, R. & Garsed, K. Postinfectious irritable bowel syndrome. Gastroenterology 136, 1979–1988 (2009).

    PubMed  Google Scholar 

  46. Thabane, M., Kottachchi, D. T. & Marshall, J. K. Systematic review and meta-analysis: the incidence and prognosis of post-infectious irritable bowel syndrome. Aliment. Pharmacol. Ther. 26, 535–544 (2007).

    CAS  PubMed  Google Scholar 

  47. Halvorson, H. A., Schlett, C. D. & Riddle, M. S. Postinfectious irritable bowel syndrome—a meta-analysis. Am. J. Gastroenterol. 101, 1894–1899 (2006).

    PubMed  Google Scholar 

  48. Cremon, C. et al. Salmonella gastroenteritis during childhood is a risk factor for irritable bowel syndrome in adulthood. Gastroenterology 147, 69–77 (2014).

    PubMed  Google Scholar 

  49. Pimentel, M., Chow, E. J. & Lin, H. C. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am. J. Gastroenterol. 95, 3503–3506 (2000).

    CAS  PubMed  Google Scholar 

  50. Posserud, I. et al. Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut 56, 802–808 (2007).

    PubMed  Google Scholar 

  51. Walters, B. & Vanner, S. J. Detection of bacterial overgrowth in IBS using the lactulose H2 breath test: comparison with 14C-D-xylose and healthy controls. Am. J. Gastroenterol. 100, 1566–1570 (2005).

    CAS  PubMed  Google Scholar 

  52. Vanner, S. The small intestinal bacterial overgrowth. Irritable bowel syndrome hypothesis: implications for treatment. Gut 57, 1315–1321 (2008).

    CAS  PubMed  Google Scholar 

  53. Halmos, E. P. et al. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 146, 67–75.e5 (2014).

    CAS  PubMed  Google Scholar 

  54. Moayyedi, P. et al. The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut 59, 325–32 (2010).

    CAS  PubMed  Google Scholar 

  55. Schoenfeld, P. et al. Safety and tolerability of rifaximin for the treatment of irritable bowel syndrome without constipation: a pooled analysis of randomised, double-blind, placebo-controlled trials. Aliment. Pharmacol. Ther. 39, 1161–1168 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Carroll, I. M. et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G799–G807 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Matto, J. et al. Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome—a longitudinal study in IBS and control subjects. FEMS Immunol. Med. Microbiol. 43, 213–222 (2005).

    PubMed  Google Scholar 

  58. Maukonen, J. et al. Prevalence and temporal stability of selected clostridial groups in irritable bowel syndrome in relation to predominant faecal bacteria. J. Med. Microbiol. 55, 625–633 (2006).

    CAS  PubMed  Google Scholar 

  59. Malinen, E. et al. Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome. World J. Gastroenterol. 16, 4532–4540 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Malinen, E. et al. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am. J. Gastroenterol. 100, 373–382 (2005).

    CAS  PubMed  Google Scholar 

  61. Rajilic-Stojanovic, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792–1801 (2011).

    CAS  PubMed  Google Scholar 

  62. Jeffery, I. B. et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61, 997–1006 (2012).

    PubMed  Google Scholar 

  63. Carroll, I. M. et al. Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog. 2, 19 (2010).

    PubMed  PubMed Central  Google Scholar 

  64. Carroll, I. M. et al. Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil. 24, 521–530.e248 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Codling, C. et al. A molecular analysis of fecal and mucosal bacterial communities in irritable bowel syndrome. Dig. Dis. Sci. 55, 392–397 (2010).

    PubMed  Google Scholar 

  66. Kassinen, A. et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133, 24–33 (2007).

    CAS  PubMed  Google Scholar 

  67. Kerckhoffs, A. P. et al. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J. Gastroenterol. 15, 2887–2892 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. Krogius-Kurikka, L. et al. Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. BMC Gastroenterol. 9, 95 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. Lyra, A. et al. Diarrhoea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification. World J. Gastroenterol. 15, 5936–5945 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Noor, S. O. et al. Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota. BMC Gastroenterol. 10, 134 (2010).

    PubMed  PubMed Central  Google Scholar 

  71. Saulnier, D. M. et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 141, 1782–1791 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tana, C. et al. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol. Motil. 22, 512–519.e114–115 (2010).

    CAS  PubMed  Google Scholar 

  73. Jalanka-Tuovinen, J. et al. Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut 63, 1737–1745 (2014).

    PubMed  Google Scholar 

  74. Rigsbee, L. et al. Quantitative profiling of gut microbiota of children with diarrhea-predominant irritable bowel syndrome. Am. J. Gastroenterol. 107, 1740–1751 (2012).

    PubMed  Google Scholar 

  75. Ponnusamy, K. et al. Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J. Med. Microbiol. 60, 817–827 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Carroll, I. M. et al. Fecal protease activity is associated with compositional alterations in the intestinal microbiota. PLoS ONE 8, e78017 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Durban, A. et al. Instability of the faecal microbiota in diarrhoea-predominant irritable bowel syndrome. FEMS Microbiol. Ecol. 86, 581–589 (2013).

    CAS  PubMed  Google Scholar 

  78. Balsari, A. et al. The fecal microbial population in the irritable bowel syndrome. Microbiologica 5, 185–194 (1982).

    CAS  PubMed  Google Scholar 

  79. Durban, A. et al. Structural alterations of faecal and mucosa-associated bacterial communities in irritable bowel syndrome. Environ. Microbiol. Rep. 4, 242–247 (2012).

    CAS  PubMed  Google Scholar 

  80. Rinttila, T. et al. Real-time PCR analysis of enteric pathogens from fecal samples of irritable bowel syndrome subjects. Gut Pathog. 3, 6 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Si, J. M. et al. Intestinal microecology and quality of life in irritable bowel syndrome patients. World J. Gastroenterol. 10, 1802–1805 (2004).

    PubMed  PubMed Central  Google Scholar 

  82. Parkes, G. C. et al. Distinct microbial populations exist in the mucosa-associated microbiota of sub-groups of irritable bowel syndrome. Neurogastroenterol. Motil. 24, 31–39 (2012).

    CAS  PubMed  Google Scholar 

  83. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    PubMed  Google Scholar 

  84. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kashyap, P. C. et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 144, 967–977 (2013).

    PubMed  PubMed Central  Google Scholar 

  86. Halmos, E. P. et al. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut http://dx.doi.org/10.1136/gutjnl-2014-307264.

  87. Lewis, S. & Cochrane, S. Alteration of sulfate and hydrogen metabolism in the human colon by changing intestinal transit rate. Am. J. Gastroenterol. 102, 624–633 (2007).

    CAS  PubMed  Google Scholar 

  88. Oufir, L. E. et al. Relationships between transit time in man and in vitro fermentation of dietary fiber by fecal bacteria. Eur. J. Clin. Nutr. 54, 603–609 (2000).

    CAS  PubMed  Google Scholar 

  89. Jeffery, I. B. et al. The microbiota link to irritable bowel syndrome: an emerging story. Gut Microbes 3, 572–576 (2012).

    PubMed  PubMed Central  Google Scholar 

  90. Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609.e1–3 (2011).

    CAS  PubMed  Google Scholar 

  91. Park, A. J. et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol. Motil. 25, 733–e575 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Naseribafrouei, A. et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 26, 1155–1162 (2014).

    CAS  PubMed  Google Scholar 

  93. Simrén, M. IBS with intestinal microbial dysbiosis: a new and clinically relevant subgroup? Gut 63, 1685–1686 (2014).

    PubMed  Google Scholar 

  94. Parkes, G. C. et al. Gastrointestinal microbiota in irritable bowel syndrome: their role in its pathogenesis and treatment. Am. J. Gastroenterol. 103, 1557–1567 (2008).

    PubMed  Google Scholar 

  95. May, C. L. & Kaestner, K. H. Gut endocrine cell development. Mol. Cell Endocrinol. 323, 70–75 (2010).

    CAS  PubMed  Google Scholar 

  96. Gunawardene, A. R., Corfe, B. M. & Staton, C. A. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int. J. Exp. Pathol. 92, 219–231 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kellum, J. M. et al. Stroking human jejunal mucosa induces 5-HT release and Cl- secretion via afferent neurons and 5-HT4 receptors. Am. J. Physiol. 277, G515–G520 (1999).

    CAS  PubMed  Google Scholar 

  98. Wang, H. et al. CD4+ T cell-mediated immunological control of enterochromaffin cell hyperplasia and 5-hydroxytryptamine production in enteric infection. Gut 56, 949–957 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fukumoto, S. et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1269–R1276 (2003).

    CAS  PubMed  Google Scholar 

  100. Gershon, M. D. & Tack, J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414 (2007).

    CAS  PubMed  Google Scholar 

  101. Fujita, T. et al. Effect of MKC-733, a 5-HT receptor partial agonist, on bowel motility and symptoms in subjects with constipation: an exploratory study. J. Clin. Pharm. Ther. 30, 611–622 (2005).

    CAS  PubMed  Google Scholar 

  102. Camilleri, M. et al. A placebo-controlled trial of prucalopride for severe chronic constipation. N. Engl. J. Med. 358, 2344–2354 (2008).

    CAS  PubMed  Google Scholar 

  103. Talley, N. J. et al. GR 38032F (ondansetron), a selective 5HT3 receptor antagonist, slows colonic transit in healthy man. Dig. Dis. Sci. 35, 477–480 (1990).

    CAS  PubMed  Google Scholar 

  104. Houghton, L. A., Foster, J. M. & Whorwell, P. J. Alosetron, a 5-HT3 receptor antagonist, delays colonic transit in patients with irritable bowel syndrome and healthy volunteers. Aliment. Pharmacol. Ther. 14, 775–782 (2000).

    CAS  PubMed  Google Scholar 

  105. Gregory, R. E. & Ettinger, D. S. 5-HT3 receptor antagonists for the prevention of chemotherapy-induced nausea and vomiting. A comparison of their pharmacology and clinical efficacy. Drugs 55, 173–189 (1998).

    CAS  PubMed  Google Scholar 

  106. Fuller, R. W. & Wong, D. T. Serotonin uptake and serotonin uptake inhibition. Ann. N. Y. Acad. Sci. 600, 68–78 (1990).

    CAS  PubMed  Google Scholar 

  107. Erspamer, V. & Testini, A. Observations on the release and turnover rate of 5 hydroxytryptamine in the gastrointestinal tract. J. Pharm. Pharmacol. 11, 618–623 (1959).

    CAS  PubMed  Google Scholar 

  108. Bearcroft, C. P., Perrett D & Farthing, M. J. Postprandial plasma 5-hydroxytryptamine in diarrhoea predominant irritable bowel syndrome: a pilot study. Gut 42, 42–46 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Dunlop, S. P. et al. Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 3, 349–357 (2005).

    CAS  PubMed  Google Scholar 

  110. Atkinson, W. et al. Altered 5-hydroxytryptamine signaling in patients with constipation- and diarrhea-predominant irritable bowel syndrome. Gastroenterology 130, 34–43 (2006).

    CAS  PubMed  Google Scholar 

  111. Shekhar, C. et al. Rome III functional constipation and irritable bowel syndrome with constipation are similar disorders within a spectrum of sensitization, regulated by serotonin. Gastroenterology 145, 749–757 (2013).

    CAS  PubMed  Google Scholar 

  112. Miwa, J. et al. Patients with constipation-predominant irritable bowel syndrome (IBS) may have elevated serotonin concentrations in colonic mucosa as compared with diarrhea-predominant patients and subjects with normal bowel habits. Digestion 63, 188–194 (2001).

    CAS  PubMed  Google Scholar 

  113. Kerckhoffs, A. P. et al. Trypsinogen IV, serotonin transporter transcript levels and serotonin content are increased in small intestine of irritable bowel syndrome patients. Neurogastroenterol. Motil. 20, 900–907 (2008).

    CAS  PubMed  Google Scholar 

  114. Costedio, M. M. et al. Mucosal serotonin signaling is altered in chronic constipation but not in opiate-induced constipation. Am. J. Gastroenterol. 105, 1173–1180 (2010).

    PubMed  Google Scholar 

  115. Dunlop, S. P. et al. Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS. Gastroenterology 125, 1651–1659 (2003).

    PubMed  Google Scholar 

  116. Coates, M. D. et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 126, 1657–1664 (2004).

    CAS  PubMed  Google Scholar 

  117. Faure, C. et al. Serotonin signaling is altered in irritable bowel syndrome with diarrhea but not in functional dyspepsia in pediatric age patients. Gastroenterology 139, 249–258 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. El-Salhy, M. et al. Chromogranin A cell density in the rectum of patients with irritable bowel syndrome. Mol. Med. Report 6, 1223–1225 (2012).

    CAS  Google Scholar 

  119. El-Salhy, M., Lomholt-Beck, B. & Hausken, T. Chromogranin A as a possible tool in the diagnosis of irritable bowel syndrome. Scand. J. Gastroenterol. 45, 1435–1439 (2010).

    CAS  PubMed  Google Scholar 

  120. El-Salhy, M., Wendelbo, I. H. & Gundersen, D. Reduced chromogranin A cell density in the ileum of patients with irritable bowel syndrome. Mol. Med. Report 7, 1241–1244 (2013).

    CAS  Google Scholar 

  121. Öhman, L. et al. Altered levels of fecal chromogranins and secretogranins in IBS: relevance for pathophysiology and symptoms? Am. J. Gastroenterol. 107, 440–447 (2012).

    PubMed  Google Scholar 

  122. El-Salhy, M. et al. Irritable bowel syndrome: the role of gut neuroendocrine peptides. Front. Biosci. (Elite Ed.) 4, 2783–2800 (2012).

    Google Scholar 

  123. Lyte, M. Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol. 12, 14–20 (2004).

    CAS  PubMed  Google Scholar 

  124. Freestone, P. Communication between bacteria and their hosts. Scientifica (Cairo) 2013, 361073 (2013).

    Google Scholar 

  125. Coleman, N. S. et al. Abnormalities of serotonin metabolism and their relation to symptoms in untreated celiac disease. Clin. Gastroenterol. Hepatol. 4, 874–881 (2006).

    CAS  PubMed  Google Scholar 

  126. Foley, S. et al. Impaired uptake of serotonin by platelets from patients with irritable bowel syndrome correlates with duodenal immune activation. Gastroenterology 140, 1434–1443.e1 (2011).

    CAS  PubMed  Google Scholar 

  127. Linden, D. R. et al. Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G207–G216 (2003).

    CAS  PubMed  Google Scholar 

  128. Linden, D. R. et al. Serotonin transporter function and expression are reduced in mice with TNBS-induced colitis. Neurogastroenterol. Motil. 17, 565–574 (2005).

    CAS  PubMed  Google Scholar 

  129. Ghia, J. E. et al. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 137, 1649–1660 (2009).

    CAS  PubMed  Google Scholar 

  130. Haub, S. et al. Enhancement of intestinal inflammation in mice lacking interleukin 10 by deletion of the serotonin reuptake transporter. Neurogastroenterol. Motil. 22, 826–834.e229 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Feistritzer, C. et al. Effects of the neuropeptide secretoneurin on natural killer cell migration and cytokine release. Regul. Pept. 126, 195–201 (2005).

    CAS  PubMed  Google Scholar 

  132. Shooshtarizadeh, P. et al. The antimicrobial peptides derived from chromogranin/secretogranin family, new actors of innate immunity. Regul. Pept. 165, 102–110 (2010).

    CAS  PubMed  Google Scholar 

  133. Zhang, D. et al. Two chromogranin a-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS ONE 4, e4501 (2009).

    PubMed  PubMed Central  Google Scholar 

  134. Rhee, S. H., Pothoulakis, C. & Mayer, E. A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 6, 306–214 (2009).

    CAS  PubMed  Google Scholar 

  135. Johansson, M. E., Sjovall, H. & Hansson, G. C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 352–361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Scaldaferri, F. et al. The gut barrier: new acquisitions and therapeutic approaches. J. Clin. Gastroenterol. 46 (Suppl.), S12–S17 (2012).

    CAS  PubMed  Google Scholar 

  137. Camilleri, M. et al. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol. Motil. 24, 503–512 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Rao, A. S. et al. Urine sugars for in vivo gut permeability: validation and comparisons in irritable bowel syndrome-diarrhea and controls. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G919–G928 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Camilleri, M. et al. Understanding measurements of intestinal permeability in healthy humans with urine lactulose and mannitol excretion. Neurogastroenterol. Motil. 22, e15–e26 (2010).

    CAS  PubMed  Google Scholar 

  140. Zuckerman, M. J. et al. Intestinal permeability to [51Cr]EDTA in infectious diarrhea. Dig. Dis. Sci. 38, 1651–1657 (1993).

    CAS  PubMed  Google Scholar 

  141. Spiller, R. C. et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 47, 804–811 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Marshall, J. K. et al. Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton, Ontario. Aliment. Pharmacol. Ther. 20, 1317–1322 (2004).

    CAS  PubMed  Google Scholar 

  143. Piche, T. et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut 58, 196–201 (2009).

    CAS  PubMed  Google Scholar 

  144. Dunlop, S. P. et al. Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am. J. Gastroenterol. 101, 1288–1294 (2006).

    PubMed  Google Scholar 

  145. Bertiaux-Vandaele, N. et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am. J. Gastroenterol. 106, 2165–2173 (2011).

    CAS  PubMed  Google Scholar 

  146. Martinez, C. et al. Diarrhoea-predominant irritable bowel syndrome: an organic disorder with structural abnormalities in the jejunal epithelial barrier. Gut 62, 1160–1168 (2013).

    CAS  PubMed  Google Scholar 

  147. Wilcz-Villega, E., McClean S. & O'Sullivan, M. Reduced E-cadherin expression is associated with abdominal pain and symptom duration in a study of alternating and diarrhea predominant IBS. Neurogastroenterol. Motil. 26, 316–325 (2014).

    CAS  PubMed  Google Scholar 

  148. Gustafsson, J. K., Hansson, G. C. & Sjovall, H. Ulcerative colitis patients in remission have an altered secretory capacity in the proximal colon despite macroscopically normal mucosa. Neurogastroenterol. Motil. 24, e381–e391 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Vivinus-Nebot, M. et al. Functional bowel symptoms in quiescent inflammatory bowel diseases: role of epithelial barrier disruption and low-grade inflammation. Gut 63, 744–752 (2014).

    CAS  PubMed  Google Scholar 

  150. Zhou, Q., Zhang, B. & Verne, G. N. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain 146, 41–46 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Annahazi, A. et al. Luminal cysteine-proteases degrade colonic tight junction structure and are responsible for abdominal pain in constipation-predominant IBS. Am. J. Gastroenterol. 108, 1322–1331 (2013).

    CAS  PubMed  Google Scholar 

  152. Gecse, K. et al. Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic lumenal factor impairing colonic permeability and sensitivity. Gut 57, 591–599 (2008).

    CAS  PubMed  Google Scholar 

  153. Vivinus-Nebot, M. et al. Combination of allergic factors can worsen diarrheic irritable bowel syndrome: role of barrier defects and mast cells. Am. J. Gastroenterol. 107, 75–81 (2012).

    CAS  PubMed  Google Scholar 

  154. Chandrasekharan, B. et al. Tumor necrosis factor-neuropeptide Y cross talk regulates inflammation, epithelial barrier functions, and colonic motility. Inflamm. Bowel Dis. 19, 2535–2546 (2013).

    PubMed  PubMed Central  Google Scholar 

  155. Hu, Y. J. et al. Regulation of paracellular permeability: factors and mechanisms. Mol. Biol. Rep. 40, 6123–6142 (2013).

    CAS  PubMed  Google Scholar 

  156. Lee, H. et al. Mucosal mast cell count is associated with intestinal permeability in patients with diarrhea predominant irritable bowel syndrome. J. Neurogastroenterol. Motil. 19, 244–250 (2013).

    PubMed  PubMed Central  Google Scholar 

  157. Wilcz-Villega, E. M., McClean, S. & O'Sullivan, M. A. Mast cell tryptase reduces junctional adhesion molecule-A (JAM-A) expression in intestinal epithelial cells: implications for the mechanisms of barrier dysfunction in irritable bowel syndrome. Am. J. Gastroenterol. 108, 1140–1151 (2013).

    CAS  PubMed  Google Scholar 

  158. Martinez, C. et al. The jejunum of diarrhea-predominant irritable bowel syndrome shows molecular alterations in the tight junction signaling pathway that are associated with mucosal pathobiology and clinical manifestations. Am. J. Gastroenterol. 107, 736–746 (2012).

    CAS  PubMed  Google Scholar 

  159. Overman, E. L., Rivier, J. E. & Moeser, A. J. CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-α. PLoS ONE 7, e39935 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Wallon, C. et al. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 57, 50–58 (2008).

    CAS  PubMed  Google Scholar 

  161. Vanuytsel, T. et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 63, 1293–1299 (2014).

    CAS  PubMed  Google Scholar 

  162. Keita, A. V. et al. Vasoactive intestinal polypeptide regulates barrier function via mast cells in human intestinal follicle-associated epithelium and during stress in rats. Neurogastroenterol. Motil. 25, e406–e417 (2013).

    CAS  PubMed  Google Scholar 

  163. Villani, A. C. et al. Genetic risk factors for post-infectious irritable bowel syndrome following a waterborne outbreak of gastroenteritis. Gastroenterology 138, 1502–1513 (2010).

    CAS  PubMed  Google Scholar 

  164. Vazquez-Roque, M. I. et al. Association of HLA-DQ gene with bowel transit, barrier function, and inflammation in irritable bowel syndrome with diarrhea. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1262–G1269 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Barbara, G. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126, 693–702 (2004).

    PubMed  Google Scholar 

  166. Park, C. H. et al. Activated mast cells infiltrate in close proximity to enteric nerves in diarrhea-predominant irritable bowel syndrome. J. Korean Med. Sci. 18, 204–210 (2003).

    PubMed  PubMed Central  Google Scholar 

  167. Öhman, L. & Simren, M. Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat. Rev. Gastroenterol. Hepatol. 7, 163–173 (2010).

    PubMed  Google Scholar 

  168. Ohman, L. et al. T-cell activation in patients with irritable bowel syndrome. Am. J. Gastroenterol. 104, 1205–1212 (2009).

    PubMed  Google Scholar 

  169. Öhman, L. et al. A controlled study of colonic immune activity and β7+ blood T lymphocytes in patients with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 3, 980–986 (2005).

    PubMed  Google Scholar 

  170. Brint, E. K. et al. Differential expression of toll-like receptors in patients with irritable bowel syndrome. Am. J. Gastroenterol. 106, 329–336 (2011).

    CAS  PubMed  Google Scholar 

  171. Belmonte, L. et al. Role of toll like receptors in irritable bowel syndrome: differential mucosal immune activation according to the disease subtype. PLoS ONE 7, e42777 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Öhman, L. et al. Increased TLR2 expression on blood monocytes in irritable bowel syndrome patients. Eur. J. Gastroenterol. Hepatol. 24, 398–405 (2012).

    PubMed  Google Scholar 

  173. Scully, P. et al. Plasma cytokine profiles in females with irritable bowel syndrome and extra-intestinal co-morbidity. Am. J. Gastroenterol. 105, 2235–2243 (2010).

    CAS  PubMed  Google Scholar 

  174. Chang, L. et al. Serum and colonic mucosal immune markers in irritable bowel syndrome. Am. J. Gastroenterol. 107, 262–272 (2012).

    CAS  PubMed  Google Scholar 

  175. Dinan, T. G. et al. Enhanced cholinergic-mediated increase in the pro-inflammatory cytokine IL-6 in irritable bowel syndrome: role of muscarinic receptors. Am. J. Gastroenterol. 103, 2570–2576 (2008).

    CAS  PubMed  Google Scholar 

  176. Dinan, T. G. et al. Hypothalamic–pituitary–gut axis dysregulation in irritable bowel syndrome: plasma cytokines as a potential biomarker? Gastroenterology 130, 304–311 (2006).

    CAS  PubMed  Google Scholar 

  177. Kindt, S. et al. Immune dysfunction in patients with functional gastrointestinal disorders. Neurogastroenterol. Motil. 21, 389–398 (2009).

    CAS  PubMed  Google Scholar 

  178. Bashashati, M. et al. Cytokine imbalance in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol. Motil. 26, 1036–1048 (2014).

    CAS  PubMed  Google Scholar 

  179. Liebregts, T. et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology 132, 913–920 (2007).

    CAS  PubMed  Google Scholar 

  180. Gwee, K. A. et al. Increased rectal mucosal expression of interleukin 1beta in recently acquired post-infectious irritable bowel syndrome. Gut 52, 523–526 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. O'Malley, D., Dinan, T. G. & Cryan, J. F. Interleukin-6 modulates colonic transepithelial ion transport in the stress-sensitive wistar kyoto rat. Front. Pharmacol. 3, 190 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Olofsson, P. S. et al. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol. Rev. 248, 188–204 (2012).

    PubMed  PubMed Central  Google Scholar 

  183. Anitha, M. et al. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143, 1006–1016.e4 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Robinette, M. L. & Colonna, M. GI motility: microbiota and macrophages join forces. Cell 158, 239–240 (2014).

    CAS  PubMed  Google Scholar 

  186. Tornblom, H. et al. Full-thickness biopsy of the jejunum reveals inflammation and enteric neuropathy in irritable bowel syndrome. Gastroenterology 123, 1972–1979 (2002).

    PubMed  Google Scholar 

  187. Chadwick, V. S. et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology 122, 1778–1783 (2002).

    PubMed  Google Scholar 

  188. Cremon, C. et al. Mucosal immune activation in irritable bowel syndrome: gender-dependence and association with digestive symptoms. Am. J. Gastroenterol. 104, 392–400 (2009).

    CAS  PubMed  Google Scholar 

  189. Sundin, J. et al. Aberrant mucosal lymphocyte number and subsets in the colon of post-infectious irritable bowel syndrome patients. Scand. J. Gastroenterol. 49, 1068–1075 (2014).

    CAS  PubMed  Google Scholar 

  190. Chen, J., Zhang, Y. & Deng, Z. Imbalanced shift of cytokine expression between T helper 1 and T helper 2 (Th1/Th2) in intestinal mucosa of patients with post-infectious irritable bowel syndrome. BMC Gastroenterol. 12, 91 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Holmen, N. et al. CD4+CD25+ regulatory T cells in irritable bowel syndrome patients. Neurogastroenterol. Motil. 19, 119–125 (2007).

    CAS  PubMed  Google Scholar 

  192. Ohman, L. et al. B-cell activation in patients with irritable bowel syndrome (IBS). Neurogastroenterol. Motil. 21, 644–650.e27 (2009).

    CAS  PubMed  Google Scholar 

  193. Vicario, M. et al. Increased humoral immunity in the jejunum of diarrhoea-predominant irritable bowel syndrome associated with clinical manifestations. Gut http://dx.doi.org/10.1136/gutjnl-2013-306236.

  194. Schoepfer, A. M. et al. Antibodies to flagellin indicate reactivity to bacterial antigens in IBS patients. Neurogastroenterol. Motil. 20, 1110–1118 (2008).

    CAS  PubMed  Google Scholar 

  195. Akiho, H. et al. Involvement of interleukin-17A-induced hypercontractility of intestinal smooth muscle cells in persistent gut motor dysfunction. PLoS ONE 9, e92960 (2014).

    PubMed  PubMed Central  Google Scholar 

  196. Akiho, H., Ihara, E., Motomura, Y. & Nakamura, K. Cytokine-induced alterations of gastrointestinal motility in gastrointestinal disorders. World J. Gastrointest. Pathophysiol. 2, 72–81 (2011).

    PubMed  PubMed Central  Google Scholar 

  197. Bashashati, M. et al. Cytokine gene polymorphisms are associated with irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol. Motil. 24, 1102–e566 (2012).

    CAS  PubMed  Google Scholar 

  198. van der Veek, P. P. et al. Role of tumor necrosis factor-alpha and interleukin-10 gene polymorphisms in irritable bowel syndrome. Am. J. Gastroenterol. 100, 2510–2516 (2005).

    CAS  PubMed  Google Scholar 

  199. Romero-Valdovinos, M. et al. Interleukin-8 and -10 gene polymorphisms in irritable bowel syndrome. Mol. Biol. Rep. 39, 8837–8843 (2012).

    CAS  PubMed  Google Scholar 

  200. Swan, C. et al. Identifying and testing candidate genetic polymorphisms in the irritable bowel syndrome (IBS): association with TNFSF15 and TNFα. Gut 63, 985–994 (2013).

    Google Scholar 

  201. Zucchelli, M. et al. Association of TNFSF15 polymorphism with irritable bowel syndrome. Gut 60, 1671–1677 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Camilleri, M. et al. RNA sequencing shows transcriptomic changes in rectosigmoid mucosa in patients with irritable bowel syndrome-diarrhea: a pilot case–control study. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G1089–G1098 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Akbar, A. et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 57, 923–929 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Wang, L. H., Fang, X. C. & Pan, G. Z. Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut 53, 1096–1101 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Di Nardo, G. et al. Neuroimmune interactions at different intestinal sites are related to abdominal pain symptoms in children with IBS. Neurogastroenterol. Motil. 26, 196–204 (2014).

    CAS  PubMed  Google Scholar 

  206. Nasser, Y. et al. Using human intestinal biopsies to study the pathogenesis of irritable bowel syndrome. Neurogastroenterol. Motil. 26, 455–469 (2014).

    CAS  PubMed  Google Scholar 

  207. Barbara, G. et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132, 26–37 (2007).

    CAS  PubMed  Google Scholar 

  208. Buhner, S. et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 137, 1425–1434 (2009).

    CAS  PubMed  Google Scholar 

  209. Balestra, B. et al. Colonic mucosal mediators from patients with irritable bowel syndrome excite enteric cholinergic motor neurons. Neurogastroenterol. Motil. 24, 1118–e570 (2012).

    CAS  PubMed  Google Scholar 

  210. Cenac, N. et al. Role for protease activity in visceral pain in irritable bowel syndrome. J. Clin. Invest. 117, 636–647 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Cremon, C. et al. Intestinal serotonin release, sensory neuron activation, and abdominal pain in irritable bowel syndrome. Am. J. Gastroenterol. 106, 1290–1298 (2011).

    CAS  PubMed  Google Scholar 

  212. Buhner, S. et al. Submucous rather than myenteric neurons are activated by mucosal biopsy supernatants from irritable bowel syndrome patients. Neurogastroenterol. Motil. 24, 1134–e572 (2012).

    CAS  PubMed  Google Scholar 

  213. Valdez-Morales, E. E. et al. Sensitization of peripheral sensory nerves by mediators from colonic biopsies of diarrhea-predominant irritable bowel syndrome patients: a role for PAR2. Am. J. Gastroenterol. 108, 1634–1643 (2013).

    CAS  PubMed  Google Scholar 

  214. Hughes, P. A. et al. Sensory neuro-immune interactions differ between irritable bowel syndrome subtypes. Gut 62, 1456–1465 (2013).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Magnus Simrén.

Ethics declarations

Competing interests

L.O. has received an unrestricted research grant from AstraZeneca, served as an Advisory Board member for Genetic Analysis AS, and has received speaker honoraria from Abbvie and Takeda. H.T. has received unrestricted research support from Tillotts Pharma, and served as a Consultant and/or Advisory Board member for Almirall, Danone and Shire. M.S. has received unrestricted research grants from AstraZeneca and Danone, and served as a consultant and/or Advisory Board member for Albireo, Almirall, Danone, Chr Hansen, Novartis and Shire.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öhman, L., Törnblom, H. & Simrén, M. Crosstalk at the mucosal border: importance of the gut microenvironment in IBS. Nat Rev Gastroenterol Hepatol 12, 36–49 (2015). https://doi.org/10.1038/nrgastro.2014.200

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing