Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology, risk factors and management of cardiovascular diseases in IBD

Key Points

  • Patients with IBD have a modestly increased risk of coronary heart disease and stroke

  • In patients with IBD, the magnitude of the increase in cardiovascular risk is higher in women than in men and in young adults (<40–50 years) than in older adults (>50–60 years)

  • Patients with IBD have evidence of premature vascular disease with structural, functional and biochemical changes indicative of subclinical atherosclerosis; IBD also promotes spontaneous platelet activation and aggregation, predisposing patients to atherothrombosis

  • Although conventional cardiovascular risk factors are not over-represented in patients with IBD, nonconventional chronic inflammation-based risk factors (IBD disease activity) are directly related to risk of cardiovascular events

  • Aggressive disease-modifying biologic therapy might favourably modify the risk of cardiovascular events in patients with IBD

  • Commonly used cardiovascular medications, such as statins, could improve IBD disease activity

Abstract

IBD is an established risk factor for venous thromboembolism. In the past few years, studies have suggested that patients with IBD might also be at an increased risk of coronary heart disease and stroke. The increased risk is thought to be similar to the level of risk seen in patients with other chronic systemic inflammatory diseases such as rheumatoid arthritis. The risk of developing these conditions is particularly increased in young adults with IBD, and more so in women than in men. Conventional cardiovascular risk factors are not over-represented in patients with IBD, so the increased risk could be attributable to inflammation-mediated atherosclerosis. Patients with IBD often have premature atherosclerosis and have biochemical and genetic markers similar to those seen in patients with atherosclerotic cardiovascular disease. The role of chronic inflammation in IBD-associated cardiovascular disease merits further evaluation. Particular attention should be given to the increased risk observed during periods of increased disease activity and potential modification of the risk by immunosuppressive and biologic therapies for IBD that can modify the disease activity. In addition, preclinical studies suggest that cardiovascular medications such as statins and angiotensin-converting enzyme inhibitors might also favourably modify IBD disease activity, which warrants further evaluation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Suggested algorithm for the management of cardiovascular risk in patients with IBD.

Similar content being viewed by others

References

  1. Nguyen, G. C. et al. Consensus statements on the risk, prevention, and treatment of venous thromboembolism in inflammatory bowel disease: Canadian Association of Gastroenterology. Gastroenterology 146, 835–848 (2014).

    Article  PubMed  Google Scholar 

  2. Yuhara, H. et al. Meta-analysis: the risk of venous thromboembolism in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 37, 953–962 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Grainge, M. J., West, J. & Card, T. R. Venous thromboembolism during active disease and remission in inflammatory bowel disease: a cohort study. Lancet 375, 657–663 (2010).

    Article  PubMed  Google Scholar 

  4. Piazza, G. & Goldhaber, S. Z. Venous thromboembolism and atherothrombosis: an integrated approach. Circulation 121, 2146–2150 (2010).

    Article  PubMed  Google Scholar 

  5. Sorensen, H. T., Horvath-Puho, E., Pedersen, L., Baron, J. A. & Prandoni, P. Venous thromboembolism and subsequent hospitalisation due to acute arterial cardiovascular events: a 20-year cohort study. Lancet 370, 1773–1779 (2007).

    Article  PubMed  Google Scholar 

  6. Becattini, C., Vedovati, M. C., Ageno, W., Dentali, F. & Agnelli, G. Incidence of arterial cardiovascular events after venous thromboembolism: a systematic review and a meta-analysis. J. Thromb. Haemost. 8, 891–897 (2010).

    CAS  PubMed  Google Scholar 

  7. Bernstein, C. N., Wajda, A. & Blanchard, J. F. The incidence of arterial thromboembolic diseases in inflammatory bowel disease: a population-based study. Clin. Gastroenterol. Hepatol. 6, 41–45 (2008).

    Article  PubMed  Google Scholar 

  8. Kristensen, S. L. et al. Disease activity in inflammatory bowel disease is associated with increased risk of myocardial infarction, stroke and cardiovascular death—a Danish nationwide cohort study. PLoS ONE 8, e56944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rungoe, C. et al. Risk of ischaemic heart disease in patients with inflammatory bowel disease: a nationwide Danish cohort study. Gut 62, 689–694 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Avina-Zubieta, J. A., Thomas, J., Sadatsafavi, M., Lehman, A. J. & Lacaille, D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann. Rheum. Dis. 71, 1524–1529 (2012).

    Article  PubMed  Google Scholar 

  11. Maradit-Kremers, H., Nicola, P. J., Crowson, C. S., Ballman, K. V. & Gabriel, S. E. Cardiovascular death in rheumatoid arthritis: a population-based study. Arthritis Rheum. 52, 722–732 (2005).

    Article  PubMed  Google Scholar 

  12. Symmons, D. P. & Gabriel, S. E. Epidemiology of CVD in rheumatic disease, with a focus on RA and SLE. Nat. Rev. Rheumatol. 7, 399–408 (2011).

    Article  PubMed  Google Scholar 

  13. Ahlehoff, O. et al. Psoriasis is associated with clinically significant cardiovascular risk: a Danish nationwide cohort study. J. Intern. Med. 270, 147–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Kristensen, S. L. et al. Inflammatory bowel disease is associated with an increased risk of hospitalization for heart failure: a Danish nationwide cohort study. Circ. Heart Fail. 7, 717–722 (2014).

    Article  PubMed  Google Scholar 

  15. Yarur, A. J. et al. Inflammatory bowel disease is associated with an increased incidence of cardiovascular events. Am. J. Gastroenterol. 106, 741–747 (2011).

    Article  PubMed  Google Scholar 

  16. Singh, S., Singh, H., Loftus, E. V. Jr & Pardi, D. S. Risk of cerebrovascular accidents and ischemic heart disease in patients with inflammatory bowel disease: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 12, 382–393 (2014).

    Article  PubMed  Google Scholar 

  17. Dorn, S. D. & Sandler, R. S. Inflammatory bowel disease is not a risk factor for cardiovascular disease mortality: results from a systematic review and meta-analysis. Am. J. Gastroenterol. 102, 662–667 (2007).

    Article  PubMed  Google Scholar 

  18. Singh, S. & Loftus, E. V. Jr. Cardiovascular risk in inflammatory bowel disease: it's a heartache! Gastroenterology 145, 1484–1486 (2013).

    Article  PubMed  Google Scholar 

  19. Ha, C., Magowan, S., Accortt, N. A., Chen, J. & Stone, C. D. Risk of arterial thrombotic events in inflammatory bowel disease. Am. J. Gastroenterol. 104, 1445–1451 (2009).

    Article  PubMed  Google Scholar 

  20. Shaw, L. J., Bugiardini, R. & Merz, C. N. Women and ischemic heart disease: evolving knowledge. J. Am. Coll. Cardiol. 54, 1561–1575 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Claassen, M., Sybrandy, K. C., Appelman, Y. E. & Asselbergs, F. W. Gender gap in acute coronary heart disease: myth or reality? World J. Cardiol. 4, 36–47 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cook, N. R., Buring, J. E. & Ridker, P. M. The effect of including C-reactive protein in cardiovascular risk prediction models for women. Ann. Intern. Med. 145, 21–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Andersohn, F., Waring, M. & Garbe, E. Risk of ischemic stroke in patients with Crohn's disease: a population-based nested case-control study. Inflamm. Bowel Dis. 16, 1387–1392 (2010).

    Article  PubMed  Google Scholar 

  24. Lusis, A. J. Atherosclerosis. Nature 407, 233–241 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Hansson, G. K., Robertson, A. K. & Soderberg-Naucler, C. Inflammation and atherosclerosis. Annu. Rev. Pathol. 1, 297–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Lorenz, M. W., Markus, H. S., Bots, M. L., Rosvall, M. & Sitzer, M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 115, 459–467 (2007).

    Article  PubMed  Google Scholar 

  28. Papa, A. et al. Increased carotid intima-media thickness in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 22, 839–846 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Theocharidou, E., Gossios, T. D., Giouleme, O., Athyros, V. G. & Karagiannis, A. Carotid intima-media thickness in patients with inflammatory bowel disease: a systematic review. Angiology 65, 284–293 (2014).

    Article  PubMed  Google Scholar 

  30. Vlachopoulos, C., Aznaouridis, K. & Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 55, 1318–1327 (2010).

    Article  PubMed  Google Scholar 

  31. Zanoli, L. et al. Arterial stiffness is increased in patients with inflammatory bowel disease. J. Hypertens. 30, 1775–1781 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Zanoli, L. et al. Increased arterial stiffness in inflammatory bowel diseases is dependent upon inflammation and reduced by immunomodulatory drugs. Atherosclerosis 234, 346–351 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Gutierrez, E. et al. Endothelial dysfunction over the course of coronary artery disease. Eur. Heart J. 34, 3175–3181 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Anderson, T. J. et al. Microvascular function predicts cardiovascular events in primary prevention: long-term results from the Firefighters and Their Endothelium (FATE) study. Circulation 123, 163–169 (2011).

    Article  PubMed  Google Scholar 

  35. Pepine, C. J. et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women's Ischemia Syndrome Evaluation) study. J. Am. Coll. Cardiol. 55, 2825–2832 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kerekes, G. et al. Validated methods for assessment of subclinical atherosclerosis in rheumatology. Nat. Rev. Rheumatol. 8, 224–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Roifman, I. et al. Evidence of endothelial dysfunction in patients with inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 7, 175–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Principi, M. et al. Endothelial function and cardiovascular risk in active inflammatory bowel diseases. J. Crohns Colitis 7, 427–433 (2013).

    Article  Google Scholar 

  39. Aloi, M. et al. Premature subclinical atherosclerosis in pediatric inflammatory bowel disease. J. Pediatr. 161, 589–594 (2012).

    Article  PubMed  Google Scholar 

  40. Danesh, J. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 350, 1387–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Averill, M. M., Kerkhoff, C. & Bornfeldt, K. E. S100A8 and S100A9 in cardiovascular biology and disease. Arterioscler. Thromb. Vasc. Biol. 32, 223–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Croce, K. et al. Myeloid-related protein-8/14 is critical for the biological response to vascular injury. Circulation 120, 427–436 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ionita, M. G. et al. High myeloid-related protein: 8/14 levels are related to an increased risk of cardiovascular events after carotid endarterectomy. Stroke 41, 2010–2015 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Jensen, L. J. et al. Plasma calprotectin predicts mortality in patients with ST segment elevation myocardial infarction treated with primary percutaneous coronary intervention. J. Interv. Cardiol. 23, 123–129 (2010).

    Article  PubMed  Google Scholar 

  45. Oussalah, A., Gueant, J. L. & Peyrin-Biroulet, L. Meta-analysis: hyperhomocysteinaemia in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 34, 1173–1184 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Drzewoski, J., Gasiorowska, A., Malecka-Panas, E., Bald, E. & Czupryniak, L. Plasma total homocysteine in the active stage of ulcerative colitis. J. Gastroenterol. Hepatol. 21, 739–743 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Hankey, G. J. & Eikelboom, J. W. Homocysteine and vascular disease. Lancet 354, 407–413 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Boushey, C. J., Beresford, S. A., Omenn, G. S. & Motulsky, A. G. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 274, 1049–1057 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Koutroubakis, I. E. et al. Anti-cardiolipin and anti-β2-glycoprotein I antibodies in patients with inflammatory bowel disease. Dig. Dis. Sci. 43, 2507–2512 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Koutroubakis, I. E. et al. Increased levels of lipoprotein (a) in Crohn's disease: a relation to thrombosis? Eur. J. Gastroenterol. Hepatol. 13, 1415–1419 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Adler, J., Rangwalla, S. C., Dwamena, B. A. & Higgins, P. D. The prognostic power of the NOD2 genotype for complicated Crohn's disease: a meta-analysis. Am. J. Gastroenterol. 106, 699–712 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Galluzzo, S. et al. Association between NOD2/CARD15 polymorphisms and coronary artery disease: a case-control study. Hum. Immunol. 72, 636–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. El Mokhtari, N. E. et al. Role of NOD2/CARD15 in coronary heart disease. BMC Genet. 8, 76 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gawaz, M., Langer, H. & May, A. E. Platelets in inflammation and atherogenesis. J. Clin. Invest. 115, 3378–3384 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Danese, S., Motte Cd Cde, L. & Fiocchi, C. Platelets in inflammatory bowel disease: clinical, pathogenic, and therapeutic implications. Am. J. Gastroenterol. 99, 938–945 (2004).

    Article  PubMed  Google Scholar 

  56. Webberley, M. J., Hart, M. T. & Melikian, V. Thromboembolism in inflammatory bowel disease: role of platelets. Gut 34, 247–251 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Collins, C. E., Cahill, M. R., Newland, A. C. & Rampton, D. S. Platelets circulate in an activated state in inflammatory bowel disease. Gastroenterology 106, 840–845 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Danese, S. et al. Platelets trigger a CD40-dependent inflammatory response in the microvasculature of inflammatory bowel disease patients. Gastroenterology 124, 1249–1264 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Osterman, M. T. et al. No increased risk of myocardial infarction among patients with ulcerative colitis or Crohn's disease. Clin. Gastroenterol. Hepatol. 9, 875–880 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Inamdar, S., Altafi, S. & Sultan, K. Increased risk of coronary artery disease among patients with inflammatory bowel disease. Gastroenterology 142, S792 (2012).

    Article  Google Scholar 

  61. Haapamaki, J., Roine, R. P., Turunen, U., Farkkila, M. A. & Arkkila, P. E. Increased risk for coronary heart disease, asthma, and connective tissue diseases in inflammatory bowel disease. J. Crohns Colitis 5, 41–47 (2011).

    Article  PubMed  Google Scholar 

  62. Tan, V. P., Chung, A., Yan, B. P. & Gibson, P. R. Venous and arterial disease in inflammatory bowel disease. J. Gastroenterol. Hepatol. 28, 1095–1113 (2013).

    Article  PubMed  Google Scholar 

  63. Robertson, J., Peters, M. J., McInnes, I. B. & Sattar, N. Changes in lipid levels with inflammation and therapy in RA: a maturing paradigm. Nat. Rev. Rheumatol. 9, 513–523 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Ripolles Piquer, B. et al. Altered lipid, apolipoprotein, and lipoprotein profiles in inflammatory bowel disease: consequences on the cholesterol efflux capacity of serum using Fu5AH cell system. Metabolism 55, 980–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Sappati Biyyani, R. S., Putka, B. S. & Mullen, K. D. Dyslipidemia and lipoprotein profiles in patients with inflammatory bowel disease. J. Clin. Lipidol. 4, 478–482 (2010).

    Article  PubMed  Google Scholar 

  66. Romanato, G. et al. Plasma lipids and inflammation in active inflammatory bowel diseases. Aliment. Pharmacol. Ther. 29, 298–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Koutroubakis, I. E. et al. Effects of tumor necrosis factor alpha inhibition with infliximab on lipid levels and insulin resistance in patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 21, 283–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Wilson, P. W. et al. Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837–1847 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Sappati Biyyani, R. S., Fahmy, N. M., Baum, E., Nelson, K. M. & King, J. F. Inflammatory bowel disease and coronary artery disease. Indian J. Gastroenterol. 28, 28–30 (2009).

    Article  PubMed  Google Scholar 

  70. Wei, L., MacDonald, T. M. & Walker, B. R. Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease. Ann. Intern. Med. 141, 764–770 (2004).

    Article  PubMed  Google Scholar 

  71. Carty, E., MacEy, M. & Rampton, D. S. Inhibition of platelet activation by 5-aminosalicylic acid in inflammatory bowel disease. Aliment. Pharmacol. Ther. 14, 1169–1179 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Prufer, J. et al. Harmful effects of the azathioprine metabolite 6-mercaptopurine in vascular cells: induction of mineralization. PLoS ONE 9, e101709 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chung, E. S. et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107, 3133–3140 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Dixon, W. G. et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 56, 2905–2912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Szekanecz, Z., Kerekes, G. & Soltesz, P. Vascular effects of biologic agents in RA and spondyloarthropathies. Nat. Rev. Rheumatol. 5, 677–684 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. van Sijl, A. M. et al. Tumour necrosis factor blocking agents and progression of subclinical atherosclerosis in patients with ankylosing spondylitis. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2013-203934.

  77. Tam, L. S. et al. Infliximab is associated with improvement in arterial stiffness in patients with early rheumatoid arthritis—a randomized trial. J. Rheumatol. 39, 2267–2275 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Chan, S. S. et al. Aspirin in the aetiology of Crohn's disease and ulcerative colitis: a European prospective cohort study. Aliment. Pharmacol. Ther. 34, 649–655 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Ananthakrishnan, A. N. et al. Aspirin, nonsteroidal anti-inflammatory drug use, and risk for Crohn disease and ulcerative colitis: a cohort study. Ann. Intern. Med. 156, 350–359 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Takeuchi, K. et al. Prevalence and mechanism of nonsteroidal anti-inflammatory drug-induced clinical relapse in patients with inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 4, 196–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Vinod, J. et al. The effect of antiplatelet therapy in patients with inflammatory bowel disease. J. Clin. Gastroenterol. 46, 527–529 (2012).

    Article  PubMed  Google Scholar 

  82. Patel, S. H., Rachchh, M. A. & Jadav, P. D. Evaluation of anti-inflammatory effect of anti-platelet agent-clopidogrel in experimentally induced inflammatory bowel disease. Indian J. Pharmacol. 44, 744–748 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carty, E., Rampton, D. S., Schneider, H., Rutgeerts, P. & Wright, J. P. Lack of efficacy of ridogrel, a thromboxane synthase inhibitor, in a placebo-controlled, double-blind, multi-centre clinical trial in active Crohn's disease. Aliment. Pharmacol. Ther. 15, 1323–1329 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Tytgat, G. N., Van Nueten, L., Van De Velde, I., Joslyn, A. & Hanauer, S. B. Efficacy and safety of oral ridogrel in the treatment of ulcerative colitis: two multicentre, randomized, double-blind studies. Aliment. Pharmacol. Ther. 16, 87–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Ky, B. & Rader, D. J. The effects of statin therapy on plasma markers of inflammation in patients without vascular disease. Clinical Cardiol. 28, 67–70 (2005).

    Article  Google Scholar 

  86. Lee, J. Y. et al. Simvastatin inhibits NF-κB signaling in intestinal epithelial cells and ameliorates acute murine colitis. Int. Immunopharmacol. 7, 241–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Naito, Y. et al. Rosuvastatin, a new HMG-CoA reductase inhibitor, reduces the colonic inflammatory response in dextran sulfate sodium-induced colitis in mice. Int. J. Mol. Med. 17, 997–1004 (2006).

    CAS  PubMed  Google Scholar 

  88. Sasaki, M. et al. The 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor pravastatin reduces disease activity and inflammation in dextran-sulfate induced colitis. J. Pharmacol. Exp. Ther. 305, 78–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Abe, Y. et al. Simvastatin attenuates intestinal fibrosis independent of the anti-inflammatory effect by promoting fibroblast/myofibroblast apoptosis in the regeneration/healing process from TNBS-induced colitis. Dig. Dis. Sci. 57, 335–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Grip, O. & Janciauskiene, S. Atorvastatin reduces plasma levels of chemokine (CXCL10) in patients with Crohn's disease. PLoS ONE 4, e5263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Crockett, S. D. et al. Statins are associated with reduced use of steroids in inflammatory bowel disease: a retrospective cohort study. Inflamm. Bowel Dis. 18, 1048–1056 (2012).

    Article  PubMed  Google Scholar 

  92. Cho, S. J. et al. Simvastatin induces apoptosis in human colon cancer cells and in tumor xenografts, and attenuates colitis-associated colon cancer in mice. Int. J. Cancer 123, 951–957 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Samadder, N. J. et al. Risk of colorectal cancer in self-reported inflammatory bowel disease and modification of risk by statin and NSAID use. Cancer 117, 1640–1648 (2011).

    Article  PubMed  Google Scholar 

  94. Jaszewski, R. et al. Increased colonic mucosal angiotensin I and II concentrations in Crohn's colitis. Gastroenterology 98, 1543–1548 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. Wengrower, D. et al. Prevention of fibrosis in experimental colitis by captopril: the role of TGF-β1. Inflamm. Bowel Dis. 10, 536–545 (2004).

    Article  PubMed  Google Scholar 

  96. Crowson, C. S. et al. Rheumatoid arthritis and cardiovascular disease. Am. Heart J. 166, 622–628 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Aggarwal, A., Atreja, A., Kapadia, S., Lopez, R. & Achkar, J. P. Conventional risk factors and cardiovascular outcomes of patients with inflammatory bowel disease with confirmed coronary artery disease. Inflamm. Bowel Dis. 20, 1593–1601 (2014).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.S. and E.V.L. contributed to researching data for the article, discussion of content, writing the article and reviewing/editing the manuscript before submission. I.J.K. contributed to discussion of the content and reviewing/editing the manuscript before submission. D.S.P. contributed to discussion of content, writing the article and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Siddharth Singh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Summary of key clinical studies on incidence and risk of stroke and myocardial infarction in patients with IBD (PDF 29 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Kullo, I., Pardi, D. et al. Epidemiology, risk factors and management of cardiovascular diseases in IBD. Nat Rev Gastroenterol Hepatol 12, 26–35 (2015). https://doi.org/10.1038/nrgastro.2014.202

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing