Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploration of liver cancer genomes

Key Points

  • Whole-exome and whole-genome sequencing have provided a comprehensive and high-resolution view of somatic genomic alterations in liver cancer

  • Global epigenetic analyses have further identified both unique and complementary molecular alterations in liver cancer

  • Somatic mutational signatures of the liver cancer genome are complex and tend to be associated with epidemiological backgrounds

  • Integration of genetic and epigenetic alteration profiles has elucidated core oncogenic pathways, potential therapeutic targets and new molecular classifications in liver cancer

Abstract

Liver cancer is the third leading cause of cancer-related death worldwide. Advances in sequencing technologies have enabled the examination of liver cancer genomes at high resolution; somatic mutations, structural alterations, HBV integration, RNA editing and retrotransposon changes have been comprehensively identified. Furthermore, integrated analyses of trans-omics data (genome, transcriptome and methylome data) have identified multiple critical genes and pathways implicated in hepatocarcinogenesis. These analyses have uncovered potential therapeutic targets, including growth factor signalling, WNT signalling, the NFE2L2-mediated oxidative pathway and chromatin modifying factors, and paved the way for new molecular classifications for clinical application. The aetiological factors associated with liver cancer are well understood; however, their effects on the accumulation of somatic changes and the influence of ethnic variation in risk factors still remain unknown. The international collaborations of cancer genome sequencing projects are expected to contribute to an improved understanding of risk evaluation, diagnosis and therapy for this cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiple aetiological factors and ethnic differences affect somatic mutation signatures in liver cancer.
Figure 2: Core oncogenic pathways in hepatocarcinogenesis.

Similar content being viewed by others

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  2. Forner, A., Llovet, J. M. & Bruix, J. Hepatocellular carcinoma. Lancet 379, 1245–1255 (2012).

    Article  PubMed  Google Scholar 

  3. El-Serag, H. B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142, 1264–1273 (2012).

    Article  PubMed  Google Scholar 

  4. Yu, J., Shen, J., Sun, T. T., Zhang, X. & Wong, N. Obesity, insulin resistance, NASH and hepatocellular carcinoma. Semin. Cancer Biol. 23, 483–491 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Shaib, Y. & El-Serag, H. B. The epidemiology of cholangiocarcinoma. Semin. Liver Dis. 24, 115–125 (2004).

    Article  PubMed  Google Scholar 

  6. Palmer, W. C. & Patel, T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J. Hepatol. 57, 69–76 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Takeo, S. et al. Examination of oncogene amplification by genomic DNA microarray in hepatocellular carcinomas: comparison with comparative genomic hybridization analysis. Cancer Genet. Cytogenet. 130, 127–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Yasui, K. et al. TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology 35, 1476–1484 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Okamoto, H., Yasui, K., Zhao, C., Arii, S. & Inazawa, J. PTK2 and EIF3S3 genes may be amplification targets at 8q23-q24 and are associated with large hepatocellular carcinomas. Hepatology 38, 1242–1249 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Patil, M. A. et al. Array-based comparative genomic hybridization reveals recurrent chromosomal aberrations and Jab1 as a potential target for 8q gain in hepatocellular carcinoma. Carcinogenesis 26, 2050–2057 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Midorikawa, Y. et al. Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays. Oncogene 25, 5581–5590 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Poon, T. C. et al. A tumor progression model for hepatocellular carcinoma: bioinformatic analysis of genomic data. Gastroenterology 131, 1262–1270 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Katoh, H. et al. Genetically distinct and clinically relevant classification of hepatocellular carcinoma: putative therapeutic targets. Gastroenterology 133, 1475–1486 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Ma, N. F. et al. Isolation and characterization of a novel oncogene, amplified in liver cancer 1, within a commonly amplified region at 1q21 in hepatocellular carcinoma. Hepatology 47, 503–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Schlaeger, C. et al. Etiology-dependent molecular mechanisms in human hepatocarcinogenesis. Hepatology 47, 511–520 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, S. A. et al. Integration of genomic analysis and in vivo transfection to identify sprouty 2 as a candidate tumor suppressor in liver cancer. Hepatology 47, 1200–1210 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Chochi, Y. et al. A copy number gain of the 6p arm is linked with advanced hepatocellular carcinoma: an array-based comparative genomic hybridization study. J. Pathol. 217, 677–684 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Guo, X. et al. A meta-analysis of array-CGH studies implicates antiviral immunity pathways in the development of hepatocellular carcinoma. PLoS ONE 6, e28404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, K. et al. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology 58, 706–717 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Roessler, S. et al. Integrative genomic identification of genes on 8p associated with hepatocellular carcinoma progression and patient survival. Gastroenterology 142, 957–966 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852–864 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sawey, E. T. et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell 19, 347–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522–1527 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, M. et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat. Genet. 43, 828–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guichard, C. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 44, 694–698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, J. et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat. Genet. 44, 1117–1121 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Cleary, S. P. et al. Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology http://dx.doi.org/10.1002/hep.26540.

  29. Ong, C. K. et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat. Genet. 44, 690–693 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Totoki, Y. et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat. Genet. 43, 464–469 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760–764 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Kan, Z. et al. Whole genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 23, 1422–1433 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neuveut, C., Wei, Y. & Buendia, M. A. Mechanisms of HBV-related hepatocarcinogenesis. J. Hepatol. 52, 594–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Jiang, Z. et al. The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res. 22, 593–601 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sung, W. K. et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 44, 765–769 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shukla, R. et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153, 101–111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holczbauer, A. et al. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 145, 221–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Herceg, Z. & Paliwal, A. Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome. Mutat. Res. 727, 55–61 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Eden, A., Gaudet, F., Waghmare, A. & Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Nagae, G. et al. Tissue-specific demethylation in CpG-poor promoters during cellular differentiation. Hum. Mol. Genet. 20, 2710–2721 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Toyota, M. et al. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA 96, 8681–8686 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tao, M. H. & Freudenheim, J. L. DNA methylation in endometrial cancer. Epigenetics 5, 491–498 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet. 45, 860–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Herath, N. I., Leggett, B. A. & MacDonald, G. A. Review of genetic and epigenetic alterations in hepatocarcinogenesis. J. Gastroenterol. Hepatol. 21, 15–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, C. et al. CpG island methylator phenotype association with elevated serum alpha-fetoprotein level in hepatocellular carcinoma. Clin. Cancer Res. 13, 944–952 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kudo, Y. et al. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation. Cancer Sci. 103, 670–676 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, P. et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene 32, 3091–3100 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Noushmehr, H. et al. Identification of a CpG Island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Deng, Y. B. et al. Identification of genes preferentially methylated in hepatitis C virus-related hepatocellular carcinoma. Cancer Sci. 101, 1501–1510 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Bibikova, M. et al. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics 1, 177–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Clark, C. et al. A comparison of the whole genome approach of MeDIP-seq to the targeted approach of the Infinium HumanMethylation450 BeadChip® for methylome profiling. PLoS ONE 7, e50233 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ogino, S. et al. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod. Pathol. 26, 465–484 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shen, J. et al. Genome-wide DNA methylation profiles in hepatocellular carcinoma. Hepatology 55, 1799–1808 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Shen, J. et al. Exploring genome-wide DNA methylation profiles altered in hepatocellular carcinoma using Infinium HumanMethylation 450 BeadChips. Epigenetics 8, 34–43 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tao, R. et al. Methylation profile of single hepatocytes derived from hepatitis B virus-related hepatocellular carcinoma. PLoS ONE 6, e19862 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ushijima, T. Epigenetic field for cancerization. J. Biochem. Mol. Biol. 40, 142–150 (2007).

    CAS  PubMed  Google Scholar 

  62. Nishida, N. et al. Extensive methylation is associated with beta-catenin mutations in hepatocellular carcinoma: evidence for two distinct pathways of human hepatocarcinogenesis. Cancer Res. 67, 4586–4594 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Zang, J. J. et al. P16 gene hypermethylation and hepatocellular carcinoma: a systematic review and meta-analysis. World J. Gastroenterol. 17, 3043–3048 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wong, I. H. et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res. 59, 71–73 (1999).

    CAS  PubMed  Google Scholar 

  65. Narimatsu, T. et al. p16 promoter hypermethylation in human hepatocellular carcinoma with or without hepatitis virus infection. Intervirology 47, 26–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, Y. J. et al. High frequency of promoter hypermethylation of the RASSF1A and p16 genes and its relationship to aflatoxin B1-DNA adducts level in human hepatocellular carcinoma. Mol. Carcinogenesis 35, 85–92 (2002).

    Article  CAS  Google Scholar 

  67. Zhong, S. et al. Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin. Cancer Res. 8, 1087–1092 (2002).

    CAS  PubMed  Google Scholar 

  68. Yang, B., Guo, M., Herman, J. G. & Clark, D. P. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am. J. Pathol. 163, 1101–1107 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, Y. J. et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation and its relationship to aflatoxin B1-DNA adducts and p53 mutations in hepatocellular carcinoma. Int. J. Cancer 103, 440–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Boyault, S. et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45, 42–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Hoshida, Y. et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 69, 7385–7392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Midorikawa, Y. et al. Allelic imbalances and homozygous deletion on 8p23.2 for stepwise progression of hepatocarcinogenesis. Hepatology 49, 513–522 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Vetter, D. et al. Enhanced hepatocarcinogenesis in mouse models and human hepatocellular carcinoma by coordinate KLF6 depletion and increased messenger RNA splicing. Hepatology 56, 1361–1370 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Berasain, C. et al. Impairment of pre-mRNA splicing in liver disease: mechanisms and consequences. World J. Gastroenterol. 16, 3091–3102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lu, X. et al. Aberrant splicing of Hugl-1 is associated with hepatocellular carcinoma progression. Clin. Cancer Res. 15, 3287–3296 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Tsedensodnom, O. et al. Identification of T-cell factor-4 isoforms that contribute to the malignant phenotype of hepatocellular carcinoma cells. Exp. Cell Res. 317, 920–931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Castillo, J. et al. Amphiregulin induces the alternative splicing of p73 into its oncogenic isoform DeltaEx2p73 in human hepatocellular tumors. Gastroenterology 137, 1805–1815 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Li, Y., Chen, L., Chan, T. H. & Guan, X. Y. Hepatocellular carcinoma: transcriptome diversity regulated by RNA editing. Int. J. Biochem. Cell Biol. 45, 1843–1848 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, L. et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 19, 209–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hussain, S. P. et al. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26, 2166–2176 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Liew, C. T. et al. High frequency of p16INK4A gene alterations in hepatocellular carcinoma. Oncogene 18, 789–795 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, C. et al. CpG island methylator phenotype association with upregulated telomerase activity in hepatocellular carcinoma. Int. J. Cancer 123, 998–1004 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Mayhew, C. N. et al. RB loss abrogates cell cycle control and genome integrity to promote liver tumorigenesis. Gastroenterology 133, 976–984 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Killela, P. J. et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl Acad. Sci. USA 110, 6021–6026 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nault, J. C. et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun. 4, 2218 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  92. de La Coste, A. et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc. Natl Acad. Sci. USA 95, 8847–8851 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Satoh, S. et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat. Genet. 24, 245–250 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Oda, H., Imai, Y., Nakatsuru, Y., Hata, J. & Ishikawa, T. Somatic mutations of the APC gene in sporadic hepatoblastomas. Cancer Res. 56, 3320–3323 (1996).

    CAS  PubMed  Google Scholar 

  95. Taniguchi, K. et al. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 21, 4863–4871 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Takagi, H. et al. Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma. J. Gastroenterol. 43, 378–389 (2008).

    Article  PubMed  Google Scholar 

  97. Tsao, C. M. et al. SOX1 functions as a tumor suppressor by antagonizing the WNT/β-catenin signaling pathway in hepatocellular carcinoma. Hepatology 56, 2277–2287 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Lévy, L., Renard, C. A., Wei, Y. & Buendia, M. A. Genetic alterations and oncogenic pathways in hepatocellular carcinoma. Ann. NY Acad. Sci. 963, 21–36 (2002).

    Article  PubMed  Google Scholar 

  99. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Euskirchen, G., Auerbach, R. K. & Snyder, M. SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J. Biol. Chem. 287, 30897–30905 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wilson, B. G. & Roberts, C. W. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 11, 481–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Shain, A. H. & Pollack, J. R. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS ONE 8, e55119 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Milne, T. A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Ruthenburg, A. J. et al. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145, 692–706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yoshikawa, H. et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat. Genet. 28, 29–35 (2001).

    CAS  PubMed  Google Scholar 

  108. Challen, C., Guo, K., Collier, J. D., Cavanagh, D., Bassendine, M. F. Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas. J. Hepatol. 14, 342–346 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Tanaka, Y. et al. Absence of PIK3CA hotspot mutations in hepatocellular carcinoma in Japanese patients. Oncogene 25, 2950–2952 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Andersen, J. B. et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 142, 1021–1031 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Wu, K. et al. Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development. Hepatology 56, 2255–2267 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Nussbaum, T. et al. Autocrine insulin-like growth factor-II stimulation of tumor cell migration is a progression step in human hepatocarcinogenesis. Hepatology 48, 146–156 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Yoshiji, H. et al. Vascular endothelial growth factor tightly regulates in vivo development of murine hepatocellular carcinoma cells. Hepatology 28, 1489–1496 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Taguchi, K., Motohashi, H. & Yamamoto M. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 16, 123–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Shibata, T. et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl Acad. Sci. USA 105, 13568–13573 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mitsuishi, Y. et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22, 66–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Tschaharganeh, D. F. et al. Yes-associated protein up-regulates Jagged-1 and activates the Notch pathway in human hepatocellular carcinoma. Gastroenterology 144, 1530–1542 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Villanueva, A. et al. Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology 143, 1660–1669 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Viatour, P. et al. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. J. Exp. Med. 208, 1963–1976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Qi, R. et al. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res. 63, 8323–8329 (2003).

    CAS  PubMed  Google Scholar 

  121. Radtke, F. & Raj, K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat. Rev. Cancer 3, 756–767 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Schirmacher, P. & Calvisi, D. F. Molecular diagnostic algorithms in hepatocellular carcinoma: dead-end street or light at the end of the tunnel? Gastroenterology 145, 49–53 (2013).

    Article  PubMed  Google Scholar 

  123. Boyault, S. et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45, 42–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Hoshida, Y. et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 69, 7385–7392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chiang, D. Y. et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 68, 6779–6788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Imamura, H. et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J. Hepatol. 38, 200–207 (2003).

    Article  PubMed  Google Scholar 

  127. Hoshida, Y. et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N. Engl. J. Med. 359, 1995–2004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nault, J. C. et al. A hepatocellular carcinoma 5-gene score associated with survival of patients after liver resection. Gastroenterology 145, 176–187 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize for the many excellent works which are not acknowledged in the reference list owing to the limited space. The work of the authors is supported partially by Grants-in-Aid from the Ministry of Health, Labour and Welfare for the 3rd-term Comprehensive 10-year Strategy for Cancer Control, National Cancer Center Research and Development Fund (23-A-8) (T. Shibata), and JSPS KAKENHI Grant Number 24221011 (A. Aburatani).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Tatsuhiro Shibata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, T., Aburatani, H. Exploration of liver cancer genomes. Nat Rev Gastroenterol Hepatol 11, 340–349 (2014). https://doi.org/10.1038/nrgastro.2014.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer