Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Neural stem cell therapies for enteric nervous system disorders

Abstract

The enteric nervous system is vulnerable to a range of congenital and acquired disorders that disrupt the function of its neurons or lead to their loss. The resulting enteric neuropathies are some of the most challenging clinical conditions to manage. Neural stem cells offer the prospect of a cure given their potential ability to replenish missing or dysfunctional neurons. This article discusses diseases that might be targets for stem cell therapies and the barriers that could limit treatment application. We explore various sources of stem cells and the proof of concept for their use. The critical steps that remain to be addressed before these therapies can be used in patients are also discussed. Key milestones include the harvesting of neural stem cells from the human gut and the latest in vivo transplantation studies in animals. The tremendous progress in the field has brought experimental studies exploring the potential of stem cell therapies for the management of enteric neuropathies to the cusp of clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the potential steps for stem cell therapy for enteric neuropathies.
Figure 2: Gastrointestinal neuropathies and disorders that are potentially amenable to enteric neural stem cell therapies.
Figure 3: Selection, culture and transplantation of enteric neural stem cells.

Similar content being viewed by others

References

  1. Furness, J. B. The Enteric Nervous System (John Wiley and Sons Ltd., 2006).

    Google Scholar 

  2. Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Gershon, M. D. The enteric nervous system: a second brain. Hosp. Pract. 34, 31–42 (1999).

    Article  CAS  Google Scholar 

  4. Gratwohl, A. et al. Hematopoietic stem cell transplantation: a global perspective. JAMA 303, 1617–1624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burns, A. J., Pasricha, P. J. & Young, H. M. Enteric neural crest-derived cells and neural stem cells: biology and therapeutic potential. Neurogastroenterol. Motil. 16 (Suppl. 1), 3–7 (2004).

    Article  PubMed  Google Scholar 

  6. Heanue, T. A. & Pachnis, V. Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies. Nat. Rev. Neurosci. 8, 466–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Hotta, R., Natarajan, D., Burns, A. J. & Thapar, N. Stem cells for GI motility disorders. Curr. Opin. Pharmacol. 11, 617–623 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, M. T., Kuan, Y. H., Wang, J., Hen, R. & Gershon, M. D. 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J. Neurosci. 29, 9683–9699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kenny, S. E., Tam, P. K. & Garcia-Barcelo, M. Hirschsprung's disease. Semin. Pediatr. Surg. 19, 194–200 (2010).

    Article  PubMed  Google Scholar 

  10. Amiel, J. & Lyonnet, S. Hirschsprung disease, associated syndromes, and genetics: a review. J. Med. Genet. 38, 729–739 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goldstein, A., Hofstra, R. & Burns, A. Building a brain in the gut: development of the enteric nervous system. Clin. Genet. 83, 307–316 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Obermayr, F., Hotta, R., Enomoto, H. & Young, H. M. Development and developmental disorders of the enteric nervous system. Nat. Rev. Gastroenterol. Hepatol. 10, 43–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Lake, J. I. & Heuckeroth, R. O. Enteric nervous system development: migration, differentiation, and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G1–G24 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sasselli, V., Pachnis, V. & Burns, A. J. The enteric nervous system. Dev. Biol. 366, 64–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Kubota, M., Suita, S., Kamimura, T., Ito, Y. & Szurszewski, J. H. Electrophysiological properties of the aganglionic segment in Hirschsprung's disease. Surgery 131, S288–S293 (2002).

    Article  PubMed  Google Scholar 

  16. Almond, S., Lindley, R. M., Kenny, S. E., Connell, M. G. & Edgar, D. H. Characterisation and transplantation of enteric nervous system progenitor cells. Gut 56, 489–496 (2007).

    Article  PubMed  Google Scholar 

  17. Micci, M. A. et al. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase-deficient mice. Gastroenterology 129, 1817–1824 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Hotta, R. et al. Transplanted progenitors generate functional enteric neurons in the postnatal colon. J. Clin. Invest. 123, 1182–1191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindley, R. M. et al. Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. Gastroenterology 135, 205–216 (2008).

    Article  PubMed  Google Scholar 

  20. Natarajan, D., Grigoriou, M., Marcos-Gutierrez, C. V., Atkins, C. & Pachnis, V. Multipotential progenitors of the mammalian enteric nervous system capable of colonising aganglionic bowel in organ culture. Development 126, 157–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Dong, Y. L. et al. Neural stem cell transplantation rescues rectum function in the aganglionic rat. Transplant. Proc. 40, 3646–3652 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, W., Wu, R. D., Dong, Y. L. & Gao, Y. M. Neuroepithelial stem cells differentiate into neuronal phenotypes and improve intestinal motility recovery after transplantation in the aganglionic colon of the rat. Neurogastroenterol. Motil. 19, 1001–1009 (2007).

    CAS  PubMed  Google Scholar 

  23. Thrasivoulou, C. et al. Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. Aging Cell 5, 247–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Wade, P. R. & Hornby, P. J. Age-related neurodegenerative changes and how they affect the gut. Sci. Aging Knowledge Environ. 2005, pe8 (2005).

    Article  PubMed  Google Scholar 

  25. Kobayashi, H., O'Briain, D. S. & Puri, P. Nerve growth factor receptor immunostaining suggests an extrinsic origin for hypertrophic nerves in Hirschsprung's disease. Gut 35, 1605–1607 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van den Berg, M. M. et al. Morphological changes of the enteric nervous system, interstitial cells of Cajal, and smooth muscle in children with colonic motility disorders. J. Pediatr. Gastroenterol. Nutr. 48, 22–29 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Hotta, R., Anderson, R. B., Kobayashi, K., Newgreen, D. F. & Young, H. M. Effects of tissue age, presence of neurones and endothelin-3 on the ability of enteric neurone precursors to colonize recipient gut: implications for cell-based therapies. Neurogastroenterol. Motil. 22, 331–e86 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Walzer, N. & Hirano, I. Achalasia. Gastroenterol. Clin. North Am. 37, 807–825 (2008).

    Article  PubMed  Google Scholar 

  29. Metzger, M., Caldwell, C., Barlow, A. J., Burns, A. J. & Thapar, N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology 136, 2214–2225 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. De Giorgio, R. et al. Inflammatory neuropathies of the enteric nervous system. Gastroenterology 126, 1872–1883 (2004).

    Article  PubMed  Google Scholar 

  31. Oh, J. H. & Pasricha, P. J. Recent advances in the pathophysiology and treatment of gastroparesis. J. Neurogastroenterol. Motil. 19, 18–24 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Waseem, S., Islam, S., Kahn, G., Moshiree, B. & Talley, N. J. Spectrum of gastroparesis in children. J. Pediatr. Gastroenterol. Nutr. 55, 166–172 (2012).

    Article  PubMed  Google Scholar 

  33. Vanormelingen, C., Tack, J. & Andrews, C. N. Diabetic gastroparesis. Br. Med. Bull. 105, 213–230 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Camilleri, M., Bharucha, A. E. & Farrugia, G. Epidemiology, mechanisms, and management of diabetic gastroparesis. Clin. Gastroenterol. Hepatol. 9, 5–12 (2011).

    Article  PubMed  Google Scholar 

  35. Takahashi, T., Nakamura, K., Itoh, H., Sima, A. A. & Owyang, C. Impaired expression of nitric oxide synthase in the gastric myenteric plexus of spontaneously diabetic rats. Gastroenterology 113, 1535–1544 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Wrzos, H. F., Cruz, A., Polavarapu, R., Shearer, D. & Ouyang, A. Nitric oxide synthase (NOS) expression in the myenteric plexus of streptozotocin-diabetic rats. Dig. Dis. Sci. 42, 2106–2110 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Watkins, C. C. et al. Insulin restores neuronal nitric oxide synthase expression and function that is lost in diabetic gastropathy. J. Clin. Invest. 106, 373–384 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iwasaki, H. et al. A deficiency of gastric interstitial cells of Cajal accompanied by decreased expression of neuronal nitric oxide synthase and substance P in patients with type 2 diabetes mellitus. J. Gastroenterol. 41, 1076–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Grover, M. et al. Clinical-histological associations in gastroparesis: results from the Gastroparesis Clinical Research Consortium. Neurogastroenterol. Motil. 24, 531–539 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Forster, J. et al. Absence of the interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings. J. Gastrointest. Surg. 9, 102–108 (2005).

    Article  PubMed  Google Scholar 

  41. McCann, C. J. et al. Establishment of pacemaker activity in tissues allotransplanted with interstitial cells of Cajal. Neurogastroenterol. Motil. 25, e418–e428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vanderwinden, J. M., Mailleux, P., Schiffmann, S. N., Vanderhaeghen, J. J. & De Laet, M. H. Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. N. Engl. J. Med. 327, 511–515 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Rivera, L. R., Poole, D. P., Thacker, M. & Furness, J. B. The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol. Motil. 23, 980–988 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Peeters, B., Benninga, M. A. & Hennekam, R. C. Infantile hypertrophic pyloric stenosis—genetics and syndromes. Nat. Rev. Gastroenterol. Hepatol. 9, 646–660 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Vanderwinden, J. M. et al. The pathology of infantile hypertrophic pyloric stenosis after healing. J. Pediatr. Surg. 31, 1530–1534 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Heneyke, S., Smith, V. V., Spitz, L. & Milla, P. J. Chronic intestinal pseudo-obstruction: treatment and long term follow up of 44 patients. Arch. Dis. Child. 81, 21–27 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mousa, H., Hyman, P. E., Cocjin, J., Flores, A. F. & Di Lorenzo, C. Long-term outcome of congenital intestinal pseudoobstruction. Dig. Dis. Sci. 47, 2298–2305 (2002).

    Article  PubMed  Google Scholar 

  48. Kapur, R. P. Neuronal dysplasia: a controversial pathological correlate of intestinal pseudo-obstruction. Am. J. Med. Genet. A 122A, 287–293 (2003).

    Article  PubMed  Google Scholar 

  49. Meier-Ruge, W. A., Bruder, E. & Kapur, R. P. Intestinal neuronal dysplasia type B: one giant ganglion is not good enough. Pediatr. Dev. Pathol. 9, 444–452 (2006).

    Article  PubMed  Google Scholar 

  50. Knowles, C. H. et al. Gastrointestinal neuromuscular pathology: guidelines for histological techniques and reporting on behalf of the Gastro 2009 International Working Group. Acta Neuropathol. 118, 271–301 (2009).

    Article  PubMed  Google Scholar 

  51. Knowles, C. H. et al. The London Classification of gastrointestinal neuromuscular pathology: report on behalf of the Gastro 2009 International Working Group. Gut 59, 882–887 (2010).

    Article  PubMed  Google Scholar 

  52. Knowles, C. H. et al. Quantitation of cellular components of the enteric nervous system in the normal human gastrointestinal tract—report on behalf of the Gastro 2009 International Working Group. Neurogastroenterol. Motil. 23, 115–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Knowles, C. H., Lindberg, G., Panza, E. & De Giorgio, R. New perspectives in the diagnosis and management of enteric neuropathies. Nat. Rev. Gastroenterol. Hepatol. 10, 206–218 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. De Giorgio, R. et al. Chronic intestinal pseudo-obstruction related to viral infections. Transplant. Proc. 42, 9–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Bassotti, G. & Villanacci, V. Slow transit constipation: a functional disorder becomes an enteric neuropathy. World J. Gastroenterol. 12, 4609–4613 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Knowles, C. H. & Farrugia, G. Gastrointestinal neuromuscular pathology in chronic constipation. Best Pract. Res. Clin. Gastroenterol. 25, 43–57 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Giorgio, V. et al. High-resolution colonic manometry accurately predicts colonic neuromuscular pathological phenotype in pediatric slow transit constipation. Neurogastroenterol. Motil. 25, 70–78 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Brehmer, A. et al. Experimental hypertrophy of myenteric neurones in the pig: a morphometric study. Neurogastroenterol. Motil. 12, 155–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Chang, I. Y. et al. Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction. J. Physiol. 536, 555–568 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bharucha, A. E. et al. Prevalence and burden of fecal incontinence: a population-based study in women. Gastroenterology 129, 42–49 (2005).

    Article  PubMed  Google Scholar 

  61. Edwards, N. I. & Jones, D. The prevalence of faecal incontinence in older people living at home. Age Ageing 30, 503–507 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Rao, S. S. Pathophysiology of adult fecal incontinence. Gastroenterology 126, S14–S22 (2004).

    Article  PubMed  Google Scholar 

  63. Raghavan, S. et al. Successful implantation of bioengineered, intrinsically innervated, human internal anal sphincter. Gastroenterology 141, 310–319 (2011).

    Article  PubMed  Google Scholar 

  64. Mothe, A. J. & Tator, C. H. Advances in stem cell therapy for spinal cord injury. J. Clin. Invest. 122, 3824–3834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sahni, V. & Kessler, J. A. Stem cell therapies for spinal cord injury. Nat. Rev. Neurol. 6, 363–372 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ronaghi, M., Erceg, S., Moreno-Manzano, V. & Stojkovic, M. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 28, 93–99 (2010).

    Article  PubMed  Google Scholar 

  67. Panza, E. et al. Genetics of human enteric neuropathies. Prog. Neurobiol. 96, 176–189 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, Q. et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med. 1, 266–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O. & Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129–1133 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Dhara, S. K. & Stice, S. L. Neural differentiation of human embryonic stem cells. J. Cell. Biochem. 105, 633–640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sasselli, V., Micci, M. A., Kahrig, K. M. & Pasricha, P. J. Evaluation of ES-derived neural progenitors as a potential source for cell replacement therapy in the gut. BMC Gastroenterol. 12, 81 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hotta, R. et al. Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem Cells 27, 2896–2905 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Kawaguchi, J., Nichols, J., Gierl, M. S., Faial, T. & Smith, A. Isolation and propagation of enteric neural crest progenitor cells from mouse embryonic stem cells and embryos. Development 137, 693–704 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, J. Y., Christophersen, N. S., Hall, V., Soulet, D. & Brundin, P. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci. 31, 146–153 (2008).

    Article  PubMed  CAS  Google Scholar 

  77. McLaren, A. Ethical and social considerations of stem cell research. Nature 414, 129–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Robinton, D. A. & Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature 481, 295–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10, 678–684 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Stadtfeld, M. & Hochedlinger, K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 24, 2239–2263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yung, J. S., Tam, P. K. & Ngan, E. S. Pluripotent stem cell for modeling neurological diseases. Exp. Cell Res. 319, 177–184 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Ueda, T. et al. Generation of functional gut-like organ from mouse induced pluripotent stem cells. Biochem. Biophys. Res. Commun. 391, 38–42 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Ben-David, U. & Benvenisty, N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer 11, 268–277 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Li, W. & Xiang, A. P. Safeguarding clinical translation of pluripotent stem cells with suicide genes. Organogenesis 9 34–39 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chen, F. et al. Suicide gene-mediated ablation of tumor-initiating mouse pluripotent stem cells. Biomaterials 34, 1701–1711 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Davis, A. A. & Temple, S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372, 263–266 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Bixby, S., Kruger, G. M., Mosher, J. T., Joseph, N. M. & Morrison, S. J. Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 35, 643–656 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Schafer, K. H., Micci, M. A. & Pasricha, P. J. Neural stem cell transplantation in the enteric nervous system: roadmaps and roadblocks. Neurogastroenterol. Motil. 21, 103–112 (2009).

    Article  PubMed  Google Scholar 

  90. Sidebotham, E. L., Kenny, S. E., Lloyd, D. A., Vaillant, C. R. & Edgar, D. H. Location of stem cells for the enteric nervous system. Pediatr. Surg. Int. 18, 581–585 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Bondurand, N., Natarajan, D., Thapar, N., Atkins, C. & Pachnis, V. Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development 130, 6387–6400 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Dupin, E. & Sommer, L. Neural crest progenitors and stem cells: from early development to adulthood. Dev. Biol. 366, 83–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Rauch, U., Hansgen, A., Hagl, C., Holland-Cunz, S. & Schafer, K. H. Isolation and cultivation of neuronal precursor cells from the developing human enteric nervous system as a tool for cell therapy in dysganglionosis. Int. J. Colorectal Dis. 21, 554–559 (2006).

    Article  PubMed  Google Scholar 

  94. Lebouvier, T. et al. Routine colonic biopsies as a new tool to study the enteric nervous system in living patients. Neurogastroenterol. Motil. 22, e11–e14 (2010).

    CAS  PubMed  Google Scholar 

  95. Rajan, E. et al. Endoscopic “no hole” full-thickness biopsy of the stomach to detect myenteric ganglia. Gastrointest. Endosc. 68, 301–307 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Neunlist, M. et al. Colonic endoscopic full-thickness biopsies: from the neuropathological analysis of the myenteric plexus to the functional study of neuromuscular transmission. Gastrointest. Endosc. 73, 1029–1034 (2011).

    Article  PubMed  Google Scholar 

  97. Becker, L., Kulkarni, S., Tiwari, G., Micci, M. A. & Pasricha, P. J. Divergent fate and origin of neurosphere-like bodies from different layers of the gut. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G958–G965 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kruger, G. M. et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35, 657–669 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iwashita, T., Kruger, G. M., Pardal, R., Kiel, M. J. & Morrison, S. J. Hirschsprung disease is linked to defects in neural crest stem cell function. Science 301, 972–976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Thapar, N., Natarajan, D., Caldwell, C., Burns, A. J. & Pachnis, V. Isolation of enteric nervous system progenitors from Hirschsprung's-like gut. Neurogastroenterol. Motil. 18, A318 (2006).

    Google Scholar 

  101. Sun, N. F. et al. Coexpression of recombinant adenovirus carrying GDNF and EDNRB genes in neural stem cells in vitro. Cell Biol. Int. 37, 458–463 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Micci, M. A., Learish, R. D., Li, H., Abraham, B. P. & Pasricha, P. J. Neural stem cells express RET, produce nitric oxide, and survive transplantation in the gastrointestinal tract. Gastroenterology 121, 757–766 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Druckenbrod, N. R. & Epstein, M. L. Age-dependent changes in the gut environment restrict the invasion of the hindgut by enteric neural progenitors. Development 136, 3195–3203 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Meijers, J. H. et al. Colonization characteristics of enteric neural crest cells: embryological aspects of Hirschsprung's disease. J. Pediatr. Surg. 27, 811–814 (1992).

    Article  CAS  PubMed  Google Scholar 

  106. Martucciello, G. et al. GDNF deficit in Hirschsprung's disease. J. Pediatr. Surg. 33, 99–102 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Bondurand, N., Natarajan, D., Barlow, A., Thapar, N. & Pachnis, V. Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development 133, 2075–2086 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Barlow, A., de Graaff, E. & Pachnis, V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 40, 905–916 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Natarajan, D., Marcos-Gutierrez, C., Pachnis, V. & de Graaff, E. Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis. Development 129, 5151–5160 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Young, H. M. et al. GDNF is a chemoattractant for enteric neural cells. Dev. Biol. 229, 503–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Theocharatos, S. et al. Regulation of progenitor cell proliferation and neuronal differentiation in enteric nervous system neurospheres. PLoS ONE 8, e54809 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hagl, C. et al. Expression and function of the transforming growth factor-β system in the human and rat enteric nervous system. Neurogastroenterol. Motil. 25, 601–e464 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Hagl, C. I. et al. Enteric neurons from postnatal Fgf2 knockout mice differ in neurite outgrowth responses. Auton. Neurosci. 170, 56–61 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Hagl, C. I. et al. The microenvironment in the Hirschsprung's disease gut supports myenteric plexus growth. Int. J. Colorectal Dis. 27, 817–829 (2012).

    Article  PubMed  Google Scholar 

  115. Raghavan, S., Gilmont, R. R. & Bitar, K. N. Neuroglial differentiation of adult enteric neuronal progenitor cells as a function of extracellular matrix composition. Biomaterials 34, 6649–6658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Becker, L., Peterson, J., Kulkarni, S. & Pasricha, P. J. Ex vivo neurogenesis within enteric ganglia occurs in a PTEN dependent manner. PLoS ONE 8, e59452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu, W., Yue, W. & Wu, R. Overexpression of Bcl-2 promotes survival and differentiation of neuroepithelial stem cells after transplantation into rat aganglionic colon. Stem Cell Res. Ther. 4, 7 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Smith, J. M., Nemeth, T. L. & McDonald, R. A. Current immunosuppressive agents: efficacy, side effects, and utilization. Pediatr. Clin. North Am. 50, 1283–1300 (2003).

    Article  PubMed  Google Scholar 

  119. Odorico, J. S., Kaufman, D. S. & Thomson, J. A. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19, 193–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Mountford, J. C. Human embryonic stem cells: origins, characteristics and potential for regenerative therapy. Transfus. Med. 18, 1–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Micci, M. A. & Pasricha, P. J. Neural stem cells for the treatment of disorders of the enteric nervous system: strategies and challenges. Dev. Dyn. 236, 33–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Martucciello, G. et al. Neural crest neuroblasts can colonise aganglionic and ganglionic gut in vivo. Eur. J. Pediatr. Surg. 17, 34–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Tsai, Y. H., Murakami, N. & Gariepy, C. E. Postnatal intestinal engraftment of prospectively selected enteric neural crest stem cells in a rat model of Hirschsprung disease. Neurogastroenterol. Motil. 23, 362–369 (2011).

    Article  PubMed  Google Scholar 

  124. Jayasinghe, S. N. Bio-electrosprays: from bio-analytics to a generic tool for the health sciences. Analyst 136, 878–890 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Burns, A. J., Roberts, R. R., Bornstein, J. C. & Young, H. M. Development of the enteric nervous system and its role in intestinal motility during fetal and early postnatal stages. Semin. Pediatr. Surg. 18, 196–205 (2009).

    Article  PubMed  Google Scholar 

  126. Sadowski, D. C., Ackah, F., Jiang, B. & Svenson, L. W. Achalasia: incidence, prevalence and survival. A population-based study. Neurogastroenterol. Motil. 22, e256–e261 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Mayberry, J. F. & Mayell, M. J. Epidemiological study of achalasia in children. Gut 29, 90–93 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Marlais, M., Fishman, J. R., Fell, J. M., Haddad, M. J. & Rawat, D. J. UK incidence of achalasia: an 11-year national epidemiological study. Arch. Dis. Child. 96, 192–194 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Pedersen, R. N. et al. Infantile hypertrophic pyloric stenosis: a comparative study of incidence and other epidemiological characteristics in seven European regions. J. Matern. Fetal Neonatal Med. 21, 599–604 (2008).

    Article  PubMed  Google Scholar 

  130. Thapar, N. Clinical picture of intestinal pseudo-obstruction syndrome. J. Pediatr. Gastroenterol. Nutr. 53 (Suppl. 2), S58–S59 (2011).

    PubMed  Google Scholar 

  131. Mosher, J. T. et al. Intrinsic differences among spatially distinct neural crest stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system. Dev. Biol. 303, 1–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Laranjeira, C. et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Invest. 121, 3412–3424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N. Thapar would like to acknowledge the support of Great Ormond Street Hospital Children's Charity. We are grateful to a number of colleagues at UCL Institute of Child Health, UK; to D. Smithson for the artwork and to D. Natarajan, J. Cooper, C. McCann and J.-M. Delalande for the images and much of our work described in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Nikhil Thapar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, A., Thapar, N. Neural stem cell therapies for enteric nervous system disorders. Nat Rev Gastroenterol Hepatol 11, 317–328 (2014). https://doi.org/10.1038/nrgastro.2013.226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.226

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research