Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in motility testing—current and novel approaches

Abstract

Disorders of gastrointestinal motility are frequently seen in clinical practice. Apart from motility disorders, factors leading to lowered visceroperception thresholds are recognized as commonly involved in the pathogenesis of functional gastrointestinal disorders. The wide array of gastrointestinal motility and viscerosensitivity tests available is in contrast with the relatively limited number of tests used universally in clinical practice. The main reason for this discrepancy is that the outcome of a test only becomes truly important when it carries clinical consequences. The main goal of this Review is to assess the place of the presently available gastrointestinal motility and sensitivity tests in the clinical armamentarium of the gastroenterologist.

Key Points

  • High-resolution manometry makes the assessment of oesophageal function easier and provides more information than conventional manometry

  • Wireless oesophageal pH monitoring provides an opportunity to assess gastro-oesophageal reflux over prolonged periods of time in a patient-friendly fashion

  • Intraluminal impedance monitoring of the oesophagus not only enables detection of nonacid reflux, but can also distinguish different belching types

  • Wireless motility capsule technology has made it possible to study gastric emptying, small bowel transit and colonic transit in one noninvasive assessment

  • Several newly developed investigational tools (such as impedance planimetry and colonic high-resolution manometry) are promising, but their diagnostic value is not yet clear

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oesophageal manometry.
Figure 2: Timed barium oesophagogram in a patient with achalasia previously treated with Heller myotomy.
Figure 3: Oesophageal impedance and pH recording.
Figure 4: Concurrent gastric transit measurement with wireless motility capsule and scintigraphy.
Figure 5: Normal and abnormal antroduodenal manometry.
Figure 6: Supine abdominal radiograph taken after ingestion of 20 radio-opaque markers 5 days previously.

Similar content being viewed by others

References

  1. Spechler, S. J. & Castell, D. O. Classification of oesophageal motility abnormalities. Gut 49, 145–151 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bredenoord, A. J. et al. Chicago classification criteria of esophageal motility disorders defined in high resolution esophageal pressure topography. Neurogastroenterol. Motil. 24 (Suppl. 1), 57–65 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Bogte, A., Bredenoord, A. J., Oors, J., Siersema, P. D. & Smout, A. J. Relationship between esophageal contraction patterns and clearance of swallowed liquid and solid boluses in healthy controls and patients with dysphagia. Neurogastroenterol. Motil. 24, e364–e372 (2012).

    CAS  PubMed  Google Scholar 

  4. Bredenoord, A. J. & Hebbard, G. S. Technical aspects of clinical high-resolution manometry studies. Neurogastroenterol. Motil. 24 (Suppl. 1), 5–10 (2012).

    PubMed  Google Scholar 

  5. Tutuian, R. & Castell, D. O. Rumination documented by using combined multichannel intraluminal impedance and manometry. Clin. Gastroenterol. Hepatol. 2, 340–343 (2004).

    PubMed  Google Scholar 

  6. Dent, J. A new technique for continuous sphincter pressure measurement. Gastroenterology 71, 263–267 (1976).

    CAS  PubMed  Google Scholar 

  7. Clouse, R. E., Staiano, A. & Alrakawi, A. Topographic analysis of esophageal double-peaked waves. Gastroenterology 118, 469–476 (2000).

    CAS  PubMed  Google Scholar 

  8. Ghosh, S. K., Pandolfino, J. E., Zhang, Q., Jarosz, A. & Kahrilas, P. J. Deglutitive upper esophageal sphincter relaxation: a study of 75 volunteer subjects using solid-state high-resolution manometry. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G525–G531 (2006).

    CAS  PubMed  Google Scholar 

  9. Bredenoord, A. J., Weusten, B. L., Timmer, R. & Smout, A. J. Intermittent spatial separation of diaphragm and lower esophageal sphincter favors acidic and weakly acidic reflux. Gastroenterology 130, 334–340 (2006).

    PubMed  Google Scholar 

  10. Pandolfino, J. E. et al. Achalasia: a new clinically relevant classification by high-resolution manometry. Gastroenterology 135, 1526–1533 (2008).

    PubMed  Google Scholar 

  11. Fox, M. et al. High-resolution manometry predicts the success of oesophageal bolus transport and identifies clinically important abnormalities not detected by conventional manometry. Neurogastroenterol. Motil. 16, 533–542 (2004).

    CAS  PubMed  Google Scholar 

  12. Pandolfino, J. E., Fox, M. R., Bredenoord, A. J. & Kahrilas, P. J. High-resolution manometry in clinical practice: utilizing pressure topography to classify oesophageal motility abnormalities. Neurogastroenterol. Motil. 21, 796–806 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Levine, M. S., Rubesin, S. E. & Laufer, I. Barium esophagography: a study for all seasons. Clin. Gastroenterol. Hepatol. 6, 11–25 (2008).

    PubMed  Google Scholar 

  14. Pouderoux, P., Shi, G., Tatum, R. P. & Kahrilas, P. J. Esophageal solid bolus transit: studies using concurrent videofluoroscopy and manometry. Am. J. Gastroenterol. 94, 1457–1463 (1999).

    CAS  PubMed  Google Scholar 

  15. Galmiche, J. P. et al. Functional esophageal disorders. Gastroenterology 130, 1459–1465 (2006).

    PubMed  Google Scholar 

  16. El-Takli, I., O'Brien, P. & Paterson, W. G. Clinical diagnosis of achalasia: how reliable is the barium x-ray? Can. J. Gastroenterol. 20, 335–337 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rohof, W. O., Lei, A. & Boeckxstaens, G. E. Esophageal stasis on a timed barium esophagogram predicts recurrent symptoms in patients with long-standing achalasia. Am. J. Gastroenterol. 108, 49–55 (2013).

    CAS  PubMed  Google Scholar 

  18. Clouse, R. E., Prakash, C. & Haroian, L. R. Symptom association tests are improved by the extended ambulatory pH recording time with the Bravo capsule [abstract]. Gastroenterology 124, A537 (2003).

    Google Scholar 

  19. Pandolfino, J. E. et al. Comparison of the Bravo wireless and Digitrapper catheter-based pH monitoring systems for measuring esophageal acid exposure. Am. J. Gastroenterol. 100, 1466–1476 (2005).

    PubMed  Google Scholar 

  20. Hakanson, B. S., Berggren, P., Granqvist, S., Ljungqvist, O. & Thorell, A. Comparison of wireless 48-h (Bravo) versus traditional ambulatory 24-h esophageal pH monitoring. Scand. J. Gastroenterol. 44, 276–283 (2009).

    PubMed  Google Scholar 

  21. Prakash, C. & Clouse, R. E. Value of extended recording time with wireless pH monitoring in evaluating gastroesophageal reflux disease. Clin. Gastroenterol. Hepatol. 3, 329–334 (2005).

    PubMed  Google Scholar 

  22. Sweis, R., Fox, M., Anggiansah, A. & Wong, T. Prolonged, wireless pH-studies have a high diagnostic yield in patients with reflux symptoms and negative 24-h catheter-based pH-studies. Neurogastroenterol. Motil. 23, 419–426 (2011).

    CAS  PubMed  Google Scholar 

  23. Wiener, G. J., Richter, J. E., Copper, J. B., Wu, W. C. & Castell, D. O. The symptom index: a clinically important parameter of ambulatory 24-hour esophageal pH monitoring. Am. J. Gastroenterol. 83, 358–361 (1988).

    CAS  PubMed  Google Scholar 

  24. Weusten, B. L., Roelofs, J. M., Akkermans, L. M., Berge-Henegouwen, G. P. & Smout, A. J. The symptom-association probability: an improved method for symptom analysis of 24-hour esophageal pH data. Gastroenterology 107, 1741–1745 (1994).

    CAS  PubMed  Google Scholar 

  25. Silny, J. Intraluminal multiple electric impedance procedure for measurement of gastrointestinal motility. J. Gastrointest. Mot. 3, 151–162 (1991).

    Google Scholar 

  26. Sifrim, D. et al. Acid, nonacid, and gas reflux in patients with gastroesophageal reflux disease during ambulatory 24-hour pH-impedance recordings. Gastroenterology 120, 1588–1598 (2001).

    CAS  PubMed  Google Scholar 

  27. Bredenoord, A. J., Weusten, B. L., Curvers, W. L., Timmer, R. & Smout, A. J. Determinants of perception of heartburn and regurgitation. Gut 55, 313–318 (2005).

    PubMed  Google Scholar 

  28. Hemmink, G. J. et al. Esophageal pH-impedance monitoring in patients with therapy-resistant reflux symptoms: 'on' or 'off' proton pump inhibitor? Am. J. Gastroenterol. 103, 2446–2453 (2008).

    PubMed  Google Scholar 

  29. Bredenoord, A. J., Weusten, B. L., Sifrim, D., Timmer, R. & Smout, A. J. Aerophagia, gastric, and supragastric belching: a study using intraluminal electrical impedance monitoring. Gut 53, 1561–1565 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hemmink, G. J. et al. Speech therapy in patients with excessive supragastric belching—a pilot study. Neurogastroenterol. Motil. 22, 24–28 (2009).

    PubMed  Google Scholar 

  31. Gregersen, H. & Andersen, M. B. Impedance measuring system for quantification of cross-sectional area in the gastrointestinal tract. Med. Biol. Eng. Comput. 29, 108–110 (1991).

    CAS  PubMed  Google Scholar 

  32. McMahon, B. P. et al. Distensibility testing of the esophagus. Ann. NY Acad. Sci. 1232, 331–40 (2011).

    PubMed  Google Scholar 

  33. Kwiatek, M. A., Pandolfino, J. E., Hirano, I. & Kahrilas, P. J. Esophagogastric junction distensibility assessed with an endoscopic functional luminal imaging probe (EndoFLIP). Gastrointest. Endosc. 72, 272–278 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. de Ruigh, A. et al. EGJ distensibility as a measure of treatment outcome in achalasia [abstract]. Gastroenterology 142 (Suppl. 1), S95–S96 (2012).

    Google Scholar 

  35. Kwiatek, M. A. et al. Mechanical properties of the esophagus in eosinophilic esophagitis. Gastroenterology 140, 82–90 (2011).

    PubMed  Google Scholar 

  36. Nasr, I., Attaluri, A., Hashmi, S., Gregersen, H. & Rao, S. S. Investigation of esophageal sensation and biomechanical properties in functional chest pain. Neurogastroenterol. Motil. 22, 520–526 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Perretta, S., Dallemagne, B., McMahon, B., D'Agostino, J. & Marescaux, J. Video. Improving functional esophageal surgery with a “smart” bougie: Endoflip. Surg. Endosc. 25, 3109 (2011).

    PubMed  Google Scholar 

  38. Pehlivanov, N., Liu, J., Kassab, G. S., Puckett, J. L. & Mittal, R. K. Relationship between esophageal muscle thickness and intraluminal pressure: an ultrasonographic study. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G1093–G1098 (2001).

    CAS  PubMed  Google Scholar 

  39. Mittal, R. K. Measuring esophageal distention by high-frequency intraluminal ultrasound probe. Am. J. Med. 115 (Suppl. 3A), 130S–136S (2003).

    PubMed  Google Scholar 

  40. Iascone, C., Di, G. E., Maffi, C. & Ruperto, M. Use of radioisotopic esophageal transit in the assessment of patients with symptoms of reflux and non-specific esophageal motor disorders. Dis. Esophagus 17, 218–222 (2004).

    CAS  PubMed  Google Scholar 

  41. Fass, J. et al. Measuring esophageal motility with a new intraluminal impedance device. First clinical results in reflux patients. Scand. J. Gastroenterol. 29, 693–702 (1994).

    CAS  PubMed  Google Scholar 

  42. Tutuian, R. & Castell, D. O. Clarification of the esophageal function defect in patients with manometric ineffective esophageal motility: studies using combined impedance-manometry. Clin. Gastroenterol. Hepatol. 2, 230–236 (2004).

    PubMed  Google Scholar 

  43. Tutuian, R. & Castell, D. O. Combined multichannel intraluminal impedance and manometry clarifies esophageal function abnormalities: study in 350 patients. Am. J. Gastroenterol. 99, 1011–1019 (2004).

    PubMed  Google Scholar 

  44. Tucker, E., Knowles, K., Wright, J. & Fox, M. R. Rumination variations: aetiology and classification of abnormal behavioural responses to digestive symptoms based on high-resolution manometry studies. Aliment. Pharmacol. Ther. 37, 263–274 (2013).

    CAS  PubMed  Google Scholar 

  45. Bredenoord, A. J. & Smout, A. J. Physiologic and pathologic belching. Clin. Gastroenterol. Hepatol. 5, 772–775 (2007).

    PubMed  Google Scholar 

  46. Collins, P. J., Horowitz, M., Cook, D. J., Harding, P. E. & Shearman, D. J. Gastric emptying in normal subjects—a reproducible technique using a single scintillation camera and computer system. Gut 24, 1117–1125 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Olausson, E. A. et al. Measurement of gastric emptying by radiopaque markers in patients with diabetes: correlation with scintigraphy and upper gastrointestinal symptoms. Neurogastroenterol. Motil. 25, e224–e232 (2013).

    CAS  PubMed  Google Scholar 

  48. Mariani, G. et al. Radionuclide gastroesophageal motor studies. J. Nucl. Med. 45, 1004–1028 (2004).

    PubMed  Google Scholar 

  49. Kelly, K. A. Gastric emptying of liquids and solids: roles of proximal and distal stomach. Am. J. Physiol. 239, G71–G76 (1980).

    CAS  PubMed  Google Scholar 

  50. Bharucha, A. E., Camilleri, M., Veil, E., Burton, D. & Zinsmeister, A. R. Comprehensive assessment of gastric emptying with a stable isotope breath test. Neurogastroenterol. Motil. 25, e60–e69 (2013).

    CAS  PubMed  Google Scholar 

  51. Chew, C. G., Bartholomeusz, F. D., Bellon, M. & Chatterton, B. E. Simultaneous 13C/14C dual isotope breath test measurement of gastric emptying of solid and liquid in normal subjects and patients: comparison with scintigraphy. Nucl. Med. Rev. Cent. East. Eur. 6, 29–33 (2003).

    PubMed  Google Scholar 

  52. Ghoos, Y. F. et al. Measurement of gastric emptying rate of solids by means of a carbon-labeled octanoic acid breath test. Gastroenterology 104, 1640–1647 (1993).

    CAS  PubMed  Google Scholar 

  53. Saad, R. J. & Hasler, W. L. A technical review and clinical assessment of the wireless motility capsule. Gastroenterol. Hepatol. 7, 795–804 (2011).

    Google Scholar 

  54. Kuo, B. et al. Comparison of gastric emptying of a nondigestible capsule to a radio-labelled meal in healthy and gastroparetic subjects. Aliment. Pharmacol. Ther. 27, 186–196 (2008).

    CAS  PubMed  Google Scholar 

  55. Sarosiek, I. et al. The assessment of regional gut transit times in healthy controls and patients with gastroparesis using wireless motility technology. Aliment. Pharmacol. Ther. 31, 313–322 (2010).

    CAS  PubMed  Google Scholar 

  56. Minderhoud, I. M., Mundt, M. W., Roelofs, J. M. & Samsom, M. Gastric emptying of a solid meal starts during meal ingestion: combined study using 13C-octanoic acid breath test and Doppler ultrasonography. Absence of a lag phase in 13C-octanoic acid breath test. Digestion 70, 55–60 (2004).

    PubMed  Google Scholar 

  57. Mundt, M. W., Hausken, T., Smout, A. J. & Samsom, M. Relationships between gastric accommodation and gastrointestinal sensations in healthy volunteers. A study using the barostat technique and two- and three-dimensional ultrasonography. Dig. Dis. Sci. 50, 1654–1660 (2005).

    CAS  PubMed  Google Scholar 

  58. Stevens, J. E. et al. Measurement of gastric emptying of a high-nutrient liquid by 3D ultrasonography in diabetic gastroparesis. Neurogastroenterol. Motil. 23, 220–224 (2011).

    CAS  PubMed  Google Scholar 

  59. Azpiroz, F. & Malagelada, J. R. Gastric tone measured by an electronic barostat in health and postsurgical gastroparesis. Gastroenterology 92, 934–943 (1987).

    CAS  PubMed  Google Scholar 

  60. Ang, D. Measurement of gastric accommodation: a reappraisal of conventional and emerging modalities. Neurogastroenterol. Motil. 23, 287–291 (2011).

    CAS  PubMed  Google Scholar 

  61. Kuiken, S. D. et al. Development of a test to measure gastric accommodation in humans. Am. J. Physiol. 277, G1217–G1221 (1999).

    CAS  PubMed  Google Scholar 

  62. Bouras, E. P. et al. SPECT imaging of the stomach: comparison with barostat, and effects of sex, age, body mass index, and fundoplication. Gut 51, 781–786 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Feinle, C., Kunz, P., Boesiger, P., Fried, M. & Schwizer, W. Scintigraphic validation of a magnetic resonance imaging method to study gastric emptying of a solid meal in humans. Gut 44, 106–111 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sha, W., Pasricha, P. J. & Chen, J. D. Correlations among electrogastrogram, gastric dysmotility, and duodenal dysmotility in patients with functional dyspepsia. J. Clin. Gastroenterol. 43, 716–722 (2009).

    PubMed  Google Scholar 

  65. Smout A. J, van der Schee, E. J. & Grashuis, J. L. What is measured in electrogastrography? Dig. Dis. Sci. 25, 179–187 (1980).

    CAS  PubMed  Google Scholar 

  66. Parkman, H. P. & Jones, M. P. Tests of gastric neuromuscular function. Gastroenterology 136, 1526–1543 (2009).

    PubMed  Google Scholar 

  67. Camilleri, M. Study of human gastroduodenojejunal motility. Applied physiology in clinical practice. Dig. Dis. Sci. 38, 785–794 (1993).

    CAS  PubMed  Google Scholar 

  68. Stanghellini, V. et al. Clinical use of manometry for the diagnosis of intestinal motor abnormalities. Dig. Liver Dis. 32, 532–541 (2000).

    CAS  PubMed  Google Scholar 

  69. Lindberg, G. et al. Full-thickness biopsy findings in chronic intestinal pseudo-obstruction and enteric dysmotility. Gut 58, 1084–1090 (2009).

    CAS  PubMed  Google Scholar 

  70. Hinton, J. M., Lennard-Jones, J. E. & Young, A. C. A new method for studying gut transit times using radioopaque markers. Gut 10, 842–847 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Metcalf, A. M. et al. Simplified assessment of segmental colonic transit. Gastroenterology 92, 40–47 (1987).

    CAS  PubMed  Google Scholar 

  72. Rao, S. S. et al. Evaluation of gastrointestinal transit in clinical practice: position paper of the American and European Neurogastroenterology and Motility Societies. Neurogastroenterol. Motil. 23, 8–23 (2011).

    CAS  PubMed  Google Scholar 

  73. Tran, K., Brun, R. & Kuo, B. Evaluation of regional and whole gut motility using the wireless motility capsule: relevance in clinical practice. Therap. Adv. Gastroenterol. 5, 249–260 (2012).

    PubMed  PubMed Central  Google Scholar 

  74. Brun, R. et al. Comparative analysis of phase III migrating motor complexes in stomach and small bowel using wireless motility capsule and antroduodenal manometry. Neurogastroenterol. Motil. 24, 332–e165 (2012).

    CAS  PubMed  Google Scholar 

  75. Vilarino, F. et al. Intestinal motility assessment with video capsule endoscopy: automatic annotation of phasic intestinal contractions. IEEE Trans. Med. Imaging 29, 246–259 (2010).

    PubMed  Google Scholar 

  76. Miller, M. A. et al. Comparison of scintigraphy and lactulose breath hydrogen test for assessment of orocecal transit: lactulose accelerates small bowel transit. Dig. Dis. Sci. 42, 10–18 (1997).

    CAS  PubMed  Google Scholar 

  77. Yu, D., Cheeseman, F. & Vanner, S. Combined oro-caecal scintigraphy and lactulose hydrogen breath testing demonstrate that breath testing detects oro-caecal transit, not small intestinal bacterial overgrowth in patients with IBS. Gut 60, 334–340 (2011).

    PubMed  Google Scholar 

  78. Argenyi, E. E., Soffer, E. E., Madsen, M. T., Berbaum, K. S. & Walkner, W. O. Scintigraphic evaluation of small bowel transit in healthy subjects: inter- and intrasubject variability. Am. J. Gastroenterol. 90, 938–942 (1995).

    CAS  PubMed  Google Scholar 

  79. Bharucha, A. E., Wald, A., Enck, P. & Rao, S. Functional anorectal disorders. Gastroenterology 130, 1510–1518 (2006).

    PubMed  Google Scholar 

  80. Rao, S. S. et al. Minimum standards of anorectal manometry. Neurogastroenterol. Motil. 14, 553–559 (2002).

    CAS  PubMed  Google Scholar 

  81. Minguez, M. et al. Predictive value of the balloon expulsion test for excluding the diagnosis of pelvic floor dyssynergia in constipation. Gastroenterology 126, 57–62 (2004).

    PubMed  Google Scholar 

  82. Ratuapli, S. K., Bharucha, A. E., Noelting, J., Harvey, D. M. & Zinsmeister, A. R. Phenotypic identification and classification of functional defecatory disorders using high-resolution anorectal manometry. Gastroenterology http://dx.doi.org/10.1053/j.gastro.2012.10.049.

  83. Noelting, J. et al. Normal values for high-resolution anorectal manometry in healthy women: effects of age and significance of rectoanal gradient. Am. J. Gastroenterol. 107, 1530–1536 (2012).

    PubMed  PubMed Central  Google Scholar 

  84. Wald, A., Caruana, B. J., Freimanis, M. G., Bauman, D. H. & Hinds, J. P. Contributions of evacuation proctography and anorectal manometry to evaluation of adults with constipation and defecatory difficulty. Dig. Dis. Sci. 35, 481–487 (1990).

    CAS  PubMed  Google Scholar 

  85. Shorvon, P. J., McHugh, S., Diamant, N. E., Somers, S. & Stevenson, G. W. Defecography in normal volunteers: results and implications. Gut 30, 1737–1749 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Fletcher, J. G. et al. Magnetic resonance imaging of anatomic and dynamic defects of the pelvic floor in defecatory disorders. Am. J. Gastroenterol. 98, 399–411 (2003).

    CAS  PubMed  Google Scholar 

  87. Bharucha, A. E. & Fletcher, J. G. Recent advances in assessing anorectal structure and functions. Gastroenterology 133, 1069–1074 (2007).

    PubMed  Google Scholar 

  88. Gurland, B. & Hull, T. Transrectal ultrasound, manometry, and pudendal nerve terminal latency studies in the evaluation of sphincter injuries. Clin. Colon Rectal Surg. 21, 157–166 (2008).

    PubMed  PubMed Central  Google Scholar 

  89. Behar, J. et al. Functional gallbladder and sphincter of oddi disorders. Gastroenterology 130, 1498–1509 (2006).

    PubMed  Google Scholar 

  90. Imler, T. D. et al. Low yield of significant findings on endoscopic retrograde cholangiopancreatography in patients with pancreatobiliary pain and no objective findings. Dig. Dis. Sci. 57, 3252–3257 (2012).

    PubMed  Google Scholar 

  91. Cotton, P. B., Garrow, D. A., Gallagher, J. & Romagnuolo, J. Risk factors for complications after ERCP: a multivariate analysis of 11,497 procedures over 12 years. Gastrointest. Endosc. 70, 80–88 (2009).

    PubMed  Google Scholar 

  92. Craig, A. G. et al. Scintigraphy versus manometry in patients with suspected biliary sphincter of Oddi dysfunction. Gut 52, 352–357 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Delgado-Aros, S., Cremonini, F., Bredenoord, A. J. & Camilleri, M. Does gall-bladder ejection fraction on cholecystokinin cholescintigraphy predict outcome after cholecystectomy in suspected functional biliary pain? Aliment. Pharmacol. Ther. 18, 167–174 (2003).

    CAS  PubMed  Google Scholar 

  94. Barish, M. A., Yucel, E. K. & Ferrucci, J. T. Magnetic resonance cholangiopancreatography. N. Engl. J. Med. 341, 258–264 (1999).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to André J. P. M. Smout.

Ethics declarations

Competing interests

A. J. Bredenoord has received research funding from Shire–Movetis NV and Endostim and received payment from MMS International for development of educational presentations. A. J. P. M. Smout has received sponsorship from Shire–Movetis NV, MMS international and Given Imaging for an educational meeting on motility testing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bredenoord, A., Smout, A. Advances in motility testing—current and novel approaches. Nat Rev Gastroenterol Hepatol 10, 463–472 (2013). https://doi.org/10.1038/nrgastro.2013.80

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing